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ABSTRACT
This paper investigates the impact of placement and orien-
tation variations on the quality of sensed data. Different
types of human movements are considered, namely, balanc-
ing, skipping, leaping; climbing up and down a staircase, and
running. For data collection, tri-axis accelerometer sensors
are used. As target placements, arms, thighs, knees, ankle,
and waist are considered. Likewise, four different orienta-
tion angles were considered during deployment, namely, 0,
30, 45, and 85 degrees. The features employed to investigate
placement and orientation variations were zero\mean-value
crossing rate, correlation coefficients, cross-correlation, and
auto-correlation. A particular focus was given to steady slow
movements (climbing up and down a staircase) and steady
fast movements (running). Remarkably, the fast movements
are less affected by placement variations in comparison to
the slow movements. Moreover, it will be shown that the ef-
fect of orientation variations for all types of movements are
insignificant when absolute acceleration instead of the accel-
erations of individual axes are independently considered.
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plications: Miscellaneous

General Terms
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INTRODUCTION
More and more sensors are becoming integral parts of mo-
bile devices and physical environments, enabling users to
have enhanced awareness of and control over their environ-
ments. For example, sensor-based applications have been
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useful for industrial process monitoring and control [9], home
and office automation [4], healthcare [6], object tracking and
logistic as well as transportation management [15].

For some of these applications, the sensors are attached to
mobile entities (humans and objects) whose activities should
be monitored. For example, Marin-Perianu et al. [15] attach
accelerometer sensors to containers in supply-chain man-
agement to ensure that certain items are travelling together.
Similarly, Malinowski et al. [14] install accelerometer sen-
sors on crates to monitor the safety of fragile items during
transportation. Sensors have also been used in the medical
profession to monitor the activities of nurses [12, 5] and pa-
tients [13]. In fact, there is a whole host of applications in
wearable computing (for example, [1], [16], [3]) where the
movements and activities of various parts of the bodies of
persons are monitored.

For movement-based applications, the appropriate placement
of sensors is vital to correctly capture the phenomena of in-
terest (such as stiffness in motion or modal changes in the
fundamental frequencies). This is because different parts of
the body of a moving entity (a person or an object) produce
or are subject to different accelerations. Displacement from
the original placements or orientations of sensors can result
in a significant amount of inaccuracies during signal pro-
cessing. But placement and orientation variations are some-
times unavoidable on account of the movement of the objects
to which the sensor nodes are attached or because of lack of
knowledge on the part of the users as to the exact location of
sensor placements during operation.

This paper investigates the impact of placement and orien-
tation variations on the expressiveness of the features ex-
tracted from sensor data. Various human movements – run-
ning along a straight line, skipping, hopping, balancing, climb-
ing up and down a staircase – were considered during the ex-
periment. In each case, sensors were attached to the thighs,
calves, ankles, wastes and arms of a person. Particular at-
tention is given to the relatively stable movements, namely,
climbing up and down a staircase (slow movements) and
running (fast movement)1. Repeated experiments show that
running is relatively insensitive of placement variations while
the slow movements are not. Moreover, all types of move-
ments are relatively unaffected by different orientation an-

1Sudden changes in movements can be captured and classified with
comparative ease.



gles when the absolue acceleration is taken into account.

The remaining part of the paper is organised as follows: in
Section , the work related to sensor placement and signal
processing is summarised. In Section , the methodology for
investigating the impact of placement and orientation varia-
tions on the quality of sensed data is discussed in detail. In
Section experiment results are analysed. Finally, in Section ,
concluding remarks is given.

RELATED WORK
In sensing-based applications, feature selection is a critical
step, since different features can express different aspects of
the measurements. However, the type of features that are
selected should not be sensitive to measurement variations,
among which are placement variations or nonoptimal place-
ment of sensors.

Bao et al. [2] evaluate different machine learning algorithms
to capture twenty types of movement-related human activi-
ties. The preprocessing of the raw data from accelerometer
sensors is carried out at a sampling frequency of 76.25 Hz
and a window length of 512 samples with 50% window over-
lap. Among the algorithms examined – decision table, C4.5
decision tree, and naive Bayes classifier –, C4.5 decision tree
outperforms the rest. The study demonstrates that the recog-
nition accuracy depends on placement of the accelerometer
sensors (placement on thighs and wrists increase recognition
accuracy for all movement types).

Dargie et al. [7, 8] provide quantitative and qualitative anal-
ysis of the robustness of time and frequency domain fea-
tures to placement variations. The time domain features
include: mean value, zero crossing rate, correlation coeffi-
cient, cross correlation and autocorrelation. The frequency
domain features include: maxima, energy, linear correlation
coefficient of STFT, spectral roll-off, spectral centroid and
spectral flux. The measurements of human and car move-
ments are captured by tri-axial accelerometers at 150 Hz
synchronously. The sensor nodes are deployed randomly
with different placements and orientations. In this work,
zero-crossing rate is easily affected by calibration error for
all types of movements while mean-crossing rate can solve
this problem with low deviation. The deviation of mean
value of absolute acceleration of car measurements is very
small even for different orientations of sensors, but it is large
for human movements. Correlation coefficients for car move-
ments are large while they are small for human movements.
Cross correlation and autocorrelation are useful when the
measurements are not synchronous. Fuzzy membership func-
tions based on empirical observations are used to qualita-
tively describe the uncertainties of each feature. For fre-
quency domain features, the linear correlation coefficients of
Short Time Frequency Transform outperform in roboustness
all the other features.

Huynh et al. [11] analyse how recognition accuracy is af-
fected by different features with different settings (window
length) for different types of human movements. The data
set used for the analysis includes six activities: walking,

Figure 1. The weightlessness of jumping in vertical direction [10]

standing, jogging, skipping, hopping and riding bus, under
unsupervised condition. The features are calculated for dif-
ferent window lengths, namely, 128, 256, 512, 1024 and
2048 samples with 0.25 s overlapping size. The sampling
rate is 512 Hz. Mean, variance, energy, spectral entropy and
19 additional features obtained by pair-wise addition of FFT
coefficients 1 + 2, 2 + 3, 3 + 4, . . . , 19 + 20. K-means clus-
tering is employed with five-fold cross validation for a total
of 50,000 samples. The study shows that (1) there is a higher
variation in recognition accuracy for activities of higher in-
tensity; (2) FFT coefficients lead to a higher precision than
other features, but there are some exceptions; (3) accuracy
varies considerably between different FFT coefficients; and
(4) no one FFT coefficient outperforms in all activities. For
different window sizes, generally 1 s and 2 s length achieve
higher accuracies, however, similar to FFT coefficient, no
one window length outperforms in all activities.

In addition to the widely employed features, some novel fea-
tures are investigated elsewhere. For example, He et al.
[10] introduce the “weightlessness” feature for human ac-
tivity recognition and demonstrate that the average accuracy
is better than the ones widely used in other work. The raw
data were collected from tri-axial accelerometers at a sam-
pling frequency of 100 Hz. 43 subjects were involved in rea-
soning about four types of movements: jumping, still, run-
ning and walking. In order to evaluate robustness to place-
ment variations, data were collected from various parts of a
human body (chest pockets, waist bell, and trousers pock-
ets). Two features are extracted. The first one is peak fea-
ture, which indicates the intensity of a signal and is com-
puted based on net acceleration (absolute acceleration) after
noise removing. The second one is weightlessness feature,
which means, a short-time ground-leave-weightless state of
the subject when she is running or jumping. The weight-
less feature is computed from vertical directional accelera-
tion signals. A six-dimensional high-level feature from the
above two features (the mean of the peak height, the mean
of the weightlessness length, the mean of the peak interval,
the mean of the weightlessness interval, the ratio of the peak
number to the weightlessness number and the ratio of the
weightlessness length to the window length) is then com-
puted over 512 samples length frame with 50% overlapping
size. This feature is used for the input of Support Vector
Machine classifier. It could perform at an accuracy of up to
97.21%.

The approaches dicussed above deal with placement varia-



Table 1. Description of movements in experiments: the content
of left column is the name of movements with abbreviation in
brackets and the content of right column is the description of
movements.

Movement Description

Balancing Test (B) The subjects stand on right leg with
two arms unwind for a duration of
10s

Running along a
straight line(R)

The subjects run for about 10s along
a straight line at a normal speed

Hopping(H) The subjects hop for about 10s in the
forward direction

Skipping(S) The subjects skip for about 10s in
the forward direction

Leaping(L) The subjects take off from one foot
and land with the opposite foot for
about 10s in the forward direction

Climbing up-
stairs(U)

The subjects walk upstairs (about 8
steps) at a normal speed

Climbing down-
stairs(D)

The subjects walk downstairs (about
8 steps) at a normal speed

tions only implictly. This work attempts to explicitly anal-
yse the impact of placement on the quality of sensed data
and the expressiveness of the features that should deal with
imperfect sensing.

METHODOLOGY
The purpose of this paper is to investigate how placement
of sensors can affect the quality of sensed data and the ex-
pressiveness of the features that are extracted from the raw
data. Different types of activities (summarised in Table 1)
were considered during the experiment. For each activity,
measurements were taken from different parts of five healthy
subjects using tri-axis accelerometers in a synchronised man-
ner. The targeted placements were thighs (the point of ref-
erence), knees, calves, ankles, arms, and waist; at different
orientations, namely, 0, 30, 45, and 85 degrees. The x-y
plane is parallel to the surface of the body; and the y-axis
is the vertical axis. Each time, measurements were taken in
pair, as thigh-thigh, thigh-ankle, thigh-calf, etc. The data
were sampled at a frequency of 100 Hz and the duration of
each activity was on average 1.5 s. Altogether, 840 pairs of
data sets were gathered and analysed.

Even though a large number of time and frequency domain
features were evaluated, only three of them will be discussed
here – These are zero\mean-crossing rate, correlation coef-
ficients, cross correlation, and autocorrelation.

Absolute Acceleration
The simplest way to deal with orientation variation is to
compute the absolute acceleration before preprocessing in-
stead of considering the acceleration of individual axes of a
tri-axial accelerometer. The absolute acceleration is given
as:

abs =
√
x2 + y2 + z2 (1)

Zero\Mean-Crossing Rate
Zero-crossing rate is commonly used for noise detection in
digital signal processing, especially in audio signal process-
ing. It expresses the frequency at which a signal crosses
a zero-reference line. However, zero-crossing rate has its
limitation. First, the reference line is fixed, so the value is
not robust when the measurements are corrupted by uncer-
tainties, for instance, when they are lifted up or down by
calibration error. Second, the zero-crossing rate will be al-
ways zero and make no sense if the measured values are all
larger than zero. Therefore, in most cases, it is usually sub-
stituted by mean-crossing rate, which is also adopted here.
Similar to zero-crossing rate, mean-crossing rate can capture
characteristics such as the frequency in temporal structure of
a movement. The mean-value crossing rate is described as
follows:

MCR(X) =
1
f

n−1∑
i=1

F ((xi − X̄) · (xi+1 − X̄)) (2)

where f is the number of frames. F = 1 if (xi−X̄)·(xi+1−
X̄) < 0 and F = 0 if (xi − X̄) · (xi+1 − X̄) ≥ 0.

Correlation Coefficients
In digital signal processing, correlation coefficients are use-
ful statistics to express the relationship between two data
sets. The absolute values indicate the degree of the corre-
lation while the sign indicates the direction of dependency.
The range of values is between -1 and 1. The closer an ab-
solute value to 1, the higher is the degree of relation. A neg-
ative sign indicates an inverse relationship. It is computed
as:

ρX,Y = Cov(X,Y )
StdX·StdY

=
∑n

i=1(xi−X̄)(yi−Ȳ )√∑n
i=1(xi−X̄)2

√∑n
i=1(yi−Ȳ )2

(3)

where Std(X) and Std(Y) are the standard deviation of the
two data sets X and Y ; Cov(X,Y ) is the covariance be-
tween X and Y . As shown in equation 3, the correlation
coefficients are computed pair by pair, indicating the need
for time synchronization during data collection. With cor-
relation coefficients it is possible to examine a relationship
without being directly dependent on local variations in am-
plitude.

ρX,Y = N
∑n

i=1 xiyi−
∑n

i=1 xi
∑n

i=1 yi√
N

∑n
i=1 x2

i−(
∑n

i=1 xi)2
√

N
∑n

i=1 y2
i−(

∑n
i=1 yi)2

(4)

(5)

Cross-Correlation
A cross-correlation is useful to examine the existence of cor-
relation even when the two data sets cannot be compared pair
by pair. This can happen, for instance, if the data sets are



not time-synchronised or have different sample sizes. Cross-
correlation compares the two data sets in different time-lagged
instances:

γxy(d) =
N−1∑
i=0

xi · yi−d (6)

If the index of y is less than 0, the common approach is to
assume that the value is zero for i − d ≤ 0 or use the circu-
lar cross-correlation. This paper adopts the second approach.
Hence, when i−d ≤ 0, yi+n−d is used to replace yi−d. Con-
sequently, Equation 6 results in a sequence having n length
with a delay that ranges between [0, n - 1]. For each delay,
the higher the sum of the correlation value, the higher the
degree of correlation between the two data sets.

ANALYSIS
Due to space limitation, only two types of activities are con-
sidered for a detailed analysis. These are climbing up and
down a staircase as steady slow movements and running as
a steady fast movement. The mean value crossing rate of the
slow movements are relatively agnostic of placement vari-
ations. This does not mean, however, they are expressive.
In fact, it is not possible to distinguish between climbing up
and climbing down by simply considering the mean value
rates. On the other hand, the peak-to-peak variations of the
cross correlations of slow movements are significantly larger
than the corresponding values of the fast movement. More-
over, the cross correlation of the fast movement consistently
exhibit a discernable periodicity, which is not the case with
the slow movements.

The correlation between the left and right thighs (thigh-thigh)
was not as remarkable as expected. Whereas in both types of
movement there should be correlation between the left and
right tigh, in almost all the cases, this was rarely outstand-
ing. In fact, other body parts (for instance, thigh-waist as in
the cross correlation of climbing upstairs or thigh-calf as in
the cross correlation of running) exhibit strong correlation
by comparison.

The mean-value crossing rate of the fast movement is ex-
tremely placement dependent. The variation between the
different pairs of measurements is between 5 and 15/s whereas
the maximum variation for the slow movements is 4/s. Like-
wise, the correlation coefficients are strongly placement de-
pendent for all types of movements. Not only were their
values very small even for the correlated measurements, but
also the deviation between the different pairs of measure-
ments were high.

As expected, orientation variations do not have significant
effect for all types of movements, since in the experiment the
absolute acceleration instead of the individual accelerations
is considered.

CONCLUSION

Figure 2. Mean-crossing rate of climbing upstairs with different place-
ment and orientations

Figure 3. Mean-crossing rate of climbing downstairs with different
placements and orientations

Figure 4. Cross-correlation of climbing upstairs with different place-
ment at an orientation of 0◦.



Figure 5. Cross-correlation of climbing downstairs with different
placement at an orientation of 0◦.

Figure 6. Correlation coefficients of climbing upstairs with different
placements and orientations

Figure 7. Correlation coefficients of climbing downstairs with different
placements and orientations

Figure 8. Mean-crossing rate of running with different placements and
orientations

Figure 9. Correlation coefficients of running with different placements
and orientations

Figure 10. Cross-correlation of running with different placements at
an orientation of 0◦.



Various types of placements and orientations were consid-
ered to investigate their impact on the quality sensed data
and the expressiveness of the features that are extracted from
the data. In this paper, the characteristics of two types of
movements were considered with particular detail. Whereas
the mean value crossing rate of the slow movements are rel-
atively agnostic to placement variations, the feature itself is
inexpressive. It has been found out that correlation coeffi-
cients the most significantly afftected by placement errors.
This comes as a surprise, since these features should have
not been affected by variations in the direction of move-
ments. In all the movement types we concidered, compar-
ison of the features taken from similar placements (thigh-
thigh, for example) did not result in high correlation coeffi-
cients.

On the other hand, cross correlation and autocorrelation are
both expressive and less sensitive to placement variations in
fast movements.
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