
Faculty of Computer Science Institute of Systems Architecture, Chair for Computer Networks

Master Thesis

Support of Lecturers in Modeling
Complex Learning and Teaching
Scenarios in Audience Response
Systems

Sinthujan Thanabalasingam
Born on: 7th November 1993 in Hachenburg

to achieve the academic degree

Master of Science (M.Sc.)

Supervisors

Dr.-Ing. Iris Braun
Tommy Kubica, M.Sc.
Supervising professor

Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill

Submitted on: 25th February 2021

Acknowledgements

I would like to thank everyonewho supported andmotivated
me during the preparation of this master thesis. First and
foremost, I would like to thank Prof. Dr. rer. nat. habil.
Dr. h. c. Alexander Schill, who made it possible for me
to write this master thesis. For the supervision of the the-
sis, the helpful suggestions and constructive criticism dur-
ing the writing of this thesis I would like to thank Tommy
Kubica M.Sc. and Dr.-Ing. Iris Braun. A big thank you also
goes to the participants of the two evaluation rounds, with-
out whose feedback this thesis would not have been pos-
sible. Furthermore, I would like to thank my girlfriend, my
brother and my two cats, who gave memoral support espe-
cially during the Covid-19 pandemic that raged while I was
writing this thesis.

iii

Faculty of Computer Science Institute of Systems Architecture, Chair for Computer Networks

Abstract

The use of digital technology in education has become increasingly common over the last
decades. Audience Response Systems (ARS) represent a class of digital tools that aim at
improving the communication between lecturers and their audience. By leveraging the
increasing popularity of smartphones and other similar mobile devices, several ARS were
created that support and enhance individual teaching strategies. However, most of the
systems currently available lack the level of customization needed and expected by lectur-
ers.

Currently, only a few static functions are provided by the majority of systems, causing lec-
turers to adapt their strategy to comply with the system. However, highly situational learn-
ing scenarios such as Peer Instruction, Just-in-Time-Learning, or the Jigsaw-Puzzle are not
supported by most available systems. stARS is an ARS that relies on a scenario- and model-
based approach to lectures and teaching strategies. stARS gives lecturers more flexibility
with regards to when and how exactly functions of the ARS are used. The system provides
lectures with a graphical editor, allowing the creation of models of the lectures’ schedule.
Thesemodels are based on a highly expressivemeta-model that was designed with the ob-
jective of providing maximum flexibility to end-users. While the creation of simple models
with stARS is working as expected, building more complex models and therefore exploiting
the full potential of themeta-model represents a challenge to users due to the prototypical
state of its graphical editor. The editor’s capabilities are limited when it comes to creating
and managing models for complete lectures, as resulting models tend to get structurally
complex and big in size.

This work aims at continuing and improving on the ideas of stARS by extending the function-
ality of the web editor to ease the creation of more complex learning scenarios. By using
techniques from the domain of user-centered design (UCD) and by investigating solutions
provided by other graphical modeling tools, a concept for such an extension is designed
and evaluated by potential end-users. The final result of this work is an implementation
of an expansion for the stARS web-editor that eases the creation of highly-customized and
potentially complex models of learning scenarios.

Faculty of Computer Science Institute of Systems Architecture, Chair for Computer Networks

Statement of Authorship

I hereby certify that I have authored this Master Thesis entitled

“Support of Lecturers in Modeling Complex Learning and Teaching Scenarios
in Audience Response Systems”

independently and without undue assistance from third parties. No other than the re-
sources and references indicated in this thesis have been used. I have marked both literal
and accordingly adopted quotations as such. In the selection and evaluation of thematerial
and in the production of the manuscript, I received assistance from the following persons:

Dr.-Ing. Iris Braun, Tommy Kubica, M.Sc.

There were no additional persons involved in the intellectual preparation of the present
thesis. I am aware that violations of this declaration may lead to subsequent withdrawal of
the degree.

Dresden, 25th February 2021

Sinthujan Thanabalasingam

Contents

Abstract ix

1. Introduction 1
1.1. Motivation . 1
1.2. Objectives . 3
1.3. Structure . 5

2. Fundamentals 7
2.1. Audience Response Systems . 8
2.2. Workflow Modeling . 10
2.3. Graphical Modeling Tools . 12
2.4. Didactic Strategies . 17
2.5. User Interface Engineering . 22

3. State of the Art 25
3.1. Other Audience Response Systems . 26
3.2. stARS: scenario-tailored Audience Response System 27
3.3. The stARSWeb Editor . 29
3.4. Graphical Modeling Tools . 35
3.5. Problems and Drawbacks of the stARS web editor 39
3.6. Requirements Analysis . 45

4. Concept 49
4.1. Methodology . 50
4.2. Saving and Exporting Templates . 51
4.3. Loading and Importing Workflows . 54
4.4. Nested and Embedded Model Structures . 56
4.5. Wizard for Parallel Connected Components . 61
4.6. Summary . 62

xiii

5. Implementation 63
5.1. Tech Stack . 64
5.2. General Approach . 65
5.3. BPMN Schema and Data Transformations . 67
5.4. Compatibility with the stARS Execution Engine 72
5.5. Patching Frameworks and Libraries . 76
5.6. UI Concept Changes . 76
5.7. Open Issues . 79
5.8. Summary . 80

6. Evaluation 83
6.1. Methodology . 84
6.2. Task Design . 85
6.3. Open Feedback and Improvement Suggestions 95
6.4. Summary . 97

7. Conclusion 99
7.1. Summary and Results . 100
7.2. Future Work . 104

A. Pre-Evaluation Questionnaire 115

B. Evaluation: Modeling Task Sample Solutions 141

C. Evaluation Questionnaire 145

xiv Contents

List of Figures

1.1. Laptops and other mobile devices are a common sight in lecture halls. 1

2.1. Overview of different forms of Audience Response Systems. 8
2.2. Definition of meta-models based on meta-model languages. 10
2.3. Connection betweenmodel elements, amodeled didactic scenario and a live

instance. 11
2.4. An example of a lecture scenario supported by a Digital Front-Channel. . . . 11
2.5. Classification of Graphical Modeling Tools. 12
2.6. Example of a directed acyclic graph. 14
2.7. Example of a Flow Chart. 14
2.8. Example of a Business Process modelled with BPMN. 15
2.9. One instance of Peer Instruction visualized as a workflow. 19
2.10.A lecture consisting of three chained units of Peer Instruction. 20
2.11.The Jigsaw Teaching Classroom. 21

3.1. Peer Instruction in the Control View of stARS. 28
3.2. The stARS web editor. 29
3.3. The Main Menu on top of the stARS editor window. 30
3.4. The Element Palette. 31
3.5. The Properties Panel. 31
3.6. The Model Canvas of the web editor. 32
3.7. Compact Routing Example . 35
3.8. A basic Example Scenario. 39
3.9. The Example Scenario recreated with stARS. 43

4.1. Save and Export Dialog for the stARS web editor. 52
4.2. Export Dialog for the stARS web editor. 53
4.3. Final mock-up of the Load and Import Dialog. 54
4.4. Cards for Templates. 55
4.5. An embedded model element in the collapsed state. 57

xv

4.6. Tab Visualization. 59
4.7. Exemplary integration of an embedded model. 60
4.8. Improved Context Menu. 61
4.9. The Wizard for Parallel Connected Components. 61

5.1. SPA vs. traditional approach to web applications. 64
5.2. The tech stack of the stARS web editor. 65
5.3. The button group of the Import Dialog. 65
5.4. Small example of a workflow with one LearningQuestion. 69
5.5. Algorithm of the ATM function. 72
5.6. An example workflow before and after it was flattened. 73
5.7. The improved Category Selector. 77
5.8. The udpated Sidebar behavior. 78

6.1. The question round that participants had to model in Task 1. 86
6.2. Summary of the evaluation results of Task 1. 86
6.3. Summary of the evaluation results of Task 2. 88
6.4. Divided opinions regarding minimizing/expanding Parent Containers. 91
6.5. Divided opinions regarding the deletion of categories. 93
6.6. Summary of the evaluation results of Task 4. 93

7.1. Time required to render 50 model previews in the dashboard of stARS. 105

B.1. Sample solution model for Task 2 and Task 3. 143
B.2. Sample solution model for Task 4. 144

xvi List of Figures

List of Tables

2.1. Overview of the graphical modeling elements offered by BPMN 2.0. 16

3.1. Structural Blocks of stARS-MN. 33
3.2. Function Blocks of stARS-MN. 34
3.3. A summary of different GMTs and supported features. 38
3.4. Drawbacks of the stARS web-editor concerning Component Reuse. 41
3.5. Drawbacks of the stARS web-editor concerning Nested Structures. 44
3.6. Non-Functional and Functional Requirements for a concept that extends the

stARS web-editor. 48

5.1. Query and helper functions that were implemented to ease the development
process. 74

6.1. Results regarding statements to the familiarity of participants with stARS. . . . 85
6.2. Rating of statements regarding the usability of the implementation for Task 1. 87
6.3. Comparison between user confidence and experience with stARS vs. feelings

towards an explanatory illustration for the ATM function. 89
6.4. Rating of statements regarding the usability of the implementation for Task 2. 90
6.5. Rating of statements regarding the usability of the implementation for Task 3. 92
6.6. Rating of statements regarding the usability of the implementation for Task 4. 94

7.1. Status of Non-Functional and Functional Requirement fulfillment. 103

xvii

1. Introduction

Figure 1.1.: Laptops and other mobile devices are a common sight in lecture halls [1].

1.1. Motivation

Active learning techniques continue to improve over time as new technologies become
available. Where students once raised their hands or colored flashcards or provided feed-
back via student response systems (“clickers”), the use of digital technology has now be-
come a fixture in many lecture halls and classrooms around the world. Motivated by the
widespread use of mobile devices such as smartphones and tablets [2], more and more
lectures are being delivered with the support of Audience Response Systems (ARS) [3].
Several ARS have now been designed with a variety of useful functions and an increasing
number of educational institutions are incorporating this new technology into their infras-
tructure. The use of an ARS is primarily motivated by the benefits that such systems bring
to the typical classroom scenario. These benefits include improved audience attentiveness
and engagement levels [4], better audience-lecturer communication, anonymous student

1

participation without the fear of giving a wrong answer or asking a wrong question [5], and
collection of feedback data that can be evaluated by lecturers. Looking at ARS from the lec-
turer’s perspective, an ARS should complement and support the way the lecturer teaches.
However, most of the tools available have weaknesses in terms of individual approaches
and strategies for teaching. Many tools neglect the importance of established, individual
teaching strategies that lecturers may have. Some may have a pop quiz at the beginning,
middle, and end of each lecture, while others may include several group discussions de-
pending on the results to an introductory question.

Often, however, instructors are constrained by the few options offered by the tools they
use to design the flow of their lectures. Instead of implementing their individual teaching
strategies with the support of an ARS, lecturers feel forced to adapt their strategy to the
limited capabilities of the system. Contrary to expectations, only static building blocks and
procedures are provided, offering little flexibility or adaptability. Amore instructor-oriented
ARS should offermore tools formodeling lectures in terms of individual teaching strategies.

Instead of handling lectures as static blocks, it could be beneficial to regard them as dy-
namic procedures orworkflows that can be modeled with the help of software. This is the
approach that stARS1 (scenario-tailored Audience Response System), a new web-based
ARS currently under development at the Technische Universität Dresden [6], is exploring.
As opposed to most other solutions, stARS focuses on offering more flexibility by enabling
the creation and supported execution of custom learning scenarios. The scenarios define
the general structure and schedule of lectures and regulate, how and when features of
ARS (such as quizzes and polls, group formations or audience feedback) are supposed to
support an ongoing lecture. For this purpose, a meta-model was developed that formally
defines a modelling language for the most common features that occur in many ARS im-
plementations [7].

Additionally, a graphicalweb editorwas conceived in [8] and implemented in a prototypical
manner. It intends to enable lecturers, regardless of technical background or experience
in using modeling software, to model their lectures and to see them through the lens of
workflows. Workflows are extensible, customizable, easy to understand, and (when paired
with themeta-model), their high level of expressiveness allows them to resemble individual
teaching strategies more closely. Supporting lecturers by offering them an adequate and
properly engineered web editor will enable them to create their own, customized learning
scenarios. The benefits from which lecturers may profit include:

1The project can be accessed via https://stars-project.com. last successful access: 2021-02-25

2 1. Introduction

https://stars-project.com

1. Easy creation, (re-)use, editing and sharing of learning scenarios

2. Reduced system intrusion through reduction of workarounds

3. Expression of highly customized, situational and/or complex scenarios

4. Viable usage of known, established didactic strategies and

5. Overall increased effectiveness of the ARS and its functionality

1.2. Objectives

More sophisticated didactic strategies and scenarios can become convoluted or require
features that themajority of existing ARS do not support. The structural complexity of some
scenarios becomes clear when looking at them as workflows that should be modeled by
software. Somementionable examples that are further elaborated on in Chapter 2 include

• Peer Instruction [9], a teaching strategy developed by Prof. Eric Mazur of Harvard
University that involves one or more ConcepTests and Peer Discussions,

• the Jigsaw Teaching Strategy [10] that involves splitting students into groups and
having members of the groups each work on a separate topic, and

• Collaborative Learning, a strategy that consists of the three phases Think, Pair and
Share.

Several individuals at the Technische Universität Dresden recognized the potential of an
ARS that fully supports strategies as the ones mentioned before. An enormous amount of
preliminary work was done to push the stARS project forward. With the introduction of both
themeta-model for stARS and itsweb editor front-end application, a solid foundation was
created to further expand on and explore the possibilities that derive fromworkflow-based
ARS usage.

On the one side, the meta-model of stARS has reached a vastly refined state and grants
high expressiveness, as models for big scenarios with hierarchical structures can be cre-
ated with it. However, on the other side, the web editor makes it difficult for lecturers to
fully take advantage of the possibilities that the meta-model offers. At the time of writing,
the web editor remains in a prototypical state with several drawbacks that make the cre-
ation of complex workflows and scenarios unnecessarily complicated, while the creation of
small, simple workflows involves only little effort.

1.2. Objectives 3

Peer Instruction2 is a suitable example that illustrates the drawbacks the current version
of the web editor has. The stARS web editor generally supports the creation of a model that
resembles this didactic strategy. However, the modeling process is small-scale and time-
consuming, especially for inexperienced users. Each model element has to be created and
modified individually which increases both the time needed and the likelihood to make a
mistake.

Furthermore, there is no easy way to use structures that were already modeled in the past.
This means that it is required to model Peer Instruction multiple times if it is intended to be
used with different pop-quizzes, questions, and answers. There exists no straight forward
way to copy, import, or otherwise embed an existing structure to a new model. Compli-
cated workflows therefore have to be re-created on re-use.

In summary, it can be said that the current state of the web editor serves as an ideal start-
ing point, allowing the introduction of new concepts that make it easier to create, manage,
reuse, embed, and share more sophisticated scenarios.

The main goal of this work is to simplify the modeling process for complex scenarios.
When using stARS, lecturers should be able to use the full expressiveness of themeta-model
and benefit from improved support for existing popular didactic strategies. To accomplish
this objective, this work intends to extend the stARS web editor by features that concern
the following aspects:

• Component Reuse,

• Component Sharing,

• Support for Nested Components, and

• Assistance for creating Connected Components

2There exist several variations of Peer Instruction that vary in their structure.

4 1. Introduction

1.3. Structure

The rest of this work is organized as follows: In Chapter 2, the fundamentals required to
understand the remainder of this work are elaborated on. Specifically, relevant information
to the terms Audience Response System, Workflow Modeling and Graphical Modeling Tools is
provided, before presenting additional background information regarding Didactic Strate-
gies and the field of User Interface Engineering.

After covering the fundamentals, Chapter 3 proceeds to evaluate the current state of the
art in the context of ARS. This is done both to understand how other systems work and
to document and analyze the current version of stARS and its web editor, focusing primar-
ily on its problems and drawbacks when used to model complex learning scenarios. This
is then followed by a requirements analysis that presents the results of this chapter and
summarizes criteria for improving the current version of the web editor.

These results form the basis for Chapter 4, in which a concept for improving the support
of modeling complex learning scenarios with stARS is presented. During the concept devel-
opment phase of this work, several mock-ups and drafts for user interfaces (intended to
be integrated into the web editor) were created. The main focus of this chapter therefore
lays on presenting these solutions and to elaborate on how these solutions were iteratively
improved and evaluated.

Having developed and refined the concept for extending the stARS web editor, the imple-
mentation phase followed. This phase had the goal to realize the concept in a prototypical
manner. Chapter 5 will describe the development process by providing background infor-
mation to specific details of the implementation, necessary workarounds, issues and prob-
lems. Additionally, this chapter will also describe how several adaptations and changes to
the concept itself were necessary to deliver a functioning prototype that can be evaluated.

After the implementation phase was concluded, the extension of the web editor had to
be evaluated. In this phase, real users tested the enhanced version of the web editor with
regards to user expectations and intuitiveness of the new features. The evaluation process
and its results will be described in Chapter 6.

Finally, this work is concluded by Chapter 7, in which the findings of this thesis are summa-
rized and an outlook on future work regarding stARS and the web editor is provided.

1.3. Structure 5

2. Fundamentals

Chapter 2: Fundamentals

This chapter will provide more context and background information, serving as
a glossary for fundamental technicalities that the remainder of this work relies on.
First, an overview and definition for the terms Audience Response System, Workflow
Modeling and Graphical Modeling Tool will be given. Next, different examples for
Didactic Strategies intended to be supported by the stARS project will be elaborated
on. Finally, for the reason that a major part of this work deals with the design of user
interfaces, the concluding section of this chapter will briefly introduce relevant terms
from the field of User Interface Engineering.

7

2.1. Audience Response Systems

The difficult task of institutions such as schools and universities is to provide educational
services in themost effective way possible. Typically, a teaching scenario consists of a single
person – the lecturer – on one side and amultitude of people – the audience – on the other.
In many cases, a uni-directional communication takes place, namely the presentation of in-
structional material by the lecturer to the audience. Depending on various factors of the
learning environment (such as the size of the audience, the size of the lecture hall, or the
variable attention level of the audience), both lecturer and audiencemay feel disconnected
from each other. A lecturer may lose the audience by speaking too quietly or too quickly,
or by not explaining difficult topics thoroughly enough. Because of these problems, the
audience may have difficulty following the lecturer. As a result, ambiguity and questions
arise in the audience. However, with a larger audience, it becomes especially difficult for
individuals to communicate a question or feedback to the lecturer, which ultimately leads
to a decline in audience attention.

Several various feedback systems that address these issues are constantly developed and
improved over time as new technology becomes available. Some of the first feedback sys-
tems were very basic and had students raise their hands or use colored flashcards to give
feedback to the lecturer. Other systems had students push a button on a “clicker” to par-
ticipate in polls during lectures. Nowadays, digital ARS are an increasingly popular tech-
nology in education and teaching. More specifically, an ARS can be described as a set of
supportive technical tools that mainly provide the audience with capabilities to respond
and communicate with the lecturer and vice versa. Using an ARS enables the establish-

Audience	Response	Systems

Digital	Front-Channel Digital	Back-Channel

Quantitative
Systems

Qualitative
Systems

Qualitative
Systems

Quantitative
Systems

Figure 2.1.: Overview of different forms of Audience Response Systems [11] (translated into
English).

ment of a tighter feedback loop between the lecturer and the audience, increasing both
the audience’s attention and level of activity, and the lecture’s options to react on audi-
ence demands. Web-based ARS have gained popularity over the last decade as a result
of being platform-independent. One of the reasons for this development is the increasing
presence of mobile end devices that, instead of being banned from lecture halls, were em-
braced by many ARS. Accessing diverse functions that are offered by a web-based ARS is
easy, as most of the audience members already carry the necessary hardware, complete
with a pre-installed web-browser with them when they enter the classroom. Therefore,

8 2. Fundamentals

web-based ARS represent the most accessible and cost-effective solutions. Consequently,
many ARS depend on the presence of end devices in the audience to function properly.
However, several classes of systems with different ways and directions of interaction were
conceived. In [11], a classification of ARS into Front-Channel-Systems andBack-Channel-
Systems (see Figure 2.1) is proposed that will be elaborated on in the following.

2.1.1. Digital Front-Channel

Front-Channel Systems play an important role in question-oriented teaching strategies.
These systems typically require lecturers to interrupt their lectures at specific points in
time to make use of the system’s features. At a certain moment during the lecture, the
lecturer pauses the topic presentation and the system is used to ask the audience ques-
tions that can be answered and evaluated in real-time. This illustrates the most common
form of functionality provided by the majority of ARS, as most of them offer similar Front-
Channel features. Digital Front-Channel Systems can be further classified into qualitative
and quantitative systems.

Qualitative Front-Channel Systems Qualitative Front-Channel Systems allow students
to freely formulate feedback, for example to answer questions. The system does not pro-
vide predefined answers or other choices for feedback.

Quantitative Front-Channel Systems Quantitative Front-Channel Systems provide pre-
defined feedback options. Therefore, lecturers can only make quantitative assumptions
about the collected feedback. An example of this would be a multiple-choice question with
several answer options.

2.1.2. Digital Back-Channel

In contrast to Front-Channel Systems, Back-Channel Systems operate silently in the back-
ground without major intrusions to an ongoing lecture. This means that the lecture is not
periodically interrupted at certain intervals by the system itself. Instead, the audience uses
the system to provide feedback while the lecture takes place. By analyzing the data col-
lected from the audience, lecturers can adapt different aspects of their presentation style
such as speed or the volume of their voice. Similar to Front-Channel Systems, a distinction
is made between qualitative and quantitative systems.

QualitativeBack-Channel Systems Qualitative Back-Channel Systemsoffer textual feed-
back mechanisms to members of the audience. These mechanisms allow individual listen-
ers to either address the lecturer directly or to share questions that might concern the
whole audience.

2.1. Audience Response Systems 9

Quantitative Back-Channel Systems Quantitative Back-Channel Systems offer prede-
fined answer choices instead of free-text feedback. Therefore, lecturers can only make
quantitative assumptions about the collected feedback. An example of a feedback mech-
anism with predefined choices are questions with Likert scales.

2.2. Workflow Modeling

The introduction of this work stated that stARS introduces the idea of models for didactic
scenarios. A multitude of definitions and classifications for the term model, which vary
according to discipline, are known in the literature (for example [12], [13], [14] and [15]).
In general, a model is an abstraction of an object or a structure in the real world. Although
the abstraction of objects almost always means losing details, it is much easier to work with
simplified objects in software. In computer science, abstraction by the usage of models is
the standard way of representing real-world references in a digital manner. In the context
of this work however, the main object of interest will be the lectures themselves, more
specifically the structure of the lectures that will be abstracted by and modeled with the
help of workflows (see Section 2.2.2).

2.2.1. Meta-model

Layer 0

Layer 1

Layer 2

Layer n Models

Meta-
meta-model

Meta-model

Model

Model
languages

Meta-
meta-language

Object
language

in

in

in

World

Meta-
language

indirect
model of

indirect
model of

direct
model of

direct
model of

direct
model of

Figure 2.2.: Definition of meta-models based on meta-model languages [16].

Objects of the real world are not the only subject of abstraction – meta-modeling de-
scribes the act of constructing a descriptive model of another model. A more precise defi-
nition by Strahringer says:

10 2. Fundamentals

“According to the language-based meta-modeling concept, a
model is a meta-model for another model, if there is a descriptive
model of the language in which this model is formulated” [16].

In fact, each abstraction layer n can be abstracted further by introducing another layer n+1
above it (see Figure 2.2). In [7], a meta-model was created that describes the elements and
functionalities that most ARS have in common. This meta-model resides on layer n = 1.
Therefore, it allows for the creation of models (consequently residing on layer n = 0) of the
vast majority of imaginable lecture scenarios. The models represent an abstraction of the
lecture that takes place in the real world (on layer n = –1). The connection between the
meta-model, a modeled didactic schedule, and a live lecture that takes place is illustrated
in Figure 2.3.

Model Elements Didactic Schedule Instanceo�ers base creates

Meta-model User model Runtime environment

Figure 2.3.: Connection between model elements, a modeled didactic scenario and a live
instance [7].

2.2.2. Workflows and Scenarios

Many lecturers plan the schedule of their lecture (e.g. moments when to ask questions,
present a specific topic or when to do a group discussion) carefully. This is especially impor-
tant when a Digital Front-Channel System is used. As described earlier, Digital Front-Channel
Systems rely on interruptions of the lecturer’s talk during which the system finds usage. If

Co
nt

ex
t

Sw
itc

h

Multiple Choice
Question Present Topic

10 minutes 20 minutes Lecture Start

 Lecture End

Present Topic

10 minutes

Context
Switch

Context
Switch

Context
Switch

Context
Switch

Present Topic

20 minutes

Group
Discussion

10 minutes

Single Choice
Question
10 minutes

Figure 2.4.: An example of a lecture scenario supported by a Digital Front-Channel system
visualized as a workflow. A Context Switch occurs whenever usage of the ARS
starts or stops.

viewed from a more abstract perspective, a lecture scenario (involving a lecturer, his/her
audience and the use of an ARS) represents a sequence of interdependent processes or tasks.
This description is similar to how the term workflow is often defined: Workflows are a
widely-used abstraction for simulations, data analysis, business processes, scientific com-
putations, and other structures composed of interdependent steps [17]. The tasks that

2.2. Workflow Modeling 11

make up a lecture scenario typically involve either the presentation of teaching material by
the lecturer or the utilization of other features provided by the ARS (see Figure 2.4). Hence,
workflows represent a metaphor suitable for the abstraction and modeling of lecture sce-
narios. The terms workflow, scenario and model will therefore be used interchangeably in
the remainder of this work.

2.3. Graphical Modeling Tools

Graphical	Modeling	Tool
(GMT)

Diagramming	Software
(DS)

Workflow	Editor
(WE)

Generic
(GWE)

Application-specific
(AWE)

Generic
(GDS)

Diagram-specific
(DDS)

Figure 2.5.: Classification of Graphical Modeling Tools. The terms GWE, AWE, GDS and DDS
are introduced by this work to make categorization of tools related to the stARS
web editor easier.

To understand how the stARS web editor can be improved to ease the creation of com-
plex learning scenarios, it seems plausible to investigate how related tools solve certain
problems and shortcomings. For this, a custom hierarchy, by which related tools can be
classified, is introduced (see Figure 2.5). This hierarchy was developed during the state of
the art research phase of this work which will be covered in Chapter 3. The classification
puts the stARS web editor more into context and relates it to other modeling tools. First,
the term Graphical Modeling Tool is defined as follows:

A Graphical Modeling Tool (GMT) is a piece of software that allows for the creation and
manipulation of models. GMTs can be characterized by supported modeling languages,
graphical representations of model elements, application domain, the kinds of artifacts
one can create with the tool, and by provided tools that allow the manipulation of model
elements.

The classification splits GMTs into two categories: Workflow Editors (WE) and Diagram-
ming Software (DS).

12 2. Fundamentals

2.3.1. Workflow Editors

On the one hand, Workflow Editors are further differentiated in the following way:

Generic Workflow Editor

A Generic Workflow Editor (GWE) is a software tool that allows to create and manipulate
workflow models that are independent of an application-specific domain. This means that
the provided modeling language and its elements are generic (e.g. they do not represent
types that live in a given domain). Typically, one ormoremodeling languages are supported.
The artifacts created by these tools are full-fledged models that

• can be persisted by a textual representation,
• can be validated against the underlying rules of the modeling notation used,
• can be processed by other software such as workflow-engines.

Application-specific Workflow Editor

AnApplication-specificWorkflow Editor (AWE) is a software tool that only allows to create
and manipulate workflow models that live in an application-specific domain. These tools
have the same properties as GWEs, except that typically, only onemodeling language (often
customized to better suit the application domain) is supported. An example for this would
be the stARS web editor, as it allows to create workflows that live in the domain of learn-
ing scenarios. The workflows are graphically represented by the only supported, custom
modeling language that will be referred to as stARS-Modeling Notation (stARS-MN) for the
remainder of this work.

2.3.2. Diagramming Software

On the other hand, the category Diagramming Software is further differentiated in the fol-
lowing way:

Generic Diagramming Software

The term Generic Diagramming Software (GDS) describes any software tool that is de-
signed for the creation of diagrams of any kind. Typically, many sets of icons and shapes
from different modeling languages are supported. However, these tools differ from WEs,
as artifacts created with these tools do not represent input for other software (e.g. a valida-
tion tool or a workflow-engine). Instead, these artifacts are only visual models that illustrate
certain things such as relations between different objects or complex processes.

Diagram-specific Diagramming Software

The category of Diagram-specific Diagramming Software (DDS) describes any software
tool that allows for the creation of diagrams of a specific type only. Just one modeling
language/set of modeling elements is supported.

2.3. Graphical Modeling Tools 13

2.3.3. Graphical Workflow Representations

Workflow Modeling Tools depend on the graphical representation of models to function
properly. In many cases, the graphical representation determines the features that the
modeling tool has to support. There exist several graphical representations that can be
used to visualize workflows. One example is a static representation in form of a directed,
acyclic graph (DAG) that is sufficient to visualize and understand a complex sequence of
interdependent tasks [17]. DAGs usually consist of nodes (depicted as circles with a tex-
tual label) and transitions between them, hence their expressiveness is rather limited (see
Figure 2.6). Flow Charts are another simple yet expressive type of diagram that is easy to

Start Task 1

Task
2a

Task
3a

Task
3b

Task
2b

End

Figure 2.6.: Example of a directed acyclic graph (DAG).

understand. Traditionally, flow charts were and still are used to describe the execution flow
of computer programs and pseudo-code (see Figure 2.7). Compared to DAGs, flow charts
can be more expressive, as their graphical notation consists of operations, transitions, and
an additional symbol for conditional branching [18].

Does	the
machine
boot?

Are	there
any	errors	in

the	log?

Is	there	an
audible
beeping?

Enter	BIOS	for
error	detection

Check	power
chord	of	machine

Determine	cause
of	errors Machine	is	fine

Yes

Yes

Yes

No

No No

PC
Troubleshooting

Figure 2.7.: Example of a Flow Chart.

14 2. Fundamentals

Business Process Model and Notation

One reason that lead to the development of more sophisticated graphical notations was
the need to describe increasingly more complex things. A feature-rich graphical notation
commonly used formodeling and visualizing business processes andworkflows is theBusi-
ness Process Model and Notation (BPMN). BPMN describes a method and the corre-
sponding symbolism for the graphical representation of the individual steps of a planned
business process. The current version of the specification (BPMN 2.0) offers a diverse set
of graphical modeling elements, enabling the creation of expressive models. The following
paragraphs will elaborate on the features of BPMN that are important for this work, how-
ever further technical information and details on BPMN 2.0 can be found in [19].

The most fundamental notation elements of BPMN are Activities that represent a task,
Sequence Flows that connect different tasks with each other and Gateways that merge
several control flows. Furthermore, Nested Tasks or activities that consist of several indi-
vidual sub-tasks can be modeled by using subprocesses (see Figure 2.8).

BPMN plays an important role for this work, as stARS-MN (see Section 3.3.2), the cus-
tomized graphical representation used in stARS is heavily influenced by several notation
features of BPMN 2.0. A summary of these features of BPMN 2.0 can be found in Table 2.1.

Besides the modeling elements mentioned here, some additional notation elements such
as Pools and Lanes exist that are used to model collaborative processes betweenmultiple
participants of a business process. However, these elements are not covered here as they
fall out of the scope of this work. Further information about Pools and Lanes can be found
in [20].

Figure 2.8.: Example of a Business Process modelled with BPMN [21].

2.3. Graphical Modeling Tools 15

Category Description

Events An Event represents something that can happen
during a business process, for example the arrival
of a message, the reaching of a certain date or the
occurrence of an exceptional situation. The Start
Event and End Event, represent the start and end
of a process respectively, whereas an Intermediate
Event is any event that occurs between a start and
an end event.

Activities An Activity describes a task to be performed in a
business process. It is represented as a rectangle
with rounded corners. An elementary activity is also
called Task. In the didactic context, an activity can
be the presentation of a topic or a group discussion.

Sequence Flows Sequence Flows are typically depicted as arrows
between two model elements. They represent the
connections between activities, gateways and events
and determine the order in which activities are exe-
cuted.

Gateways A Gateway represents a decision point (split/fork)
or a point where different control flows converge
(join/merge). Gateways can serve either as an AND-,
an OR- or an XOR-gateway depending on the sym-
bol used inside the rhombus. Other symbols within
the square can be used for event-based or complex
gateways.

Subprocesses A more complex activity consisting of several individ-
ual activities is the Subprocess. It is visualized like
an Activity, but a + symbol distinguishes it from other
activities. Subprocesses are generally used to either
break down a diagram and make it more readable
or to describe repeated activities. Subprocesses can
be visualized either in their collapsed or expanded
state. On the left, the activity “Process Data” is dis-
played as a collapsed subprocess at the top. The ex-
panded counterpart at the bottom reveals the inner
workings of the activity.

Table 2.1.: Overview of the graphical modeling elements offered by BPMN 2.0 [19].

16 2. Fundamentals

2.4. Didactic Strategies

Lecturers and teachers use Didactic Strategies that are often tailored to eliminate diffi-
culties of understanding or to close the gap between lecturer and audience. Furthermore,
these strategies often are

• designed to pursue specific learning objectives,

• potentially derived from individual experience, and

• ultimately determining the sequence of actions that take place during a lecture.

Notably, some of them (like Peer Instruction) were scientifically derived and proven to be
effective, so there is a valid reason to use them. Additionally, collaborative strategies like
the Jigsaw Teaching Technique are valid approaches to facilitate the self-reliant exchange
of knowledge between students. However, there exist several limiting factors that hinder
a more wide-spread application of didactic strategies in educational settings.

Firstly, some strategies can not be used viably (without the support of technologies like
ARS) during lectures, because specific conditions in the learning environment complicate
this procedure. Considering the example of a group work task as part of the Jigsaw Teach-
ing Technique, it becomes clear that manually splitting a small number of students sitting
close together in a classroom into groups is generally easier than doing the same with
hundreds of students scattered in a lecture hall. The same applies to an online studying
scenario where students can not meet in person and communication takes mostly place in
an uni-directional fashion. For example, in a video-chat-based lecture, voice chat or other
means of communication are often disabled for the audience in order to prevent abuse of
these features.

Secondly, only partially supported features can be the limiting factor for the successful
execution of didactic strategies when using ARS. Looking once more at the example of
Peer Instruction, many ARS only provide some of the required features required (e.g. pos-
ing questions) while other features like automatic creation of student working groups for
a Peer Discussion or displaying the results of a ConcepTest on student devices is impossible
[22]1.

For these reasons, it could be beneficial to lecturers and audiences that ARS offer full sup-
port for the realization of both known/established and custom didactic strategies. To provide
more context and some tangible examples, the following sections present a selection of es-
tablished didactic strategies that find use in universities and classrooms.

1The terms Peer Discussion and ConcepTest are elaborated on in Section 2.4.4.

2.4. Didactic Strategies 17

2.4.1. Learning Questions

A basic strategy that lecturers use in various learning environments (e.g. in classrooms and
lecture halls) is to pose one or more Learning Questions that concern a specific topic. In
[23], Kapp et. al describe that integrating Learning Questions interactively by using a web-
based platform is a strategy that can (when used correctly) significantly improve learning
success of students. However, the authors state that learning success depends on how
questions are constructed and designed. Posing several Learning Questions during a lec-
ture at fixed points in time is a reasonable and common use case.

An example for this would be to strategically place questions at the start, middle and end
of the lecture. One or more questions at the start of the lecture can be used to evaluate
the knowledge of the audience before new learning material is presented. After the pre-
sentation block, one or more questions follow that check on the audience’s understanding
of the new topic that was recently explained. After that, another presentation block can
follow. Finally, at the end of the lecture, one or more concluding questions can serve as a
final check for audience understanding or to provoke new thoughts.

Moreover, it is stated in [23] that Learning Questions can also be used away from class-
rooms and lecture halls. The authors show that students who prepared for upcoming lec-
tures at home by answering Learning Questions provided via a web-based platform per-
formed significantly better in subsequent tests than students who were given a reading
assignment instead. The latter scenario can be compared to Just in Time Teaching.

2.4.2. Just in Time Teaching

The concept of Just in Time Teaching (JiTT) can be regarded as a refinement of the Learning
Question strategy. JiTT focuses on posing learning questions that concern an upcoming
topic in advance (i.e. before the lecture, in which that topic is discussed, takes place). For
this, questions and learning material are typically distributed via a learning platform or
ARS over the internet. Lecturers and teachers can analyse the answers before the lecture
takes place, giving them the possibility to foresee difficulties in understanding as well as
“allowing them to create an interactive classroom environment that emphasizes active learning
and cooperative problem solving [...]” [24].

2.4.3. Cooperative Learning

Cooperative Learning describes a class of collaborative learning methods in which stu-
dents think through questions during several distinct phases that encourage individual
participation. One possible variant consists of three phases: Think, Pair and Share. This
method aims at promoting critical thinking and articulate communication in the classroom.
In the first phase, each student independently thinks about a solution to a given problem.
Afterward, the learners are grouped in pairs to discuss and exchange their ideas. In the
final phase, the couples present their results of the discussion in front of the audience [25].

18 2. Fundamentals

2.4.4. Peer Instruction

Brief
Lecture

ConcepTest

25%-75%
correct	answers

<	25%
correct	answers

>	75%
correct	answers

Peer	Discussion Conclude	Topic

Next	Topic

Figure 2.9.: One instance of Peer Instruction visualized as a workflow (tr = 0.25 and ta =
0.75).

Peer Instruction is a didactic concept developedby EricMazur, Professor of Applied Physics
at Harvard University. The general idea of Peer Instruction is to engage students during
class through activities that require each student to apply the core concepts being pre-
sented, and then to explain those concepts to their fellow students (see [26] and [27]). The
strategy encourages learners to actively reflect on the teaching materials instead of just
listening to it passively. By utilizing a more structured questioning process that involves
every student in the class, lecturers are supported in their efforts to reduce comprehen-
sion difficulties among students. Prof. Mazur himself summarizes this phenomenon in his
book as follows:

“At times, it seems that students are able to explain concepts to one another more ef-
fectively than are their teachers [...]. A likely explanation is that students who understand
the concept when the question is posed have only recently mastered the idea and are
still aware of the difficulties involved in grasping that concept. Consequently, they know
precisely what to emphasize in their explanation” [9].

There exist several variants of Peer Instruction – a very common version (that is depicted
in Figure 2.9) is structured in the following way: First, the lecturer gives a short presenta-
tion (Brief Lecture) of about 10-15 minutes. After that, it’s the audience’s turn to take a
ConcepTest: The ConcepTest represents a question concerning a single important con-
cept that was explained in the preceding presentation. After the answers were collected,
the results of the question are either summarized and displayed for all participants in the
audience or communicated verbally by the lecturer. The important part here is the rate

2.4. Didactic Strategies 19

tc of students that answered the question correctly. Peer Instruction uses two different
thresholds for tc that govern how the strategy continues: the acceptance threshold ta and
the rejection threshold tr2. Depending on the performance and understanding of the audi-
ence (i.e. on the value of tc), the strategy continues in three different ways:

• If tc < tr, many students did not have the correct answer and the topic presentation
should be repeated. One could say that the topic was rejected by the audience, and
further explanation and clarification by the lecturer is needed. This repeat-when-
necessary approach prevents a gulf from developing between the lecturer’s expecta-
tions and the student’s understanding – a gulf that, once formed, only increases with
time until the entire class is lost [27].

• If tr < tc <= ta, there exists an ambiguity in the audience’s understanding of the sub-
ject matter. Some students understood the concept and answered correctly while
others still have difficulties. Therefore, the audience continues with a Peer Discus-
sion and discusses the question for a few minutes. While discussing with the per-
son sitting next to them, the students re-evaluate their stance on the topic and try
to convince each other of the correct answer. Following the discussion, a further
ConcepTest is conducted. This process can be repeated to increase the number of
correct answers in each round.

• If the vast majority of answers were correct (tc > ta), the topic was accepted (under-
stood) by the audience and the lecturer can continue with the next topic.

Typical values for tr and ta are tr = 0.25, ta = 0.75 or tr = 0.3, ta = 0.7 or even tr = 0.25, ta =
0.8. The whole strategy can be carried out for each topic of the lesson, i.e. several times
per session (see Figure 2.10).

Brief
Lecture	1

ConcepTest

25%-75%
correct	answers

<	25%
correct	answers

>	75%
correct	answers

Peer	Discussion Conclude	Topic	1

Next	Topic

Brief
Lecture	2

ConcepTest

25%-75%
correct	answers

<	25%
correct	answers

>	75%
correct	answers

Peer	Discussion Conclude	Topic	2

Next	Topic

Brief
Lecture	3

ConcepTest

25%-75%
correct	answers

<	25%
correct	answers

>	75%
correct	answers

Peer	Discussion Conclude	Topic	3

Lesson	End

Lesson	Start

Figure 2.10.: A lecture consisting of three chained units of Peer Instruction.

2The terms acceptance threshold and rejection threshold were introduced here to simplify the explanation
of Peer Instruction.

20 2. Fundamentals

Role of Peer Instruction for this work

Peer Instruction is not natively supported by many ARS. It therefore serves as the most
important example of a more complex didactic strategy for this work, playing a key role in

1. Documenting how only a few related ARS support Peer Instruction (coming up in
Section 3.1).

2. Documenting problems and weaknesses of the stARS web editor when dealing with a
scenario that involves multiple Peer Instruction units (coming up in Section 3.5).

3. Deriving the concept that extends the functionality of the stARS web editor to better
meet the requirements for Peer Instruction and similar didactic strategies (coming
up in Chapter 4).

4. Carrying out a pre-evaluation used to validate mock-ups for the concept part of this
work (coming up in Section 4.1).

2.4.5. Jigsaw Classroom

Figure 2.11.: The Jigsaw Teaching Classroom: Each assignment / topic is denoted by a re-
spective color [10].

The group puzzle, also known as the Jigsaw Classroom is a form of group work that fo-
cuses on collaboration between students. Originating in the 1970s, it was designed and
first described by social psychologist Elliot Aronson in an attempt to facilitate learning while
defusing hostility between student groups. The key aspect of the strategy is an assignment
(concerning a specific topic) that is split into several smaller assignments. As illustrated by
Figure 2.11, the students are mixed and split into arbitrary groups that each have to solve

2.4. Didactic Strategies 21

the overall assignment. In this example, students are split into groups of five. However,
each individual member of a group works on only one of the smaller assignments. Typi-
cally the Jigsaw Classroom (as described by Aronson in [28]) is carried out in three distinct
phases: In the first phase, the students work in their Home Groups. Each student becomes
an “expert” of their topic or area by learning about it and solving their small assignment. As
a result, each group now has one expert for each of the smaller assignments.

In the second phase, the experts gather into Expert Groups divided by topic: All experts
of one sub-area meet to compare and discuss their results. They synthesize information
and create a final report that is enriched by the knowledge of all experts. Finally, in the third
phase, all experts return to their original group to present their specialty to the other group
members. The presentation provides the other group members with an understanding of
their own material, as well as the findings that have emerged from topic-specific group
discussions.

2.5. User Interface Engineering

The main goal of this work is to design a functional extension for the stARS web editor.
Therefore, a major concern is the introduction of new user interface elements (e.g. dialog
windows, buttons, menus, views) and concepts to the existing version of the stARS web
editor. These additions and modifications are made to facilitate the support for complex
didactic scenarios. For this reason, the following section introduces relevant terms from
the field of User Interface Engineering.

2.5.1. User-Centered Design

Asmentioned earlier in the introduction to this work, many existing ARS donot offer enough
flexibility to lecturers, who then have to either adapt their didactic strategies to cope with
the limited system support or not use the system at all. This might indicate that a lot of ARS
were not designed with regards to the variable use cases that the end-user might have in
mind. In terms of product design, a solution to this problem is to involve the end-user in the
design process from the very beginning. This can help to avoid situations in which users
are forced to change their behavior and expectations to adapt to the final product.

A product design philosophy that represents exactly this idea is User-Centered Design
(UCD) [29]. The term describes several processes and techniques that aim at designing
interactive products in such a way that they have the highest Usability possible. The main
objective of UCD is to bridge the gap between the expectations of product designers (indi-
viduals that create and design the products) and product users (individuals that want/have
to use the product). The majority of the design process is strongly centered around the
user’s capabilities, intentions, and needs that he or she has for using the product. In the
context of UCD, these aspects have therefore a strong influence on how the product de-
sign takes shape.

22 2. Fundamentals

Product designers need to constantly validate their assumptions concerning user behav-
ior. This is achieved by real-world tests (involving real end-users) that allow them to analyze
and envision the way users are likely to consume the product. A well established technique
used in UCD is testing the viability of a concept withmock-ups and/or prototypes.

2.5.2. Usability and User Experience

Extending the concept of the stARS web editor to support complex scenarios imminently
affects its Usability and User Experience (UX). Both terms stand in relation to the per-
spective the user has when interacting with the user interface of a given system. The Inter-
national Organization for Standardization defines Usability as follows (DIN ISO 9241):

“Usability is the extent to which a system can be used by certain users in a specific usage
context to achieve goals effectively, efficiently, and satisfactorily” [30].

User Experience on the other side is defined as follows:

“Perceptions and reactions of a person that are derived from the actual and/or the ex-
pected use of a product, system, or service result. [...] This includes all emotions, ideas,
preferences, perceptions, physiological and psychological reactions, behaviour and perfor-
mance that occur before, during, and after use” [30].

Usability thus concentrates on the fulfillment of tasks, on achieving the goal, and on avoid-
ing negative feelings while doing so. UX on the other hand deals with the positive emotions
associated with the usage of the product. Although usability and UX have very distinct def-
initions, both rely on the existence of one another. Great usability is the foundation for a
great UX, but having only great usability does not necessarily mean that the UX is great too.

In summary, this work’s objective can also be formulated in terms of usability and UX: The
goal is to improve the usability of the stARS web editor by making it easier to create and
reuse more complex scenarios while at the same time providing a good user experience.

2.5.3. Usability Heuristics

As described previously, a major concern of this work is the design, evaluation and im-
plementation of user interface components that provide access to new features. Back in
1990, the 10 Usability Heuristics [31] were defined by Jakob Nielsen that have established
themselves as a golden standard guideline on how to design systems in such a way that
usability problems can be identified as early as possible with minimum effort. The following
sections present the original usability heuristics as they played a key role in the design of
many of the UI mock-ups that were created during this thesis.

UH 1: Visibility of system status The system should always keep users informed about
what is going on, through appropriate feedback within reasonable time.

2.5. User Interface Engineering 23

UH 2: Match between system and the real world The system should speak the user’s
language, withwords, phrases and concepts familiar to the user, rather than system-oriented
terms. Follow real-world conventions, making information appear in a natural and logical
order.

UH 3: User control and freedom Users often choose system functions by mistake and
will need a clearly marked ”emergency exit” to leave the unwanted state without having to
go through an extended dialogue. Support undo and redo.

UH 4: Consistency and standards Users should not have to wonder whether different
words, situations, or actions mean the same thing. Follow platform conventions.

UH 5: Error prevention Even better than good error messages is a careful design which
prevents a problem from occurring in the first place. Either eliminate error-prone condi-
tions or check for them and present users with a confirmation option before they commit
to the action.

UH 6: Recognition rather than recall Minimize the user’s memory load by making ob-
jects, actions, and options visible. The user should not have to remember information from
one part of the dialogue to another. Instructions for use of the system should be visible or
easily retrievable whenever appropriate.

UH 7: Flexibility and efficiency of use Accelerators – unseen by the novice user – may
often speed up the interaction for the expert user such that the system can cater to both
inexperienced and experienced users. Allow users to tailor frequent actions.

UH8: Aesthetic andminimalist design Dialogues should not contain informationwhich
is irrelevant or rarely needed. Every extra unit of information in a dialogue competes with
the relevant units of information and diminishes their relative visibility.

UH9: Helpusers recognize, diagnose, and recover fromerrors Errormessages should
be expressed in plain language (no codes), precisely indicate the problem, and construc-
tively suggest a solution.

UH 10: Help and documentation Even though it is better if the system can be used
without documentation, it may be necessary to provide help and documentation. Any such
information should be easy to search, focused on the user’s task, list concrete steps to be
carried out, and not be too large.

24 2. Fundamentals

3. State of the Art

Chapter 3: State of the Art

Besides providing fundamentals on the topics ARS, workflow modeling, and user
interface engineering, the previous chapter illustrated the complexity of more sophis-
ticated didactic strategies. However, as will be discussed in this chapter, the current
state of the web editor lacks vital features that allow the creation and utilization of
models of such strategies. As simplifying the modeling process with stARS is the main
objective of this work, this chapter will first elaborate on existing ARS with modeling
capabilities in order to compare stARS with them. Afterward, the current state of the
stARS project and the modeling capabilities of the stARS web editor will be discussed.
Thereafter, other GMTs will be analyzed to identify key features that ease the creation
of sophisticated models. This information will then be used in the final part of this
chapter, where a Requirements Analysis is conducted, resulting in a summary of
requirements that a suitable extension of the stARS web editor should ideally fulfill.

25

3.1. Other Audience Response Systems

The support of didactic strategies by digital tools like ARS is a desirable feature. However,
not many ARS currently available on the market were designed in anticipation of didactic
strategies. This section quickly elaborates on how these ARS that are very similar to stARS
provide support for some of the didactic strategies that were presented in Chapter 2.

3.1.1. ARSnova

ARSnova [32] is aweb-basedARSdeveloped andmaintained by the TechnischeHochschule
Mittelhessen. The system allows lecturers to create polls and quizzes that can be answered
by students before or during a lecture via mobile devices. Supported question types in-
clude single- and multiple-choice, true/false- and free-text-feedback questions. Further-
more, an anonymous back channel system allows for feedback and questions from the
audience.

Regarding the compatibility with didactic strategies, ARSnova partially supports Peer In-
struction. A function that allows the execution of the same poll twice in a row with a sub-
sequent comparison of results is provided, which can be used to mimic Peer Instruction.
However, as stated in Section 2.4.4, Peer Instruction can go through more than two itera-
tions. ARSnova does not provide a way to automatically rerun a poll if the survey results
are not good enough. However, ARSnova does offer functionalities that enable the real-
ization of JiTT. Lecturers can define and provide preparation quizzes and materials that
students can work with to prepare for an upcoming lecture, therefore enabling lecturers
to anticipate difficulties in understanding.

3.1.2. PINGO

Another example for a web-based ARS is PINGO [33], a free-to-use application maintained
by the Universität Paderborn. The system was developed specifically with the intention to
support Peer Instruction in scenarios with large audiences (i.e. lectures in universities). The
most prominent feature of PINGO is the possibility to repeat polls as often as needed. Poll
results are visualized in a before/after fashion, allowing the lecturer to decide with a single
click (based on the results) whether a repetition of the poll is needed.

Furthermore, PINGO allows to define question catalogues that are persisted in the cloud
and attached to the user account of lecturers. While the support of Peer Instruction is
provided, more complex scenarios with different didactic strategies or variations of Peer
Instruction are difficult to realize. Special features like providing access to polls in advance
to support strategies like JiTT are not provided either. Nonetheless, PINGO does enable
lecturers to realize Peer Instruction in a straight-forward manner. A detailed evaluation of
PINGO that highlights the benefits of using it during lectures can be found in [34].

26 3. State of the Art

3.1.3. tweedback

tweedback [35] is an web-based ARS that was initially developed by individuals at the Uni-
versität Rostock. The application is platform independent and allows lecturers to pose
single-choice, multiple-choice andnumerical-feedback questions. A special feature of tweed-
back are the two distinct back-channel functionalities provided by the system. The first
comes in the form of “panic buttons” that allow audience members to quickly give feed-
back on the lecture speed, volume, or on difficulties in understanding. The second feature
is an anonymous chat wall allowing the formulation of textual feedback that is visible to both
audience and lecturer. Advantages of tweedback are its easy setup process and straight-
forward user interface. However, additional features necessary to support more advanced
didactic strategies (like Peer Instruction or JiTT) or more complex scenarios are missing.

3.1.4. FreeQuizDome

An example of an ARS that is not purely web-based is FreeQuizDome [36]. The system
that was initially developed by individuals at the Universität Bielefeld requires lecturers to
download a client for their platform before being able to use it. Polls that support a multi-
tude of question types can be created with the client. Audience members can then access
and participate in the polls via their mobile devices by scanning a QR-code or by opening
a URL in a web-browser. An advantage of FreeQuizDome is its support of different media
types such as photos, videos and emojis, that can be integrated into the polls.

In addition to that, FreeQuizDome offers some support for didactic strategies. For exam-
ple, JiTT can be realized with the help of an option that allows audience members to access
polls at all times (i.e. from home). However, repeating polls multiple times depending on
poll results (i.e. support for Peer Instruction) is not possible and requires additional setup.

3.2. stARS: scenario-tailored Audience Response System

stARS is a research project for an ARS with modeling capabilities and better support for di-
dactic strategies. The project is currently a work-in-progress and active development takes
place at the Technische Universität Dresden. As already mentioned, both the meta-model
and the graphical web editor that were introduced (in [7] and [8] respectively) represent
preliminary work that was done to bring the stARS project to its current state. The following
sections will elaborate more on the various components that make up stARS in its present
state.

3.2.1. Architecture

stARS offers a web-based front-end application that grants access to the main system func-
tionality. Both lecturers and students can access this application with the web-browsers

3.2. stARS: scenario-tailored Audience Response System 27

of their devices. The front-end application consists of two parts: on the one hand, a user-
interface for students is provided that allows them to participate in the learning scenarios
that are executed during the usage of stARS. On the other hand, lecturers are provided
the stARS web editor that enables them to create workflows for their lectures. Since the
stARSweb editor is themain topic of this work, it will be covered in great detail in Section 3.3.

Furthermore, a back-end servermanages andprovides access to themeta-model, a database
persistence layer, and other administrative functions. stARS is capable of running an arbi-
trary amount of cloud servers to provide high performance to multiple lecturers and hun-
dreds of students at the same time. The inner workings of the back-end architecture of
stARS are not subject of this work, but more details can be found in [6].

3.2.2. Objective

As illustrated by the previously mentioned examples, many other ARS do not offer mech-
anisms that allow lecturers to model and orchestrate the schedule of their lecture. stARS
has the goal to serve as a viable alternative to this by providing more flexibility to lecturers,
enabling the creation ofmodels for custom learning scenarios. Contrary to the approach of
handling lectures as static blocks, stARSmakes use of the workflow metaphor to represent
lecture scenarios. The workflows are then executed during a live lecture that is accompa-
nied by the usage of stARS. In the long term, additional functions are planned to be sup-

Figure 3.1.: Peer Instruction in the Control View of stARS: The block ”Multiple Choice Learn-
ing Question” highlighted in yellow is active, meaning that a multiple choice
learning question is currently displayed on the audience’s mobile devices.

ported. One idea is to allow for more customization regarding the formation of groups, for
example by building groups based on student attributes. Furthermore, in future versions
of stARS the functionality of conditional flows might be extended. This will allow for more

28 3. State of the Art

expressiveness in the context of modeling collaborative learning strategies. This extension
could allow to model a group work scenario in which a bigger task is split into smaller ones,
assigning one of them to each group, similar to the Jigsaw Classroom.

3.2.3. System Operation

From the viewpoint of lecturers, stARS is operated in the following way: The lecturer creates
a learning scenario with the stARS web editor that resembles the lecture intended to be
supported by stARS. The scenario is saved before it is available for execution during a live
lecture (see Section 3.3.1). Once the lecture takes place, the lecturer uses the Control View
to advance the scenario (see Figure 3.1). Advancing the scenario changes which Function
Block1 is currently active and therefore which functionality the ARS provides at a given point
in time. For example, if the current active block is a Single Choice Learning Question, the
respective question is shown on the devices present in the audience. When the lecture
concludes (i.e. once one of the End Blocks is reached), the scenario is stopped and the
involvement of stARS in the lecture ends. The scenario remains available in the system and
can be restarted at a later point in time.

3.3. The stARSWeb Editor

1

3

2

4

Figure 3.2.: The stARS web editor: the Main Menu on top, Element Palette on the left, Proper-
ties Panel on the right and the Model Canvas in the center.

The stARS web editor (see Figure 3.2) represents one of the main functionalities offered
by stARS, and is the central topic of this work. Its purpose is to provide a set of tools that
allow for the creation of model-based learning scenarios. This section will elaborate on all
components of the web editor’s user interface, explaining relevant functions inmore detail.

1More information on Function Blocks follows in Section 3.3.2.

3.3. The stARSWeb Editor 29

3.3.1. User Interface

The user interface of the stARS web editor consists of four main components: 1 theMain
Menu, 2 theModel Canvas, 3 the Element Palette and 4 the Properties Panel (see
Figure 3.2). As these components represent the central places of user interaction during
work with the web editor, their purpose will be explained in the following.

1 The Main Menu

Figure 3.3.: The Main Menu on top of the stARS editor window.

The Main Menu can be found at the top of the editor window (see Figure 3.3). The buttons
offer the following functions (from left to right):

• Reset Model Canvas: Deletes all model elements that currently reside in the Model
Canvas. On confirmation, all changes previously made are lost permanently.

• Center Model Canvas: Re-orients the model canvas by centering the model.

• Undo/Redo: Allows to undo or redo the last change made to the model.

• Zoom Out, Zoom In: Used to manipulate the zoom level of the Model Canvas.

• Scenario Name Field: Can be used to give the current model a name.

• Import Scenario, Export Scenario: Allows importing a set of predefined scenarios
provided by stARS. The export function allows to download the scenario as a vector
graphic.

• Copy Element: Allows to copy the currently selected model element.

• Delete Element: Allows to remove the currently selected model element.

• Help: Provides a help dialog that explains all available Function Blocks and their fea-
tures.

• Save Scenario: Allows to save a scenario for execution during a lecture. A scenario
can only be saved if it is valid. For example, a scenario is invalid if it contains Abstract
Function Blocks (see the paragraph Abstract Function Blocks in Section 3.3.2).

2 The Model Canvas

The Model Canvas holds and displays the model that is currently being edited. Model
elements can be selected from the Element Palette and be placed inside the Model Canvas
(see Figure 3.6). The viewport of the Model Canvas can be manipulated by left-clicking and
dragging the mouse.

30 3. State of the Art

Figure 3.4.: The Element Palette.

3 The Element Palette

The Element Palette is located on the left side of the
editor window (see Figure 3.4). It offers access to
all available Structural Blocks and Function Blocks.
Blocks can be selected from here and placed in-
side the Model Canvas. A summary of the available
Structural Blocks and Function Blocks can be found
in Table 3.1 and Table 3.2 respectively.

Figure 3.5.: The Properties Panel.

4 The Properties Panel

Each Function Block has several proper-
ties that influence the behavior of said block,
providing more possibilities for flexibility
and expressiveness. When selecting a Func-
tion Block, the Properties Panel is shown
on the right side of the editor window (see
Figure 3.5). It displays all properties and
their current values which can be edited
from here.

3.3. The stARSWeb Editor 31

3.3.2. stARS-MN - The Graphical Workflow Notation for stARS

Chapter 2 briefly mentioned that the modeling language of the stARS web editor relies on a
meta-model that was conceived in [7]. In the web editor, elements of the meta-model are
represented conceptually and graphically by Function Blocks and Structural Blocks that
were to large extents inspired by BPMN. They represent the elemental building blocks that
workflows consist of. The modeling notation used in the stARS web editor is described in
the following sections and will be referred to as stARS-MN.

Figure 3.6.: The Model Canvas of the web editor: An example workflow with one Start Block
and one End Block.

Structural Blocks

A commonality of valid workflows (regardless of graphical representation or model lan-
guage used) is the existence of structural elements like one Start Node and End Nodes,
because workflows need to start sometime and end under certain circumstances. In the
context of stARS each valid workflow uses exactly one Start Block and an arbitrary amount
of End Blocks. An overview of all Structural Blocks is given in Table 3.1.

32 3. State of the Art

Structural Block Category Description

Start Block, Pause Block, End Block This category contains blocks that deal with temporal
aspects of a learning scenario, such as the beginning
and end of a scenario. As already described earlier,
a scenario has exactly one Start Block but can have
multiple End Blocks. The Pause Block is used to sig-
nify that during certain intervals, the use of the ARS is
paused. This is for example the casewhen a lecturer re-
sumes with presenting his/her lecture after using stARS
to ask the audience a Learning Question.

Transitions and Forks Blocks of this category are used to control the exe-
cution flow of scenarios. AND-Forks are used to de-
sign parallel activities by splitting the control-flow into
several sub-flows. The OR-Fork is used when multi-
ple paths in the workflow can be taken based on the
outcome of a connected function block. Finally, Tran-
sitions connect different function blocks and are used
to control the execution flow.

Table 3.1.: Structural Blocks of stARS-MN: An overview of the modeling elements that give
structure to a learning scenario2.

Function Blocks

Between Start Blocks and End Blocks, any number of Function Blocks can be utilized to
describe a specific lecture (see Figure 3.6). All elements (i.e. Start Blocks, End Blocks and
Function Blocks) are connected by Transitions, which determine the order of the activities
of a lecture. Because the tech-stack of the web editor (more on that in Chapter 5) relies
on a framework called bpmn-js, the graphical notation is heavily influenced by BPMN. A
summary of the currently available3 Function Blocks can be found in Table 3.2.

Function Block Parameterization As described earlier, each Function Block has a set
of parameters/properties that describe it more concretely. These properties enhance the
flexibility given to lecturers when modeling a scenario, as different values for each prop-
erty change the behavior of the respective Function Block. Examples for Function Block
properties include question and answer texts of LearningQuestion Blocks, the image URL
for PresentImage Blocks or a flag that allows or disables abstention from SurveyQuestion
Blocks. More information about Function Block properties can be found in [7]. Users can
manipulate properties with the help of the Properties Panel (see Figure 3.5).

2This list documents only blocks that were present at the time of writing (September 2020).
3Themeta-model defines more concrete Learning Question types that are currently not supported by the web
editor.

3.3. The stARSWeb Editor 33

Function Block Category Description

Learning Question Learning Questions have one or more correct answer(s) and
can be solved by the students. The stARS web editor currently
offers single-choice, multiple-choice, numerical and free-text
answering mechanisms for Learning Questions.

Survey Question Survey Questions can be used to poll an opinion of the au-
dience. Similar to Learning Questions, the stARS web editor
currently offers single-choice, multiple-choice, numerical and
free-text answering mechanisms.

Feedback The Feedback category contains two distinct function blocks:
Closed Feedback and Open Discussion. The Closed Feed-
back block gives students the opportunity to provide instant
feedback on predefined feedback dimensions. It resembles a
quantitative back-channel. An Open Discussion block allows
students to ask own questions and discuss them with other
students. Both blocks represent examples of classical Back-
Channel functions.

Group Interaction This category contains blocks that deal with group work. The
Group Builder block models the act of splitting the audience
into groups. The Chat block can be used to model group dis-
cussions. The Present Group-Answers block represents stu-
dents stepping in front of the audience/class to present re-
sults of a group work. The Group Voting allows group mem-
bers to select a group answer to a question by vote. The Au-
dioVideoChat block allows group members to join a video
conference and to exchange ideas via voice and text chat.

Media Presentation The Media Presentation block allows sharing different types
of media with the audience during a lecture. Supported me-
dia types include pictures, videos, text or a timer. Additionally,
the results of previous learning or survey questions can be dis-
played on students’ devices using the Present Result block.

Table 3.2.: Function Blocks of stARS-MN: Overview of modeling elements and their graphical
representation.4

4This list documents only blocks that were present at the time of writing (September 2020).

34 3. State of the Art

Figure 3.7.: Abstract and concrete Function Blocks: An Abstract Learning Question on the left
and all four concrete counterparts currently supported by the web editor.

Abstract Function Blocks In addition to the concept of parameterization through prop-
erties, stARS supports the concept of Abstract Function Blocks, that represent a whole
category of Function Blocks (see Figure 3.7). They are valid model elements and can be
used as placeholders that indicate the structure of a concrete workflow. However, work-
flows that contain abstract Function Blocks can not be executed by stARS: as long as one or
more abstract Function Blocks are present, it can not be instantiated and executed during
a lecture. Tomake a workflow executable and therefore usable, it is necessary to specify the
concrete type of the abstract Function Blocks. Later in Chapter 4, the concept of Function
Block abstraction is explored further in the context of template creation.

3.4. Graphical Modeling Tools

With respect to the classification defined earlier (see Figure 2.5), the stARS web editor can
be categorized as an Application-specific Workflow Editor (AWE) for learning scenarios. This
work’s objective is to extend the stARS web editor in such a way that more sophisticated
learning scenarios are fully supported. For this reason, it seemed reasonable to first iden-
tify which features make the creation, manipulation, reuse, and overall work with complex
models easier. This was achieved by studying other already existing modeling tools. Once
these features and their purpose were identified, a basis was created on which stARS and
its web editor can be compared against.

Researching applications that are available on the web resulted in a total of 19 different
free-to-use GMTs that were experimented with. Most of the identified applications were
web-based, which makes them very similar to stARS in terms of platform and runtime envi-
ronment. These applications were analyzed to determine features that contribute to mak-
ing work with complex models easier. While working with more and more of these tools,
similarities between all GMTs were noticed in the approaches on 1 Support For Nested
Structures and 2 Component Reuse. The following paragraphs will shortly motivate po-
tential benefits of supporting nested structures and better support for component reuse,
before elaborating on the different solutions to both of these problems that were identified
while using the GMTs.

3.4. Graphical Modeling Tools 35

On the one hand, supporting Nested Model Structures has the following benefits:

• Composition: Support for composite models that consist of smaller models
• Efficiency: Easier reuse of models in bigger composite models
• Effectiveness: Better support for established didactic scenarios
• Expressiveness: Easier creation of models that have repeating or looping parts
• Abstraction: Collectively abstract parts of a model in a single modeling element

On the other hand, enhancing the possibilities offered for Component Reuse could like-
wise have the following benefits:

• Efficiency: Faster creation of new models
• Variability: Edit, adapt and reuse existing models
• Templating: Faster creation of several similar models based on templates
• Collaboration: Sharing of models between lecturers

All investigated GMTs offer different solutions to both of these problems that can be of
interest for stARS and its web editor. These solutions and approaches are covered in more
detail in the following sections.

1 Features related to Support For Nested Model Structures

Parent Containers
The term Parent Container describes special model elements that are responsible for em-
bedding one or more model elements into another model element. GMTs that support
nestedmodel structures usually also visualize the embedded contents inside a Parent Con-
tainer. Parent Containers can either originate from supportedmodeling notations (e.g. the
subprocess of BPMN) or custommodel elements (e.g. bounding boxes or containers) ded-
icated to nesting elements.

Expandable/Retractable Containers
Some GMTs that support nested model elements allow for these structures to be hidden
on demand. Available Parent Containers can be expanded or retracted when needed. This
feature is useful for reducing visual clutter and avoiding bloatedmodel canvases. Addition-
ally, retracting all Parent Containers in a model yields a top-level overview of the model.

Dedicated UI Elements
The term Dedicated UI Elements describes whether certain user interface elements exist
that are dedicated to the visualization of embedded elements. An example for this would
be Tabs that each render one BPMN subprocess.

Model Composition
Model Composition describes whether a model can be embedded into a parent model
without replacing the contents of the parent model, effectively creating a composite of two
or more models.

36 3. State of the Art

2 Features related to Component Reuse

Templates & Template Creation
Templates can serve as valuable shortcuts during the creation of new or more complex
models. A template of a model commonly contains the structure and arrangement of
model elements or placeholders thereof. Users can save time on the creation of mod-
els by using templates, which avoids the need to recreate a structure that should be used
multiple times, although with slight modifications.

Template Repository
Template Repositories often provide templates for popularmodels or diagram types. There
exist variations that solely provide public templates and variations were user generated
templates can be shared. They represent mechanisms by which a collection of several
templates is provided from which the user can choose.

Save, Load & Edit
This feature allows users to save a model, reload it, and edit it as many times as necessary.

Import
This term describes whether a model can be imported into the GMT. For this, models usu-
ally have to be present in a textual file format. Many web-based GMTs offer this feature via
a file upload function. Importing a model allows users to view, alter and therefore reuse
an otherwise acquired model (e.g. a model that was provided to them by someone else).

Export
An Export feature allows to generate a textual or graphical representation of the model.
Many web-based GMTs allow downloading the model as a file to the user’s file system. This
feature allows to share models with others on the base of exchanging files.

Comparing the stARS web editor to other GMT

By identifying a set of features that most GMTs support, it was possible to compare stARS
and its web editor to other GMTs. In conclusion, the stARS web editor does not support
the majority of the features described above. A summary of the analysis of all GMTs that
illustrates to which degree the aforementioned features are supported can be found in
Table 3.3. One can say that the absence of almost all features that other GMTs support will
likely make the creation of complex models with the stARS web editor more difficult. The
following section will therefore elaborate concretely on the problems the web editor has
by looking at the process of modeling an example workflow through the lenses of nested
structures and component reuse.

3.4. Graphical Modeling Tools 37

G
en
er
al
In
fo

G
ra
ph

ic
al
N
ot
at
io
n

Su
pp

or
tF
or

N
es
te
d
M
od

el
St
ru
ct
ur
es

Co
m
po

ne
nt

Re
us
e

To
ol

Ty
pe

Pl
at
fo
rm

Su
pp

or
te
d

N
ot
at
io
ns

BP
M
N
2.
0

Pa
re
nt

Co
nt
ai
ne

rs
Ex
pa

nd
ab

le
/

Re
tr
ac
ta
bl
e

D
ed

ic
at
ed

U
I

El
em

en
ts

M
od

el
Co

m
po

si
ti
on

Te
m
pl
at
e

Cr
ea

ti
on

Te
m
pl
at
e

Re
po

si
to
ry

Sa
ve
,L
oa

d
&
Ed

it
Im

po
rt

Ex
po

rt

Lu
ci
dc
ha

rt
[3
7]

G
D
S

W
eb

m
ul
tip
le

3
BP

M
N
Su
b-
pr
oc
es
s

5
Ta
bs

−
3

3
3

3
3

G
liff

y
[3
8]

G
D
S

W
eb

m
ul
tip
le

3
−

5
5

5
5

3
3

3
3

Vi
si
o
[3
9]

G
D
S

D
es
kt
op

m
ul
tip
le

3
BP

M
N
Su
b-
pr
oc
es
s

5
Ta
bs

5
5

5
3

3
3

bp
m
n.
io

[4
0]

G
W
E

W
eb

BP
M
N
2.
0

BP
M
N
Su
b-
pr
oc
es
s

5
5

5
5

5
3

3
3

Ca
m
un

da
[4
1]

G
W
E

D
es
kt
op

BP
M
N
2.
0,

CM
M
N
,D

M
N

3
BP

M
N
Su
b-
pr
oc
es
s

5
5

5
5

5
3

3
3

Ki
ss
flo

w
[4
2]

AW
E

W
eb

cu
st
om

no
ta
tio
n

5
5

5
5

5
5

5
3

3
3

dr
aw

.io
[4
3]

G
D
S

W
eb

m
ul
tip
le

3
−

3
5

3
3

3
3

3
3

Al
fr
ed

[4
4]

AW
E

D
es
kt
op

(m
ac
O
S)

cu
st
om

no
ta
tio
n

5
5

5
5

5
5

3
3

3
3

CP
N
To

ol
s
[4
5]

G
W
E

D
es
kt
op

Co
lo
re
d

Pe
tr
i-N

et
s

5
5

3
Su
b-
pa
ge
s
an

d
Ta
bs

5
5

5
3

5
5

Vi
su
al
Pa

ra
di
gm

[4
6]

G
D
S

D
es
kt
op

m
ul
tip
le

5
3

3
Su
b-
pa

ge
s

3
5

5
3

3
3

ca
rd
an

it
[4
7]

G
W
E

W
eb

BP
M
N
2.
0

BP
M
N
Su
b-
pr
oc
es
s

5
Ta
bs

5
5

3
3

3
3

Ac
ti
vi
ty

M
od

el
er

[4
8]

G
W
E

W
eb

BP
M
N
2.
0

BP
M
N
Su
b-
pr
oc
es
s

5
5

5
5

5
3

5
5

cr
ea

te
ly
[4
9]

G
D
S

W
eb

m
ul
tip
le

5
5

5
5

5
5

3
3

$
3

Fl
ow

ab
le
[5
0]

G
W
E

W
eb
,D

es
kt
op

BP
M
N
2.
0

BP
M
N
Su
b-
pr
oc
es
s

5
5

5
5

3
5

3
3

H
EF
LO

[5
1]

G
W
E

W
eb

BP
M
N
2.
0

BP
M
N
Su
b-
pr
oc
es
s

3
Se
pa
ra
te

Br
ow

se
r

Ta
b

5
3

3
3

3
3

Bo
ni
ta

St
ud

io
[5
2]

G
W
E

D
es
kt
op

BP
M
N
2.
0

BP
M
N
Su
b-
pr
oc
es
s

3
Po

ol
s
an
d
La
ne
s

5
3

3
3

3
3

ca
co
o
[5
3]

G
D
S

W
eb

m
ul
tip
le

−
5

5
O
ne

Sh
ee
tp

er
D
ia
gr
am

5
5

3
3

3
3

sm
ar
td
ra
w
[5
4]

G
D
S

W
eb
,D

es
kt
op

m
ul
tip
le

3
BP

M
N
Su
b-
pr
oc
es
s

5
Ta
bs

5
3

3
3

3
3

m
yd

ra
w
[5
5]

G
D
S

D
es
kt
op

(W
in
do

w
s,
m
ac
O
S)

m
ul
tip
le

3
5

5
Ta
bs

5
5

3
3

3
3

st
AR

S
AW

E
W
eb

st
ar
s-
M
N

5
5

5
5

5
5

5
5

5
−

Ta
bl
e
3.
3.
:A

su
m
m
ar
y
of

di
ffe

re
nt

G
M
Ts

an
d
su
pp

or
te
d
fe
at
ur
es
.

3
:F
ul
ly
su
pp

or
te
d,

−
:p

ar
tly

su
pp

or
te
d,

5
:n

ot
su
pp

or
te
d,

$
:a
va
ila
bl
e

in
pa
id
pl
an

38 3. State of the Art

3.5. Problems and Drawbacks of the stARS web editor

Creating learning scenarios with the stARS web editor is sometimes not possible without
major inconveniences. To identify drawbacks and limitations of the current implementa-
tion, the stARS web editor is compared to the other GMTs whose relevant features were
described in the previous section. The following sections will elaborate on weaknesses of
the web editor in more detail by referring to an example model. It resembles a theoreti-
cal but realistic learning scenario designed purposefully to highlight the weaknesses of the
stARS web editor in the areas of Component Reuse and Nested Model Structures. This Example
Scenario can be described as follows:

Example Scenario

The scenario starts with a Topic Presentation during which the lecturer ex-
plains a specific topic to the audience. In the next step, a Peer Instruction unit is
conducted (i.e. to validate audience understanding of the new topic). After the topic
was understood by the audience, the lecturer wants to give the audience the option
to determine how the lecture will continue. For this, a Survey Question with two
answer options (Topic 2A or Topic 2B) is posed to determine which subject matter the
students are more interested in. Depending on the outcome of the Survey Question,
the lecture either continues with Peer Instruction 2A for Topic 2A or Peer Instruction
2B for Topic 2B. On conclusion of the second Peer Instruction unit, the scenario ends.

> 50 % Topic B

Survey
Question

 Course Start Course End

> 50 % Topic A

Topic 1
Presentation

20 minutes

Peer
Instruction 1

20 minutes

Peer
Instruction 2A

20 minutes

Peer
Instruction 2B

20 minutes

Figure 3.8.: A basic Example Scenario that illustrates howmultiple instances of Peer Instruc-
tion can be used during a lecture supported by an ARS.

3.5.1. Component Reuse

A workflow modeled with the web editor can be seen as a component that (once it was
created) should be reusable without the need to recreate it again from scratch. Looking at
the Example Scenario in Figure 3.8 reveals that it consists of three different Peer Instruction
units, meaning that Peer Instruction is reused three times in the samemodel. Modeling this
structure with the current version of the stARSweb editor is difficult and time-consuming. It
requires users tomanually createmultiple identical copies of the Peer Instruction structure.

3.5. Problems and Drawbacks of the stARS web editor 39

Templates & Template Repositories

Lectures tend to have a very similar but not the exact same structure (e.g. asking questions
in consecutive lectures is useful, but asking the same questionsmight not be). To accommo-
date for these slight variations, reusing scenarios while applying minor modifications is a
necessary feature. An example of a use case that illustrates this is the following situation:

Use case for Modification after Save

A lecturer creates the Example Scenario (see Figure 3.8) that contains multiple
Peer Instruction units with the stARS web editor. Then, he or she conducts the lecture
with the support of stARS. Once the lecture is finished, the scenario remains in the
system as an executable model, meaning that it can be started again in a future
lecture. During the next lecture, the lecturer wants to reuse the same scenario,
though with a slight modification. This modification could be swapping the questions
of the ConcepTest for another or changing the values of tr and ta.

The stARS web editor allows to modify a scenario after it was saved. The current implemen-
tation enables lectures to create the workflow depicted in Figure 3.8 and to alter it for the
next lecture. However, the original scenario is lost once the modifications are saved. This
can especially be a problem if the changes are bigger or more complicated. Jumping back
to the original version of the scenario is not possible, as the undo stack is lost when saving
the scenario. The lecturer therefore is forced to recreate the model from scratch. Because
the model for Peer Instruction is rather complex, the recreation of it will be labor-intensive.

Many other GMTs offer a feature that circumvents the need to recreate models (and parts
thereof) from scratch. They support the creation and usage of templates. Templates al-
low to quickly derive as many structurally identical copies of the same model as needed.
For example, swapping a question for another would then only come down to editing the
properties of a model element that is placed in the already existing model structure of the
template. In addition to support for templates, many GMTs also offer Template Reposito-
ries that provide a variety of starting points for new models. The stARS web editor however
does not allow for the creation of templates, although Abstract Function Blocks, a class of
model elements suitable to represent templates, already exist. Furthermore, only a very
limited Template Repository is offered in the import function. GMTs that support templates
also often allow to load and edit templates once they were saved. However, the current
Template Repository is not flexible enough as it only displays a fixed set of predefined tem-
plates to choose from.

40 3. State of the Art

Import & Export

Moreover, the majority of other GMTs offer Import and Export features that make reusing
already existing components easier. Commonly, the export feature allows downloading a
copy of the model to the user’s file system. Consequently, the import feature allows for the
inverse action (i.e. importing a model from the user’s file system back into the GMT). Cur-
rently, an import and export feature is already part of the stARS web editor. However, the
prototypical implementation of the editor offers only limited options. It is already possible
to import exactly one workflow from a series of predefined templates. However, importing
one of the available templates simply replaces the current content of the Model Canvas.
This means that importing several, different sub-components into the same model is not
supported. Lecturers are therefore unable to make use of component reuse on the base
of combining different models and components into a bigger model. A realistic use case
motivating a more mature import and export feature is the exchange and sharing of work-
flows and components among lecturers. The following table summarizes problems and
drawbacks concerning Saving, Loading, Importing and Exporting scenarios as well as
Template Support:

Name Description
No Partial Export Only the export of whole workflows as .bpmn or

.svg files is supported.
No Import From File System The import feature does not allow to import

.bpmn files from the users file system back into
the system.

No Model Composition Embedding onemodel into another (Model Com-
position) is not possible, because importing a
model always replaces whatever currently re-
sides in the Model Canvas.

No Template Creation The creation of Templates is not supported,
although Abstract Function Blocks are already
present.

No Extensible Template Reposi-
tory

The import feature provides a Template Reposi-
tory that consists only of a small series of prede-
fined templates. It can not be extended by user-
created Templates.

No Scenario Sharing Sharing scenarios (for example via the Template
Repository) is not possible. Because the import
of .bpmn files is not supported, manual sharing
of scenarios (e.g. via thumb-drives) between lec-
turers is also not possible.

Table 3.4.: Drawbacks of the stARS web-editor concerning Component Reuse.

3.5. Problems and Drawbacks of the stARS web editor 41

3.5.2. Nested Structures

Sophisticated learning scenarios can often have a composite structure consisting of multi-
ple, smaller sub-scenarios. Consequently, models of these learning scenarios have to map
composite structures by nesting model elements in other model elements (e.g. by intro-
ducing a parent-child relation between model elements).

In theory, model elements can either be atomic or composite. Atomic model elements
on the one hand lack any internal expandable structure (e.g. a Survey Question or any other
Function Block would be an atomic model element). On the other hand, composite model
elements do have an expandable internal structure that consists of several inner atomic or
composite model elements (e.g. a whole Peer Instruction unit can be seen as a composite
model element).

For instance, the Example Scenario illustrated at the beginning of this section has a rather
clear and basic structure, including composite model elements (the three Peer Instruction
units). Despite the model’s simplicity, it is difficult to create models of similar composite
structures with the stARS web editor. To illustrate the problems and limitations that occur
during such a modeling process, the Example Scenario is recreated with the stARS web edi-
tor. In general, it is possible to create a model that closely resembles the Example Scenario.
However (as can be seen in Figure 3.9) a problem that immediately arises is the visual
complexity of this rather simple model.

Model Composition

In theory, as illustrated by the Example Scenario, combining (potentially different) existing
models into one (i.e. Model Composition) is a valid use case. In practice, however, Model
Composition is not possible with the stARSweb editor. As already described in Section 3.5.1,
the import feature of the web editor does not allow to combine multiple existing models
into one as it replaces the contents of the Model Canvas on import.

Looking at the Example Scenario as it is depicted in Figure 3.9, it is plausible to imagine that
it was created by importing and embedding an already existing model of Peer Instruction
three times. Instead, every model element had to be placed manually, rendering the cre-
ation of this rather simple model very time-consuming. To speed up the modeling process,
other GMTs provide functionalities that permit to embed a compatible model (or parts of
it) into another model.

42 3. State of the Art

Figure 3.9.: The Example Scenario recreated with stARS: Peer Instruction introduces a lot of
complexity to the model’s visual representation.

Another reasonable use case is to swap one embedded model with another. For exam-
ple, replacing one of the three Peer Instruction units with another structure (e.g. a Jigsaw
Puzzle) for a future lecture could be a functionality desired by lecturers. However, with
the stARS web editor, a model swap is not doable in a straight-forward manner since the
elements that make up the embedded model are not treated as connected or belonging
together. Instead, it is necessary to manually delete all Function Blocks of the sub-scenario,
then place the Function Blocks of the replacement scenario and connecting them properly
to the rest of the model while managing model boundaries. The very same can be said
about the use case of simply removing an embedded model from the composite structure.

Parent Containers

Referring again to Figure 3.8, the three Peer Instruction units can be seen as sub-scenarios
that are embedded into the structure of the Example Scenario. When looking at the model
recreated with the stARS web editor in comparison (see Figure 3.9), it is evident that these
embedded structures are not identifiable as connectedmodel elements that belong together
(at least not at first glance). The lack of some sort of visual grouping causes context infor-

3.5. Problems and Drawbacks of the stARS web editor 43

mation of Function Blocks and about their relation to one another to get lost. For example,
it is not clear at a glance that any of the depicted structures resemble one or more Peer
Instructions. Furthermore, the boundaries of the sub-scenarios remain unclear. The Survey
Question could belong to the Peer Instruction preceding it or to one of the Peer Instructions
that follow it or not to any other structure at all (which it does not). The structural complex-
ity of the embedded Peer Instruction units makes it difficult to maintain an overview of the
whole model and creates a visually overloaded Model Canvas.

Some other GMTs avoid these problems by offering special Parent Containers dedicated
to embedded and composite structures. For example, a few GMTs use the BPMN subpro-
cess in its retracted state to hide the complexity that the embedded subprocess has. In
general, abstraction and simplification can help to reduce the complexity of large models.
However, it is likewise in the interest of users that nested components of the model remain
fully visible and editable. To avoid losing the possibility to edit embedded structures, the
retracted container can be expanded again. Additionally, these containers help to visual-
ize the boundaries of different sub-scenarios, removing potential ambiguities in the model
structure.

Name Description

No Model Composition Embedding onemodel into another (Model Com-
position) is not possible, because importing a
model always replaces whatever currently re-
sides in the Model Canvas.

No Parent Containers Parts of a composite or complex model can not
be abstracted away as no Parent Containers (like
the BPMN Subprocess) exist.

Difficult Management of Embed-
ded Models

Removing a sub-scenario or swapping it for an-
other is difficult because embedded models are
not treated as connected structures that belong
together.

No Clear Grouping of Connected
Model Elements

In composite models that consist of several sub-
scenarios it is difficult to see which Function
Blocks belong to which sub-scenario.

Visual Clutter More complex models can cause a visually
crowded and overloaded Model Canvas that is
difficult to maintain an overview of.

Table 3.5.: Drawbacks of the stARS web-editor concerning Nested Structures.

44 3. State of the Art

Dedicated UI Elements

Moreover, several GMTs make use of extra user interface elements (besides the main
Model Canvas) dedicated specifically to the visualization of embedded and nested struc-
tures. These can range from sub-pages inside the Main Canvas, multiple canvases by the
usage of tabs up to extra windows in which embedded model elements reside. Some
web-based GMTs even introduce separate browser tabs as a means to visualize embed-
ded contents. In contrast, the stARS web editor only has the Model Canvas dedicated to
visualize the whole model at once.

A summary of all identified drawbacks regarding Nested Structures can be found in Ta-
ble 3.5.

3.5.3. Context-sensitive Function Blocks

Some Function Blocks provided by stARS have context-sensitive properties, meaning that
the semantics and purpose of these elements depend on the existence of other blocks. An
example of this is the Chat Block that represents a group discussion. The Chat Block can
not be used in a meaningful way without using the Group Builder block in the first place,
as no group discussion can take place if no groups exist.

However, so far the editor does not treat these blocks as connected components. Both
the creation and manipulation of these blocks as connected components in a single step
is not supported. Furthermore, no visual indication of dependencies between blocks does
exist.

3.6. Requirements Analysis

The previous sections elaborated on the drawbacks of the stARS web editor and problems
that occur when creating, using, re-using and in general workingwith complex or composite
models. This section will analyze the requirements that a solution to these problems has
to fulfill.

3.6.1. Non-Functional Requirements

NFR1: Embeddable Solution

Tomaximize the reuse of already existing code and to avoid a complete rewrite of the stARS
web editor, the concept for the solution should fit (from a software architectural perspec-
tive) into the already established structures. Therefore, the implementation and integration
of the concept have to be realized as an extension of the web editor’s existing code base.

3.6. Requirements Analysis 45

NFR2: Increase Usability of Existing Features

A must-have requirement for the solution is the simplification of the modeling process,
especially when it comes to modeling complex, large and composite workflows. Repetitive
and time-consuming tasks such asmodeling the same component multiple timesmanually
should be simplified.

NFR3: Intuitiveness of New Features

The solution should avoid introducing new features that are either unintuitive, distracting,
or that have no value to the end-user. New features introduced by the solution should not
confuse users or make it even more difficult to use the stARS web editor.

3.6.2. Functional Requirements For Component Reuse

The solution should allow for the reuse of existing workflows in an efficient and flexible
manner. This means especially that the support for export, import, saving, loading, and
editing of existing workflows must be extended.

FR1: Save & Export

To increase possibilities for model reuse, the solution should give users the ability to save
any given model as a Template. The solution has to offer a way of saving templates while
retaining the ability to edit the template at a later point in time. Additionally, the export
feature of the solution has to allow for the export of either executablemodels or templates.

FR2: Load & Import

The solution has to provide an import feature that enables the import of .bpmn files from
the user’s file system into the stARS web editor. The import of templates should be sup-
ported as well. Furthermore, re-opening (loading) an existing model should be possible.

FR3: Templates & Template Repository

The solution has to enable users the creation of templates. Any given model created with
the web editor therefore has to be transformable into a reusable Template. Furthermore,
to maximize flexibility and reusability, the solution has to provide options for transforming
the model into a more abstract version that can be re-imported and refined in a future
modeling process. A Template Repository that offers a way of browsing existing templates
has to be provided. Templates have to be importable regardless whether they originate
from the user’s file system or from the Template Repository.

46 3. State of the Art

FR4: Scenario Sharing

The solution has to enable users to share scenarios (either as executable models or as
templates that need to be refined).

3.6.3. Functional Requirements For Support of Nested Structures

The solution should enable users to profit from the expressiveness of the meta-model in
the best way possible. The support for Nested Structures is essential to reach this goal.

FR5: Model Composition & Embeddable Models

The solution has to provide an easy way to compose new bigger models via combining
multiple existing models. The number and kind of models that can be embedded side
by side into the first model layer should not be limited by the solution. The solution
has to treat models or parts thereof as embeddable components. Whenever a model is
embedded into another one, the solution has to create special Parent Containers that hold
the embedded model elements.

FR6: Adequate Visualization of Embedded Model Structures

Furthermore, the solution has to indicate and visualize embedded structures as connected
and belonging together. When visualized by the solution, model elements that belong to
one specific embedded structure have to be grouped and visualized in a specific manner
to indicate parent-child relation (i.e. in such a way that it is clear which model elements
belong to which compositemodel element)

FR7: On-demand Abstraction of Embedded Models

To reduce visual clutter introduced by complex and nested models, the solution has to
enable the on-demand abstraction of nested structures. To gain an overview of complex
models, the solution has to enable users to hide composite model elements in such a way
that a top-level view of the model remains.

FR8: Modifiable Embedded Models

The solution has to guarantee that embedded models (or parts thereof) remain modifi-
able after they have been embedded into another model to provide as much flexibility as
possible. The ability to hide parts of a model (see FR7) should not impede the ability to
modify the model (e.g. both the structure and arrangement of Function Blocks and their
properties have to remain editable).

3.6. Requirements Analysis 47

FR9: Exchangeable & Removable Embedded Models

The solution has to provide a way to easily exchange whole embedded models with one
another. Therefore, Parent Containers and their contents have to be treated as exchange-
able. Furthermore, the solution has to enable users to easily remove embedded models
completely from a bigger model.

3.6.4. Summary

The previous sections elaborated on the current state of the stARS web editor to under-
stand where improvements are necessary to increase its usability. To accomplish this,
other GMTs were investigated comparatively to identify techniques and best practices that
ensure high functionality and usability in the context of Component Reuse and Support for
Nested Structures. Finally, several requirements for the concept that will be proposed later
in this work were identified and described. The following table summarizes these require-
ments and illustrates the importance and implementation effort of each requirement.

ID Name Importance Implementation
Effort

NFR1 Embeddable Solution  

NFR2 Increase Usability of Existing Features  

NFR3 Intuitiveness of New Features  

FR1 Save & Export  

FR2 Load & Import  

FR3 Templates & Template Repository  

FR4 Scenario Sharing  

FR5 Model Composition & Embeddable
Models

 

FR6 Adequate Visualization of Embedded
Model Structures

 

FR7 On-demand Abstraction of Embedded
Models

 

FR8 Modifiable Embedded Models  

FR9 Exchangeable & Removable Embedded
Models

 

Table 3.6.: Non-Functional and Functional Requirements for a concept that extends the
stARS web-editor. (= low,= very high importance / implementation
effort)

48 3. State of the Art

4. Concept

Chapter 4: Concept

In the previous chapter, the current state of the stARS web editor was described
to understand exactly, where improvements to the usability of the web editor can be
made. The chapter concluded with a list of requirements that a suitable extension
of the web editor should ideally fulfill to solve the current version’s problems and
drawbacks. In this chapter, the approach that was taken to derive a concept for such
an extension and the results are presented.

Firstly, the methodology of the approach that mainly consists of user-centered
design techniques is outlined. Secondly, the chapter presents the final versions of
the mock-ups for several graphical user interfaces that provide new functions for
Component Reuse and Support for Nested Structures.

49

4.1. Methodology

Essential features like exporting, importing, loading, and saving workflows as well as sup-
port for nestedmodel structureswere elaborated on in the previous chapter. The introduc-
tion of new graphical user interfaces like windows and dialog boxes is required to provide
access to all of these features. To avoid a gap between end-user expectations and system
designer assumptions, the features and their user interfaces have to be designed with the
end-user in mind.

To identify the needs, opinions, and feelings of real end-users, an evaluationwas conducted
with professionals of the educational domain. Working closely with these individuals, the
goal was to design a concept for every new user interface component and its intended
functions and features before actually implementing them. This way, only user-approved
(i.e. wanted and necessary) features would be realized in the implementation phase.

A total of 24 educationalists (lecturers, teachers, and professors) were asked to rate sev-
eral mock-ups for a Save & Export Feature, a Load & Import Feature and proposals for
the visualization of and interaction with Nested and Embedded Model Structures. The
evaluation was conducted in two phases (18 participants in the first phase, 6 participants
in the second phase) to allow for iterative development and improvement of the proposals.

Due to the outbreak of the Coronavirus, both evaluation phases were conducted online
with the help of a survey and video conferencing. Furthermore, both evaluation phases fol-
lowed the same structure. After questions that concern the participant’s experience with
using technology and ARS in their lectures, participants had to use the stARS web editor
to create several models, one of them being an instance of Peer Instruction. Participants
were then asked to rate the usability of the current version of the editor.

4.1.1. Mock-ups

In the final part of the evaluation, participants were shown mock-ups for the new fea-
tures to be introduced by this work. Each mock-up was carefully created considering the
above requirements and Nielsen’s Usability Heuristics. The process was accelerated by us-
ing pingendo [56], an editor that enables rapid prototyping with bootstrap-based styles
and HTML building blocks. One advantage of this approach is that only minor work was
required to adapt the mock-ups to the established corporate design (e.g., button colors,
fonts, spacing between different user interface elements) of the stARS web editor. There-
fore, it was easier to follow the usability heuristic UH 4: Consistency and Standards. Since
Pingendo is entirely based on bootstrap CSS classes, parts of the code of themock-ups can
be easily reused in the implementation phase, which is another major advantage of this ap-
proach. The UI components provided by bootstrap have a simple and accessible design
that follows the usability heuristic UH 8: Aesthetic and minimalist design. The professionals
were confronted with the mock-ups and asked for their feedback. Besides the quantitative

50 4. Concept

rating of the proposals with the help of Likert-scales, qualitative feedback with open-text
questions was collected. Using this feedback, the mock-ups were improved by eliminating
unnecessary features, adding missing but requested features, and adapting the layout and
alignment of proposed user interface elements. These improvements led to significantly
more positive feedback from the participants of the second evaluation phase. The final
results of the evaluation will be explained in the following sections, elaborating on how
each proposed mock-up attempts to solve the functional requirements that were defined
earlier.

4.2. Saving and Exporting Templates

An essential function of any GMT is being able to save a model, as stated by requirement
FR1 (Save & Export). Fulfilling this requirement enables users to persist their models in the
cloud to re-open them for further refinement at a later point in time or sharing a model
that was saved to the local file system. A new dialog window that combines both functions
of saving and exporting templates into one view is proposed that specifically addresses
requirement FR1. The view consists of two tabs, one for saving and one for exporting tem-
plates to the local file system. The final mock-up of the dialog is shown in Figure 4.1. The
following sections will describe both tabs that will be referred to as the Save Dialog and
the Export Dialog.

4.2.1. Save Dialog

The Save Dialog is intended to compliment the existing save functionality by allowing to
save templates. Access to the new dialog is provided by the existing Export Button of the
Menu Bar. The dialog consists of a place to enter 1 Template Name And Description, a
2 Template Preview, a 3 Category Input and several 4 Template Options.

1 Template Name And Description

Besides the possibility to specify the name of the template, the user can add and edit a
descriptive text. This meta-data is then used to locate the saved template at a later point
in time, for example via a search functionality.

2 Template Preview

Many participants rated the visualization of a preview of the workflow that should be saved
as a template as useful. Therefore, below the description, a model preview is shown to the
user. The preview container can be retracted and expanded.

3 Category Input

Furthermore, several participants of the evaluation remarked that it would be useful if a
better way of organizing their templates existed. Therefore, the concept of template cat-

4.2. Saving and Exporting Templates 51

Figure 4.1.: Save and Export Dialog for the stARS web editor.

egories is introduced. When saving a template, users can assign a custom number of
categories to any template via the category input box at the bottom of the dialog. Exist-
ing categories that were earlier created by the user are suggested in an auto-completion
manner.

4 Save Options

Next to the category input field, two options can be checked to affect the behavior of the
function for saving. The first option allows resetting all function block attributes. Checking
this box will cause all attribute values for all function blocks to be cleared. In other words,
all function blocks and the links between them will be kept, but the concrete values for
question texts and answer formulations and other attributes will be removed. When the
second check box is selected, all function blocks are converted to their abstract type. For
example, all SingleChoiceLearningQuestions would be converted to LearningQuestions. This
functionality can be used to create abstractions of models that can be refined in a future
modeling process. Effectively, both options represent functions that realize parts of the

52 4. Concept

FR3 requirement by allowing users to create reusable templates from their models. Both
checkboxes control how much the template is abstracted. If neither checkbox is selected,
the model is simply saved as a template without any changes. 89% of the participants of
the first evaluation phase rated this feature as useful, the most common remark being that
”this feature enables the creation of templates”.

4.2.2. Export Dialog

Figure 4.2.: Export Dialog for the stARS web editor.

The Export Dialog allows the user to export models/templates to their local file system. The
dialog offers the same functionality (i.e. name and description inputs, a model preview,
and abstraction options) and is structurally identical to the Save Dialog, except that the
category box is missing. This design decision was made intentionally to follow the usability
heuristic UH 6: Recognition rather then recall. Similar to the Save Dialog, the user can assign
a name and a description to the model. Finally, an option to select the export file type is
given, which can either be .png or .bpmn.

4.2. Saving and Exporting Templates 53

4.3. Loading and Importing Workflows

Similar to the export and save features, a new dialog is proposed that allows users to load
or import a workflow. The proposal concerns requirement FR3, as the proposed dialog is
intended to function like a Template Repository. Both private and public templates can be
browsed from this dialog. The final result of the iteratively improved mock-up is shown in
Figure 4.3. The mock-up consists of a 1 Sidebar on the left, a 2 Search Bar on the top,
a 3 Template Browser of available templates and 4 several Import Options on the
bottom.

Figure 4.3.: Final mock-up of the Load and Import Dialog.

1 Sidebar: Private and Public Templates, Import From File System

The mock-up proposes the introduction of categories for private and public templates.
Each template created and saved by a user is a private template associated exclusively to
the user’s account. A retractable list of all template categories is displayed in the Sidebar
on the left side of the import dialog. Expanding the private template section shows a list of
user-defined categories that can be selected or deselected to filter the template previews
that are displayed in the Template Browser on the right.

Below the private template section, a list of publicly available templates is shown. Public
templates are provided by the stARS web editor itself and can be compared to the selec-
tion of workflows provided by the import feature currently in place. Public templates are
created and managed by users with the role “admin”. At the bottom of the Sidebar, a but-

54 4. Concept

ton is located that allows importing workflow templates from the local file system. Clicking
the button will open an OS-based file browser that allows for the selection of a file to be
uploaded.

2 Search Bar

At the top of the dialog, a Search Bar is located. The Search Bar can be used in combination
with the categories in the Sidebar to quickly locate a template. Users can enter the name
of a template, parts of the description or a category name to filter available templates.
Upon entering a term into the Search Bar, the Template Browser updates accordingly. The
proposal of the Search Bar was approved by the participants of the evaluation, as 89% of
the participants stated that a Search and Filter functionality is necessary.

3 Template Browser

Figure 4.4.: Cards for Templates: The blue
radio button indicates that this
template was selected.

The Template Browser visualizes templates
that match filter terms and selected cate-
gories. Templates are visualized as Cards,
showing the title, description, and a preview
of the template (see Figure 4.4). This pro-
posal was iterated and improved on in two
ways during the evaluation. Firstly, users
wished for a way to see the complete tem-
plate before importing it, as the small pre-
view of the Card is rather limited. Therefore,
hovering over the preview will show a small
magnifying glass to indicate to the user that
this preview can be enlarged. Clicking any-
where on the preview image will display the
template in a separate window in full size.
Secondly, the results of the evaluation indi-
cated that users would rather not be able to
import multiple templates at once. In ear-

lier drafts, multiple templates could be selected at once via check-boxes inside the Cards.
However, only 28% of the participants rated amulti-import feature as desirable. Therefore,
the proposal was modified by replacing the check-boxes with radio buttons, allowing for
the maximum of one template to be imported at once. Clicking the radio button inside the
Card will select it for import.

4 Import Options

Below the Template Browser, two buttons are displayed that each offer different options
regarding the import. The first button labelled “Add To Model” specifically addresses the
requirement FR5 (Model Composition). Clicking this button will add the selected model to

4.3. Loading and Importing Workflows 55

the existing model. This way, it is possible to import multiple different models into the
Model Canvas, enabling the composition of bigger models from several smaller ones.

Contrary to this, if composing a bigger model from smaller ones is not the user’s inten-
tion, the other button labeled “Replace Model” will replicate the behavior of the current
implementation of the stARS web editor by replacing everything in the Model Canvas with
the currently imported model. Choosing this option will cause the imported model to not
be placed in a Parent Container.

The import options are also planned to be available when importing a template from the
user’s file system. After selecting and uploading the file, a dialog box will ask the user if
the model should be added to the canvas or if it should replace the content of the canvas.
In theory, with this feature in place, end-users can compose bigger models by combining
their models with models that were shared by other users (e.g. models that were exported
and provided over a network drive or thumb drive).

4.4. Nested and Embedded Model Structures

To address the requirements FR5 to FR9 that all deal with the support of Nested and Em-
bedded Model Structures, several mock-ups that illustrate how these components should
be visualized and interacted with were created and evaluated. Firstly, the results of the
pre-evaluation confirmed that participants rate the support of Nested and Embedded Model
Structures as useful and important. Secondly, participants were then asked to rate several
proposals concerning the visualization of and interaction with such structures. The fol-
lowing sections will first go into detail about different alternatives and proposals that were
presented to the participants, before concluding with the presentation of the final design.

4.4.1. Visualization of the Parent Container

As stated in requirement FR6, embedded and nested model structures need to be visu-
alized adequately. To meet this requirement, a design for a Parent Container that holds
embedded model components was proposed in the pre-evaluation. The concept was in-
spired heavily by the way BPMN subprocesses are visualized. In general, a nested model
is represented visually by a rectangular container labeled with the element’s name. An ex-
ample of how a model or template named Peer Instruction will initially be visualized after
it was imported into the Model Canvas is depicted in panel 1 of Figure 4.5.

To meet requirement FR7, the container is designed to be expandable and retractable.
Right after a model is imported, the container will rest in the contracted state to avoid a
cluttered model canvas. A button with a plus symbol is displayed at the bottom of the
model element container that allows expanding the container in place. This means that
after expanding the container, the complete model is shown within the container.

56 4. Concept

Figure 4.5.: An embedded model element in the collapsed state. The design was inspired
by the BPMN subprocess. In panel 2 , the expanded Context Menu is shown.

4.4.2. Usage of Dedicated UI Elements

While the concept for the contracted Parent Container visualization was approved by the
majority of the participants, it was initially uncertain whether dedicated user interface ele-
ments should be used to visualize its contents. Furthermore, an open question was how to
ensure that the embedded model stays modifiable as required by FR8 (Modifiable Embed-
ded Models) while avoiding an overloaded and cluttered Model Canvas. To answer these
questions, participants of the first phase were given three different proposals for visualizing
the contents of an embedded model via the usage of dedicated user interface elements.
The results were analyzed and taken to construct the final proposal that was evaluated in
the second evaluation phase.

In-Place Visualization The first proposal was to simply expand the Parent Container and
display the embedded model content in place, i.e. without the usage of any dedicated user
interface elements. 67% of the participants found that this option was the best. The main
reason given by the participants was “Being able to see the whole model at any given point in
time”. The qualitative feedback made clear that participants highly valued the ability to see
all model details at all times and that abstraction of embedded model elements might not
be as important to the users as initially assumed.

Pop-Over Visualization The second proposal was to display the contents of an embed-
ded model inside a Pop-Over window that hovers over the Model Canvas. This approach
intended to keep the Model Canvas uncluttered and to avoid the positional displacement
of other model elements when embedded contents were displayed. Interestingly, this ap-
proach was rated the worst, as only 11% of the participants found it appealing, with one
participant remarking that this approach felt like a ”limited editor inside an editor”. Therefore,
this proposal was excluded from further investigation.

4.4. Nested and Embedded Model Structures 57

Tabs The third proposal was to display each embedded model in a separate tab. One
root tab for the whole model and one tab for each embedded model would be displayed
at the bottom of the Model Canvas. Selecting the root tab would then display the whole
model with all embedded models in their retracted state. Clicking on a Parent Container
or selecting the tab at the bottom of the Model Canvas would then open the correspond-
ing model in the tab. 22% of the participants rated this proposal as appealing, mainly
remarking that tabs ”keep the model small and improve clarity” and ”provide a clear division of
hierarchies and a consistent way of editing embedded models”.

Final Result: In-Place and Tab Visualization The results of the first evaluation phase
showed that the participants strongly favored the In-Place Visualization of embedded mod-
els, followed by the Tab-Visualization. While the In-Place Visualization was rated the best
by a significant margin, qualitative feedback of the participants regarding the Tab proposal
contained additional interesting remarks on the modification and editing of embedded
models. Two participants suggested that they would feel more comfortable if modifica-
tion and editing of embedded models took place in a separate tab. Due to these remarks,
the final proposal combines the In-Place and the Tab approach. Embedded models are
visualized and displayed in-place by expanding the Parent Container. A separate tab for
each embedded model will be available which should make editing embedded models in
an isolated manner easier.

4.4.3. Interaction with the Context Menu

In the initial draft for the Parent Container, no special way of interaction with the container
was planned to be part of the concept. However, as illustrated by the previous sections,
feedback from the pre-evaluation led to the introduction of a Context Menu that provides
previously unconsidered additional functionality to the Parent Container. The functions of
the Context Menu are explained in the following section.

A button for the Context Menu is visualized by three dots that are located on the top right
of the model container. Clicking on it presents the user with three options: Edit, Expand
and Integrate. While the Expand option behaves similarly to the Plus Button (clicking it will
expand the Parent Container and show the embedded model in its entirety), the following
sections will focus on the Edit and Integrate options.

58 4. Concept

Figure 4.6.: Tab Visualization: Combination of 1 Parent Containers, 2 Context Menu and
3 Tabs. The top panel shows the root tab of the workflow MyCustomWork-
flow that is currently selected. The bottom panel shows that the tab for the
embedded model Peer Instruction is currently selected.

Context Menu: Edit Option With the introduction of Tabs to the Model Canvas, each
embedded model has its own dedicated tab. The Context Menu offers the Edit option that
enables users to modify embedded model structures. Once the Edit option is selected,
the embedded model is opened in a separate tab as can be seen in Figure 4.6. All editor
functions like the Side Bar and the Properties Panel will be usable regardless of which tab is
currently selected. Once the embeddedmodel wasmodified, it can optionally be integrated
into the parent model.

4.4. Nested and Embedded Model Structures 59

Figure 4.7.: An example for an embedded model that gets integrated to the rest of the
parent model. In 1 , the initial state of the Parent Container is shown. 2
shows the expanded Parent Container holding an instance of Peer Instruction
and also showing the Context Menu. In panel 3 , the result of the Integrate
option is shown. The Start Node and End Node as well as the Parent Container
of the embedded model have been removed.

Context Menu: Integrate Option Feedback from the evaluation led to the introduction
of the Integrate option. This option causes the embedded structure to be integrated into
the rest of themodel. After integration, the embedded structure can no longer be retracted
or expanded. Instead, the surrounding container of the nested structure is removed along
with all of its Start- and End Nodes. Formerly incoming and outgoing connections to the
Parent Container are now directly attached to the respective Function Blocks. An example
of the integration process can be seen in Figure 4.7.

60 4. Concept

Exchangeable and Removable Embedded Models

Figure 4.8.: Improved Context Menu: The
redundant Expand options is re-
placed with a new Swap option.

Finally, the requirement F9 (Exchangeable
and Removable Embedded Models) is real-
ized by allowing the user to delete an em-
bedded model like any other block by sim-
ply clicking on the Parent Container and
then pressing the delete key on their key-
board. However, the proposed concept
does not offer a function that explicitly lets
users swap embedded models with a sin-
gle click. Currently, a deleted embedded
model can be swapped with another model
by first deleting it ant then importing another model. To improve this, another option could
be introduced into the Context Menu. Selecting this Swap Option could open the Import
Dialog that then allows users to select a substitution for the embedded model in question.

4.5. Wizard for Parallel Connected Components

Figure 4.9.: TheWizard for Parallel Connected Components: the buttons in 1 allow to adjust
the number of elements, 2 shows the Function Block in question (in this case
the AND block) and 3 visualizes the branches of the AND block along with
drop-down menus that allow to choose from available Function Blocks.

4.5. Wizard for Parallel Connected Components 61

The last proposal that the participants of the pre-evaluation were shownwas amock-up for
a wizard that aims at easing the creation of parallel flows (see Figure 4.9). The general idea
is to avoid the manual creation of connections between Function Blocks, as this operation
tends to be rather cumbersome and time-consuming. Instead, the proposed mock-up in-
troduces a wizard that is embedded into the earlier proposed Import Dialog. Two buttons
allow to increase or decrease the number of parallel elements connected to an AND block.
For each branch of the AND block, the user can choose the Function Block to be attached.

Ranging from 1 – useless to 5 – very useful, the proposed mock-up was rated with an av-
erage score of 4.27 in the first phase and 3.83 in the second phase, meaning that overall,
the proposal was rated as useful. Additionally, a significant portion of participants of the
first phase rated a similar feature for conditionally connected components (i.e. for the OR-
Block) as a desired feature (83%) while only 50% did so in the second phase. The decrease
of popularity of the wizard led to the decision, that for the time being, the implementation
will be attempted for the AND block to further evaluate the usefulness of the feature.

However, qualitative feedback of the first phase indicates that participants were not agree-
ing on the planned placement of the wizard inside the Import Dialog, indicating a gap be-
tween the design and user expectation. Remarkably, several participants stated that they
would expect this functionality elsewhere (i.e. in the Side Bar). Furthermore, three partici-
pants suggested that an AND block should remain modifiable in the same manner after it
was placed in the Model Canvas, meaning that clicking on a placed AND block should open
the Wizard again.

4.6. Summary

In this chapter, a concept for an extension of the stARS web editor was developed to facili-
tate the reuse of models and workflows. Suggestions for improving support for more com-
plex and nested model structures were also presented. A UCD-based approach consisting
of the creation of mock-ups, prototypes, and a preliminary evaluation with real education
professionals was conducted. Using their feedback, mock-ups for new user interfaces for
the stARS web editor were designed and iteratively improved. The final user interface de-
signs were refined by removing unwanted features from the concept and adding desired
but previouslymissing features. In conclusion, the output of this chapter is a user-approved
concept for an extension to the stARS web editor that addresses all of the previously iden-
tified requirements. All components of this concept will form the basis for the implemen-
tation phase, which is presented in the next chapter.

62 4. Concept

5. Implementation

Chapter 5: Implementation

The previous chapter provided insights to the concept design phase, which re-
sulted in proposals for a variety of features by which the stARS web editor could
be extended to make it suitable for creating complex models. In this chapter, the
implementation phase that followed will be elaborated on. First, the tech stack
will be presented, as it represents the conditions under which the implementation
took place. Then, the general implementation approach is presented, describing
the procedure that turned mock-ups into a running prototype. Furthermore, the
implementation of several functions for data transformation is described in detail,
focusing on transformation functions that enable model composition. Finally, some
insights and the experience with package patching are presented before conclud-
ing this chapter with a list of issues that remained unresolved at the end of the
implementation phase.

63

Figure 5.1.: SPA approach vs. the traditional approach to web applications: SPAs only up-
date parts of their UI while the traditional approach relies of different versions
of the whole page [57].

5.1. Tech Stack

Single Page Applications (SPA) represent a popular approach for realizing applications
that run in a browser and feel like native apps (see Figure 5.1). These applications rely on
a single HTML file whose contents change dynamically. SPAs aim at providing the same
performance, short loading times and responsiveness that make native apps feel great to
use. The stARS web editor was likewise implemented as a SPA by using vue.js [58], a popu-
lar JavaScript SPA framework. vue.js, together with the libraries and frameworks that were
utilized to create the stARS web editor defined the technical conditions for the implemen-
tation phase of this work (see Figure 5.2).

Consequently, the majority of the front-end application logic (including the web editor) is
written in JavaScript, HTML and CSS. yarn [59], a very popular package manager is used for
managing the project structure, build scripts and dependencies. Additionally, the decision
wasmade to includenuxt.js [60] on top of vue.js to ease development. nuxt.js offers count-
less features such as automatically generated routes, server-sided rendering (SSR), a library
for asynchronous data fetching as well as countless plugins and middleware that can be
enabled andmanaged via a central configuration file1. On top of vue.js and nuxt.js reside all
libraries that provide the actual application logic. In [8], different front-end frameworks for
developing a BPMN-based web editor were evaluated, and bpmn-js [61] was selected be-
cause it providedmore introductory examples, making initial development easier. bpmn-js
offers a modeling canvas and an element palette out of the box. All of these components

1More information can be found here: https://nuxtjs.org/docs/2.x/features/rendering-modes, last
successful access: 2021-02-08

64 5. Implementation

https://nuxtjs.org/docs/2.x/features/rendering-modes

Package Manager

SPA Front-end
Framework vue.js

yarn, node

Application Logic

UI / Style Frameworks bootstrap-vue vue-fontawesome

bpmn-js bpmn-lint chart.js xml2js diagram-js

SSR, Routing, Data Fetching,
Plugins, Middlewares nuxt.js

Figure 5.2.: The tech stack of the stARS web editor.

are customizable to a certain degree. Other important libraries include xml2js [62] for
data transformations between XML and JSON and bpmn-lint which used to define custom
linting rules for the models created with the stARS web editor. Finally, special libraries are
included that maintain a consistent UI style. bootstrap [63] provides a responsive grid lay-
out that looks and feels adequate on various devices independent of screen resolution and
size. For a seamless integration with vue.js, bootstrap-vue is used. font-awesome [64] is an
icon font that provides vector-based pictograms and symbols. An integration with vue.js is
provided by vue-fontawesome. Furthermore, several other smaller libraries make up the
rest of the tech stack, including (but not limited to) a library for toggle buttons, a multiselect
component, a library for generating universal unique identifiers, a library for creating QR
codes, and a library for decoding JSON Web Tokens.

5.2. General Approach

Figure 5.3.: The buttons located at the bottom of the Import Dialog will serve as an example
compact enough to illustrate the implementation approach and source code
transformations.

At the beginning of the concept finding phase, the mock-ups used for a user-centered
evaluation (as described earlier in Section 4.1.1) were created in anticipation of the imple-
mentation phase. The mock-ups consisted of HTML and CSS code that was hoped to be
reused in the implementation phase, speeding up the process. A major concern regarding
the reuse of this code was whether the layouts proposed in the mock-ups would integrate
themselves seamlessly into the rest of the existing application. Surprisingly, the intended
layout of all mock-ups was deemed compatible by just inserting the mock-up source code
without modifications into the existing codebase. However, the resulting code was unac-
ceptable in terms of coding conventions and code quality, as it introduced a second style
of defining layouts to the codebase. While the existing code avoids using div-containers
and explicit bootstrap CSS classes and instead leverages corresponding vue.js compo-

5.2. General Approach 65

nents included with bootstrap-vue, the mock-up code relied on explicit div-containers and
bootstrap CSS classes. Therefore, several transformations were necessary to make the
mock-up code compatible with the rest of the codebase. Explicitly defined div-containers
were replaced with their respective bootstrap-vue components. A comparison between
the mock-up code for the button group seen in Figure 5.3 and and its final implementa-
tion code can be seen in Listing 5.1 and Listing 5.2 respectively. Besides performing code
transformations, the actual application logic had to be implemented. In the example of
the button group, this meant implementing adequate callbacks (that allow to either add a
template to the rest of the model canvas or to replace all contents in the model canvas)
and defining guards that prevent users from being able to click the buttons. For example,
the buttons should not be clickable if no template was selected. This behavior was realized
by leveraging vue.js props. In essence, props are pieces of data that control the state of
components.
1 <div class=”modal–footer”>
2 <div class=”row”>
3 <div class=”col–lg–12”>
4
5 <i class=”mdi mdi–plus”> </i >Add to Model
6
7
8 <i class=”mdi mdi–file–replace–outline”> </i >Replace Model
9
10 </div>
11 </div>
12 </div>

Listing 5.1: Source code of the button group in the mock-up. This code was generated with
Pingendo and uses conventional div-containers and bootstrap CSS classes.

1 <template #modal-footer >
2 <b-btn variant=”primary”
3 :disabled=”modelTemplate === undefined”
4 @click=”addTemplateToModel(modelTemplate)”>
5 <font-awesome-icon icon=”plus” />Add to Model
6 </b-btn>
7 <b-btn variant=”secondary”
8 :disabled=”modelTemplate === undefined”
9 @click=”loadTemplate(modelTemplate)”>
10 <font-awesome-icon icon=”exchange–alt” />Replace Model
11 </b-btn>
12 </ template>

Listing 5.2: Source code of the button group in the final implementation. The div-containers
have been replaced with dedicated bootstrap-vue components. Furthermore,
callbacks (denoted with@click) that realize application logic have been added.
A boolean prop (denoted with :disabled) guards the buttons’ clickable state.

In summary, the strategy for implementing each new UI component consisted of the fol-
lowing steps:

1. Create a new vue.js component.

2. Insert the HTML and CSS scaffolding of the mock-up and validate the layout.

66 5. Implementation

3. Transform bootstrap related CSS classes to bootstrap-vue components.

4. Implement the expected application logic.

Additional Design Decisions

Some additional design decisions were made that concern multiple proposed UI compo-
nents to better address the previously mentioned usability heuristics. The usability heuris-
tic UH 5: Error prevention proposes that user interfaces have to be designed in a way that
prevents users from encountering errors. Therefore, before each critical operation, a con-
firmation dialog is shown to the user that explains the consequences of the said operation.
This is the case for adding a model to the canvas, replacing the model, resetting the canvas
or integrating an embedded model.

Furthermore, failed operations are indicated by toasts, a mechanism that was evaluated
during the pre-evaluation by a different student effort. For example, this is the case for
when the integration of an embedded model is not possible. The user is informed by a
toast that states the concrete reason as to why the model can not be integrated. This de-
cision was made to follow the usability heuristic UH 9: Help users recognize, diagnose and
recover from errors.

Following this approach, first the Export Dialog, the Save Dialog and then the Import/Load Di-
alogwere implemented successfully. While the implementation of the Export Dialog and the
Save Dialog did not require immense efforts (as predicted by FR1 in Table 3.6), implemen-
tation of the functions accessible from the Import/Load Dialog offered various challenges.

5.3. BPMN Schema and Data Transformations

A big part of the implementation phase was spent to understand the data format in which
BPMN models are managed during runtime. This was necessary because some functions
that were proposed by the mock-ups implied the requirement for heavy data manipulation
behind the scenes. Earlier in Section 4.3, the functions “Add to Model” and “Replace Model”
(in the following referred to as ATM and RM respectively) were described, which are both
accessible from the Import/Load Dialog. While the existing RM function was reused with
close to no modifications, the implementation of ATM required more effort and a deeper
understanding of the underlying format of BPMN.

The existing libraries made it possible to modify individual elements of the loaded model.
For example, it was possible to add new elements to the existing model or to change exist-
ing model properties programmatically with the help of code. This way of model modifica-
tion is perfectly suitable for smaller model adjustments (such as changing individual prop-
erty values) and therefore is utilized for similar purposes in many places in the codebase
of the stARS web editor. In the context of a model embedding process, however, entire

5.3. BPMN Schema and Data Transformations 67

models consisting of potentially dozens of elements were to be added to existing mod-
els. It was quickly determined that the APIs offered were not suitable for this undertaking.
An implementation using the existing APIs would require to parse the whole model to be
added and to generate a list of programmatic instructions from the parsed model, which
then would have adapted the model based on the API of bpmn-js. While this is technically
feasible, it represents a very complex process. Therefore, a different solution approach
was taken.

BPMN models are commonly defined in XML. The web editor is capable of rendering any
valid BPMN XML file as amodel in the canvas. During runtime, the web editormaintains this
XML representation of the model currently residing in the canvas. One approach concen-
trated on the theory that it might be possible to modify the existing XML directly to reflect
bigger, more complicated changes like embedding (i.e. adding) a model. To understand
the format, experiments were carried out with the editor provided by bpmn.io [40], which
also uses bpmn-js tomanage BPMNmodels during runtime. An export function that allows
to download models as an XML file was used to especially investigate, what happens if

• subprocesses are added to the data structure,

• parts of the model are duplicated,

• parts of the model are deleted, or

• attributes of model elements are modified or deleted.

These observations allowed to study the structure of the resulting XML files more closely.
In general, a BPMN XML file consists of two major parts: The Process Object Definition
describes the logical structure of the model. All function blocks and other objects along
with transitions are defined in this section. Every element has a unique id that is used as
a reference in the definition of transitions. The process object definition is followed by the
Diagram Object Definition, which is responsible for the graphical representation of the
objects defined above. It contains definitions for all shapes, edges and labels and refer-
ences the elements of the process object by their ids. Figure 5.4 shows a small example
workflow for which in Listing 5.3, its XML definition is provided, illustrating the data schema
in detail.

68 5. Implementation

Figure 5.4.: Small example of a workflow with one LearningQuestion.

1 <?xml version=”1.0” encoding=”UTF–8”?>
2 <bpmn2:definitions id=”sample–diagram”>
3 <!–– Various namespace definitions omitted for brevity ––>
4 <!––Definition for the Process Object ––>
5 <bpmn2:process id=”Process_1” isExecutable=”false”>
6 <bpmn2:startEvent id=”SE_1” name=”StartBlock”>
7 <bpmn2:outgoing>SF_1</bpmn2:outgoing>
8 </bpmn2:startEvent>
9 <stars:learningQuestion id=”LQ_1” name=”LearningQuestion”>
10 <bpmn2:incoming>SF_1</bpmn2:incoming>
11 <bpmn2:outgoing>SF_2</bpmn2:outgoing>
12 </stars:learningQuestion >
13 <bpmn2:sequenceFlow id=”SF_1” sourceRef=”SE_1” targetRef=”LQ_1” />
14 <bpmn2:endEvent id=”EE_1” name=”EndBlock”>
15 <bpmn2:incoming>SF_2</bpmn2:incoming>
16 </bpmn2:endEvent>
17 <bpmn2:sequenceFlow id=”SF_2” sourceRef=”LQ_1” targetRef=”EE_1” />
18 </bpmn2:process>
19 <!––Definiton for the Diagram Object––>
20 <bpmndi:BPMNDiagram id=”BPMNDiagram_1”>
21 <bpmndi:BPMNPlane id=”BPMNPlane_1” bpmnElement=”Process_1”>
22 <bpmndi:BPMNShape id=”SE_1_di” bpmnElement=”SE_1”>
23 <dc:Bounds x=”258” y=”240” width=”36” height=”36” />
24 <bpmndi:BPMNLabel>
25 <dc:Bounds x=”250” y=”283” width=”52” height=”14” />
26 </bpmndi:BPMNLabel>
27 </bpmndi:BPMNShape>
28 <bpmndi:BPMNShape id=”LQ_1_di” bpmnElement=”LQ_1”>
29 <dc:Bounds x=”365” y=”223” width=”70” height=”70” />
30 <bpmndi:BPMNLabel>
31 <dc:Bounds x=”357” y=”300” width=”87” height=”14” />
32 </bpmndi:BPMNLabel>
33 </bpmndi:BPMNShape>
34 <bpmndi:BPMNEdge id=”SF_1_di” bpmnElement=”SF_1”>
35 <di:waypoint x=”294” y=”258” />
36 <di:waypoint x=”365” y=”258” />
37 </bpmndi:BPMNEdge>
38 <bpmndi:BPMNShape id=”EE_1_di” bpmnElement=”EE_1”>
39 <dc:Bounds x=”512” y=”240” width=”36” height=”36” />
40 <bpmndi:BPMNLabel>
41 <dc:Bounds x=”507” y=”283” width=”47” height=”14” />
42 </bpmndi:BPMNLabel>
43 </bpmndi:BPMNShape>
44 <bpmndi:BPMNEdge id=”SF_2_di” bpmnElement=”SF_2”>
45 <di:waypoint x=”435” y=”258” />
46 <di:waypoint x=”512” y=”258” />
47 </bpmndi:BPMNEdge>
48 </bpmndi:BPMNDiagram>
49 </bpmn2:definitions>

Listing 5.3: Example of a BPMN XML file. The listing illustrates the twomain parts of a BPMN
file, the process object (lines 5 - 18) and the diagram object (lines 20 - 48).

5.3. BPMN Schema and Data Transformations 69

Ultimately, the goal was to replicate the transformations that the XML file underwent in cus-
tom code that would not be as complex as code that utilizes the APIs provided by bpmn-js.
The data format represented the common ground on which new features that manipulate
the model data had to be built around. After further experimenting with the the format
itself, the following implications for every function that intends to manipulate model data
were derived:

1. Data modification requires updating both the process object definition and the dia-
gram object definition.

2. Every element has to have a unique id. Duplicate ids (as they could occur on element
duplication or model embedding/adding) would cause errors in model visualization.

3. The link between elements in the process object definition and the diagram object
definition has to be maintained.

4. Subprocesses are added as a special element to the process object. This element
has the same structure as any other process object, containing function blocks and
other elements.

5. Subprocesses require a special element in the diagram object definition. Without this
element, the subprocess is visualized without a surrounding box.

6. The graphical representation of elements in a subprocess are simply added to the
diagram object definition (without nesting these in a special object as opposed to the
process object definition for subprocesses)

The ATM function should embed a selected model into the existing model, resulting in a
parent-child relation between the two models. From a data format perspective, it became
clear that leveraging the BPMN subprocess semantics would be the optimal solution. Some
tests prior to the implementation confirmed that the stARSweb editor would out-of-the-box
visualize XML files that contain subprocesses correctly. However, as illustrated by the impli-
cations above, implementing the data manipulation routines ensuring the correct format
turned out to be a challenge.

In the following, the XML representation of a model currently loaded in the model can-
vas will be referred to as the target. At a first glance, adding a new model (i.e. a source) to
the target seems like a trivial task. A naive implementation would simply copy the process
object of the source to the target, along with the diagram object. However, this approach
would suffer from several deficits. For once, name and id clashes would occur if the same
source is added multiple times to the target. These clashes would cause the diagram to be
displayed incorrectly or even crash the application, as the identifiers for all elements in the
model have to be unique.

Furthermore, the bpmn-js framework would not be able to recognize the added source as
a subprocess (and automatically visualize it as such), because the source has to be added

70 5. Implementation

as a special bpmn2:subprocess element to the process object of the target. In addition
to that, a definition for the graphical representation of the target (i.e. a shape for the sub-
process) has to be manually created inside the diagram object of the target. Otherwise,
the contents of the subprocess will be visualized without a surrounding box. The bounds
(size, x- and y-coordinates) of this box and the displacement of other model elements in
the target have to be calculated manually.

Some of these issues are hard to tackle if both the target and source XML strings are pro-
cessed as-is (e.g. without parsing them first). For example, merging process object strings
manually would require to detect the start and end of specific tags, which can be difficult.
The same is true for manipulating attributes of individual nodes in an XML string, because
the individual node has to be found first. Suchmanipulation of the XML structure becomes
easier if the string is parsed into an object tree that can be traversed systematically. This
greatly increases the possibilities to alter the model.

However, once an object tree was created, it becomes difficult to modify shared attributes.
For example, renaming the ids of all elements in a parsed object tree would require to iden-
tify all the nodes (in the process object and diagram object) that share this attribute. The
raw XML string however can be searched with a regular expression to alter the id globally.

Therefore, the approach that was taken to solve these issues combines both the advan-
tages of working with a raw string and working with a parsed data structure. Figure 5.5
illustrates the algorithm by which the ATM function merges a source model to the target
model.

5.3. BPMN Schema and Data Transformations 71

<xml>

<xml>

renameIDs()

<xml>

{json}

parseXML()

<xml>

createDiagram()

Target Model Source Model

Merged Model

Intermediary Model

{json}

parse()createSubProcessNode()

parse()

copyProcessObject()

copyShapesAndEdges()
{json}

Figure 5.5.: Algorithm of the ATM function.

parse()
Parses any given XML to a JavaScript object
tree.
renameIDs()
Identifies all elements in the source pro-
cess objectB and then performs a search
and replace operation on the source XML
string to avoid name clashes.
createSubProcessNode()
Creates a parent node for subprocesses
in the target process object (if it does not
exist yet).
copyProcessObject()
Copies the process object of the source to
the subprocess node that was created in
the target process object.
copyShapesAndEdges()
Copies shapes and edges of the source
diagram object to the target diagram
object. Creates also the shape definition
for the subprocess and updates names
and labels accordingly.
parseXML()
Parses the merged JavaScript object tree
back to a valid BPMN XML.
createDiagram()
Uses the resulting XML of the previous
step to create its graphical representation
in the model canvas.

5.4. Compatibility with the stARS Execution Engine

After tackling the aforementioned challenges, the introduction of subprocesses was real-
ized in a straight-forward manner. Thanks to the already existing visualization mechanisms
of bmpn-js for subprocesses, it was sufficient to ensure that the underlying data had the
correct structure. Once a subprocess is placed on the canvas, it behaved like other el-
ements and could be moved around, connected to other elements, edited, copied, and
deleted. Selecting a subprocess even opened the properties panel with only minor addi-
tional modifications needed. However, while the models behaved as expected in the stARS
web editor, once an instance of themodel was created that contained subprocesses, it was

72 5. Implementation

not executable. The transformation of the model into a request that the back-end of stARS
could process properly failed because no implementation was present that transformed
the subprocess objects accordingly. Furthermore, the back-end did not support the spe-
cial subprocess objects, because they are missing in the meta-model. For these reasons,
and for the fact that the implemented solution should be embeddable to the rest of the
system, (see NFR1 in Table 3.6), some modifications had to be made to the model data
that is sent to the back-end to make it compatible with the execution engine.

One solution to this problem was to transform the XML that is sent to the back-end server
in such a way that subprocesses were integrated to the rest of the model. However, the
graphical representation of the model which is saved separately is not transformed. The
final result would be a scenario that is visualized to the user with all subprocesses in-tact
while the underlying data structure that is sent to the server is flat. The visualization in the
Control View is then able to show subprocesses as such while the data that resides on the
execution engine does not contain any subprocesses at all. When advancing the scenario,
all start and end blocks of the subprocess are intentionally skipped.

Fortunately, a function that integrates a subprocess into its parent is already required to
be implemented for the Context Menu. The strategy therefore was to realize the function
for the Context Menu and then reuse it to transform model data into a for the execution
engine usable structure.

Flattening Subprocesses (Integrate Function)

Start End

Start End 1

Sub Task 1

Sub Task 2

End 2

Task 1

Start End

Sub Task 1

Sub Task 2Task 1

Before

After

Subprocess 1

Figure 5.6.: An example workflow before and after it was flattened. The transitions and
elements highlighted in pink are subject of change during the flattening. Thus,
a way to query these elements from the parsed data structure is needed.

5.4. Compatibility with the stARS Execution Engine 73

The function to integrate a subprocess flattens the model by removing the parent con-
tainer, start- and end blocks of the subprocess and by connecting its remaining contents
accordingly with the rest of the model. Figure 5.6 illustrates this process with an example.
While it is conceptually easy to understand what the feature is intended to do, it turned out
to be difficult to implement for various reasons. For once, the framework and libraries that
are already part of the codebase did not offer any means to query a parsed object tree for
specific elements in the process object or the diagram object respectively. For example,
in order to redirect incoming and outgoing transitions, the source and target elements of
these transitions had to be obtained in order to modify them. This was not possible with
the APIs that the libraries expose.

In addition to that, no convenient way to identify and obtain all transitions that go into
(or out of) a specific element was present. Such a function would simplify the code respon-
sible for redirecting existing transitions that enter and exit the subprocess in question.
Furthermore, start- and end blocks of the subprocess have to be removed on integration.
Identifying these blocks, the transitions attached to themand the target function blockswas
not possible without dedicated query methods. Consequently, these query functions had
to be written and tested first before implementing the integrate feature, therefore increas-
ing the implementation effort noticeably. A summary of the functions and their purpose
can be found in Table 5.1.

Query/Helper Function Description

collectSubProcesses() Returns an array of all subprocess objects contained in
the process object of the model currently loaded.

findElementById(id, processObject) Returns the element specified by an id in a given pro-
cess object.

findFlowsForElement(id) Returns an array of all sequence flows for a given ele-
ment referred to by id.

findFlowsForElementsOfType(type) Returns an array of all sequence flows for a given el-
ement type. Used to find all incoming and outgoing
transitions of all start blocks and end blocks of a given
process object.

getElementIds(processObject) Returns the ids of all elements that are part of a given
process object.

mergeSubProcess(id, po, do) Merges all the contents of a subprocess given by idwith
the process object po and the diagram object do of the
parent.

redirectFlow(flow, target) Redirects a sequence flow. This means modifying the
target of a given transition to point to the given target.

removeElementById(id, processObject) Removes an element by id from the process object.

Table 5.1.: Query and helper functions that were implemented to ease the development
process.

74 5. Implementation

Using these helper functions, an algorithmwas developed that transforms any given BPMN
XML containing a subprocess into a flat XML with equal semantics. The following listing
illustrates this algorithm in pseudo-code:

Algorithm 5.1: Algorithm for flattening/integrating a subprocess. Explanatory comments
start with the symbol #.

1 input : xml , subprocessID
2 output : f l a t Xm l
3 begin
4 # F i r s t , parse the xml as an object t ree .
5 model ← parse (xml)
6 # Gather both the process ob ject and diagram object from the parsed object t ree .
7 processObject ← getProcessObejct (model)
8 diagramObject ← getDiagramObject (model)
9

10 # Get the subprocess ob ject to modify i t .
11 subProcessObject ← f indElementById (subprocessID , processObject)
12 # Get a l l t r a n s i t i o n s that enter and ex i t the subprocess .
13 subProcessFlows ← f indFlowsForElement (processObject , subprocessID)
14

15 # Find a l l f lows that e i the r enter or e x i t s ta r t - and end - events of the subprocess .
16 startConnect ions ← f indFlowsForElementsOfType (' bpmn2 : s tar tEvent ' , subProcessObject)
17 endConnections ← f indFlowsForElementsOfType (' bpmn2 : endEvent ' , subProcessObject)
18

19 # Merge a l l elements of the subprocess ob ject with the parent process ob ject .
20 mergeSubProcess (subprocessID , procesObject , diagramObject)
21

22 # Find both the entry model element ins ide the subprocess and the s ink element
23 # outs ide the subprocess .
24 entryElement ← startConnect ions [0] . outgoingFlows [0] . t a rge tRe f
25 sinkElement ← subProcessFlows . outgoingFlows [0] . t a rge tRe f
26

27 # Redi rect a l l t r a n s i t i o n s that f low in to the subprocess to point to the entry element
28 # of the subprocess .
29 foreach f low in subProcessFlows . incomingFlows do
30 red i rec tF low (f low , entryElement)
31 # Redi rect a l l t r a n s i t i o n s that pointed to end - events ins ide the subprocess to the
32 # s ink element outs ide the subprocess .
33

34 foreach connection in endConnections do
35 foreach f low in connection . incomingFlows do
36 red i rec tF low (f low , sinkElement)
37

38 # Remove the subprocess ob ject from the process ob ject .
39 removeElement (subprocessID , processObject)
40

41 # Remove the s t a r t and end - events of the non - ex i s t en t subprocess .
42 foreach s ta r tEven t in subProcessObject do
43 removeElement (s tar tEvent , processObject)
44

45 foreach endEvent in subProcessObject do
46 removeElement (endEvent , processObject)
47

48 # Parse the re su l t as XML .
49 f l a t Xm l ← parse (model)
50 return f l a t Xm l
51 end

5.4. Compatibility with the stARS Execution Engine 75

5.5. Patching Frameworks and Libraries

The stARS web editor codebase depends on many third-party libraries and frameworks,
most of them being open-source projects. The big advantage of open-source libraries is
that the code is free to use by anyone and for any project as long as appropriate credit
is given. However, because such projects are mostly maintained by volunteers and inter-
ested individuals with limited time, some bugs will never get fixed. In the following, a similar
situation is explained that was encountered while implementing the ATM function.

A bug in the framework bpmn-js caused subprocesses to be visualized in a strangemanner.
Expanding, moving and then collapsing the subprocess left the labels of the subprocess
elements visible, although they should be hidden when the subprocess is collapsed. Inves-
tigating this bug further lead to the conclusion that this behavior had been a known issue
in bpmn-js for years, but yet no official fix was provided by the community. Nonetheless, it
was possible to identify the exact commit in which the changes were introduced that break
the visualization of subprocesses. Therefore, the first idea was to downgrade the version
of bpmn-js to avoid the piece of code that breaks the subprocess visualization. This fixed
the visualization problem, however many other unintended side-effects were introduced,
rendering the web editor virtually unusable. As a result, the implementation switched back
to the more recent version of bpmn-js that still contained the bug.

Further investigations on the bug were conducted because the feature in question was
deemed too important to leave it out of the final result of the implementation phase. Soon
the discovery was made that it was possible to fix the bug manually, however only locally.
Whenever the stARS web editor was deployed on testing infrastructure, the official version
of bpmn-js was used (which does not contain the bug fix), so the bug remained on de-
ployed versions. More research on this topic finally led to a solution, that was specifically
engineered for similar situations: patch files. A patch file contains changes that should
be applied to a given source code file. In the specific case of bpmn-js, it was possible to
generate a patch file with a tool called patch-package [65] and incorporate it’s usage into
the build process. During the build phase, the problematic source code files are dynam-
ically adapted by the contents of the patch file. This avoided the need to maintain a fork
of the bpmn-js framework inside the stARS codebase, meaning that deployed versions of
the editor finally also profit from the bug fix. This solution can be useful to developers who
continue work on the stARS front-end and encounter similar problems in the future.

5.6. UI Concept Changes

During the implementation phase, some issues occurred that prevented parts of the con-
cept from being implemented as proposed. These issues include small oversights in the
concept itself that could impede the practicality of the implementation, and framework lim-
itations. Therefore, to avoid a situation in which the final implementation would suffer from

76 5. Implementation

drawbacks that could hinder the evaluation process, changes were made to some of the
proposed UI concepts.

Context Menu and Minimize / Expand Button

As mentioned earlier, most of the components provided by bpmn-js can be customized
– some easier than others. A customization that turned out to be more difficult than an-
ticipated was the creation of custom menus. Unfortunately, due to these difficulties and
limitations of the framework, it was not possible to create both a button for expanding and
minimizing the Parent Container (as described in Section 4.4) and the Context Menu (as
described in Section 4.4.3). Nonetheless, the functionality the Context Menu intended to
provide for subprocesses was implemented – only the place where the functions can be ac-
cessed was changed. As mentioned before, bpmn-js has great support for subprocesses
and automatically opens a Properties Panel when clicking on the subprocess container.
Adapting the panel’s behavior by adding custom UI elements was possible. Therefore,
expanding and retracting subprocesses is now instead made possible via the Properties
Panel. Additionally, a button is provided that allows to integrate the subprocess into the
rest of the model.

The “Edit” option was another feature that the Context Menu was intended to provide.
It should allow users to open an embedded scenario in a separate tab in which it can be
modified. This feature was instead implemented differently. Now, every time a model is
embedded, the implementation automatically detects all subprocesses and creates a tab
for each at the bottom of the modeling canvas. The user can choose one of the tabs at the
bottom of the canvas and modify the corresponding subprocess.

Export Dialog

Figure 5.7.: The improved Category Selector.

Most of the features related to the ex-
port dialog were implemented without
any problems. However, some minor
changes to the concept of private tem-
plates and template categories were re-
quired to ensure that these functions
could be used in a workable way. For
example, it was not possible to remove
a template or category once it had been
created. The concept did not provide any
form of mechanism to delete categories
or private templates. The lack of such a
feature was discovered during the imple-
mentation of Template Repository and Template Preview Cards, where a Delete Button was
introduced for debug purposes. It was soon realized that end users would definitely need

5.6. UI Concept Changes 77

this feature, so the buttons were kept and integrated into the rest of the UI. Furthermore,
the appearance of the category selector has changed iteratively during development. The
version of the category selector that was envisioned in the mock-ups consisted of a simple
box in which categories were visualized as tags. However, it was soon discovered that vital
features like auto-completion and suggestions for categories were missing. With the origi-
nal design, users would have no idea which categories already exist. The improved design
(see Figure 5.7) therefore offers a scrolling list of categories that can be filtered by entering
a search term. Entering a category name that does not exist and clicking the Add button
will create the category and automatically add it to the template.

The backend server code responsible for persisting templates also needed to be modified
to support deleting template categories. A bug caused associations between categories
and templates to not be persisted correctly. When a category was deleted, the backend
code did not remove the category from the template. Retrieving a template with a miss-
ing category caused the server to crash. Fortunately, this problem was detected early and
fixed with the support of Robert Peine, a student that currently maintains the backend of
stARS.

Import Dialog

Figure 5.8.: The updated Sidebar behavior: Selecting a category dynamically updates the
number of available templates in the other categories. left: before selection,
right: after selection.

A dialog has been proposed in Section 4.3 which serves as a template repository. The
Sidebar in the dialog displays public and private categories. In the actual implementation,
this feature has been improved. When multiple categories are selected, the number of
templates next to the category name changes accordingly. The same applies if a search
term is entered in the search bar. This change was introduced because static numbers
next to categories could potentially confuse users. When selecting multiple categories, the

78 5. Implementation

number of displayed templates is reduced, i.e. selecting multiple categories follows an and-
wise logic. Only templates that belong to all selected categories will be displayed to the
user. Consequently, the number of templates that apply to the user’s current selection
now changes dynamically.

5.7. Open Issues

Creating an embeddable solution that fits into the existing codebase has been one of the
highest priorities. However, not all features could be implemented in a seamless way. Due
to either technical limitations or time constraints, several issues remained open until the
end of the implementation phase. However, withmore time available, all of these problems
can be solved in future efforts.

Integrate Function, Tabs and Undo History

The introduction of the integrate function function did create problems regarding the com-
mand stack and the undo and redo functions. The history of commands is managed by
observing one main XML structure that represents the model. However, the introduction
of tabs led to the need to manage multiple XML structures in parallel (one for each tab and
one root XML structure for the main tab). This causes problems for the undo and redo
system, which has therefore lost some of its functionality. The same is true for the ATM
function, as adding a model can not be undone in the current implementation. After a
model is added, the command history is lost because the parent model is completely re-
created after the import operation. Future work therefore should concentrate on restoring
the undo and redo function properly, for example by introducing multiple undo- and redo
stacks (one for each XML).

Back-end support for subprocesses

As described previously, additional implementation efforts were necessary tomakemodels
containing subprocesses compatible with the back-end of stARS. An open issue therefore
is to make the back-end compatible with subprocesses in general by introducing the sub-
process into the meta-model. This solutions would reduce the complexity introduced to
the codebase of the web editor greatly.

Performance and Responsiveness

Many of the implemented features require recalculating and redrawing models in the ed-
itor, which can be costly on the client-side hardware. One area of the application where
this is especially noticeable is switching between tabs inside the canvas. On slower devices,
an unpleasant delay could potentially occur before the model is fully drawn in the canvas.
Here, performance improvements could be achieved by managing multiple instances of
the canvas at the same time (one for each embedded model), therefore avoiding complete

5.7. Open Issues 79

redraws of models. However, implementing this feature would be much more difficult, as
syncing changes to diagrams in tabs is still an issue.

Another solution could be to listen on any changes that are made to embedded models.
There exist several events that are triggered whenever the user edits the model (regard-
less of whether it is an embedded model or the main model). Listening to these events
and recording the changes that were applied to the model could allow to use the API of
bpmn-js to create instructions that represent these changes. The recorded “delta instruc-
tions” would then be re-applied to the embedded model that resides in the main tab once
the user switches back to the main tab. This technique would likewise avoid the complete
redraw of models. However, a feasible strategy that allows to record and translate model
modifications into code has to be developed.

Furthermore, displaying many preview renderings of templates simultaneously in the tem-
plate repository can cause performance issues. Especially loading times can suffer on
lower-end devices, becausemodel rendering is done sequentially and in some cases blocks
the user interface until the rendering is complete. One solution for this problem would be
to persist a pre-rendered SVG image of the model on the back end server, which is then
used to render the preview of the template in the template repository. This would drasti-
cally improve loading times.

Wizard for Connected Components

A wizard that eases the creation of connected components was initially proposed and part
of the concept. Due to time constraints and the additional implementation efforts needed
to introduce tabs and tomake subprocesses compatible with the back-end, considerations
had to be made about the remaining time to implement the wizard and its benefit to the
users and the evaluation. The wizard is an isolated feature, as no other features of the con-
cept depend on its existence. More precisely, the wizard only represents an extension that
should speed up the modeling process and no functional or non-functional requirements
that were defined by this thesis depend on it. Therefore, the assumption was made that
the evaluation phase would not suffer in terms of quality and meaningfulness if the wizard
was not present, and its implementation was postponed indefinitely. However, as the wiz-
ard was rated positively in the pre-evaluation, the concept is still interesting and should be
investigated further in the future.

5.8. Summary

This chapter described the implementation phase of this work that consisted of realizing
the proposed UI components (Save, Export, Import and Load-Dialog), support for embed-
ded models, and tabs for visualizing only parts of a more complex model. First, the tech
stack and initial conditions were described, before outlining the general approach that was

80 5. Implementation

followed to implement the UI components. Then, insights to the data format of BPMN
and necessary data transformations were provided to illustrate, how model data has to be
manipulated to reach certain goals. This was additionally complemented by outlining al-
gorithms for model composition and model flattening. Then, necessary changes to the UI
concept were described, because not all features were implemented as initially proposed.
Finally, this chapter concluded with a summary of issues that remained open until the end
of the implementation phase.

In conclusion, the result of the implementation phase meets the majority of functional re-
quirements that were earlier defined in Table 3.6, because most of the required functional
features were implemented completely. Furthermore, the non-functional requirement of
an embeddable solution (NFR1) was mostly met, (with a few exceptions), because the im-
plementation represents a seamless extension of the already existing codebase. For now,
the implementation has to stand the test against the remaining two non-functional re-
quirements (NFR2 andNFR3 that concern an increase of usability and intuitiveness of new
features respectively). Therefore, the upcoming chapter will elaborate on the evaluation of
the implementation by real end-users.

5.8. Summary 81

6. Evaluation

Chapter 6: Evaluation

The previous chapter illustrated the methodology, difficulties, changes to the
concept and results of the implementation phase. In the next phase of this thesis,
the implementation had to be evaluated by real end-users. This chapter covers
the evaluation process that took place in form of a user study. First, the evaluation
methodology is described before details on the modeling task that participants of the
study had to solve are discussed. Then, the results of the evaluation and quantitative
feedback are presented. This chapter then concludes with a review of open feedback
and suggestions for improvement that was provided by the participants of the
evaluation.

83

6.1. Methodology

The implementation phase resulted in a prototype version of the stARS editor that was en-
hanced with many new features. This version provided the vast majority of the functions
and capabilities originally envisioned by the mock-ups. In order to draw conclusions be-
tween the proposedmock-ups and the version of the stARS web editor implemented in this
work, the same participants from the pre-evaluation were asked to test the implementa-
tion. It was assumed that participants from the previous evaluation would be able to make
an informed comparison between the proposed mock-ups and the final implementation
results. The overall goal of the evaluation was therefore to find out whether the user’s ex-
pectations were met by the actual implementation.

Extensive pre-testing has been done to ensure that the evaluation takes place without
any technical issues caused by specifics of the user’s operating system or browser. The
browsers considered include Firefox 81.0 and Google Chrome 87.0, both of which were
tested on Windows 10 and Ubuntu 20.04 LTS1. As testing progressed, some problems
were encountered when using stARS with the latest version of the macOS browser Safari,
which were quickly resolved with the assistance of Tommy Kubica, the initiator and one of
the main maintainers of stARS. With this, all major operating systems and all major browser
vendors were pre-tested and no further problems were found.

In total, 12 individuals tested the prototype by modeling a complex learning scenario. The
evaluation was conducted in a very similar way to the pre-evaluation using video confer-
encing and a Google Forms questionnaire (see Appendix C). The goal was to evaluate all
implemented features in terms of functional and non-functional requirements and user
acceptance. As described previously, the solution should theoretically increase the usabil-
ity of existing features (NFR2) and newly added features should be intuitive to use (NFR3).
If the implementation is evaluated positively with respect to these two requirements, the
solution can be considered a success. However, it is always possible that the proposed so-
lution or parts of it do not appeal to the end-users after all. In this case, the exact reasons
for user criticism and rejection must be identified and documented so that future work can
address these weaknesses.

1These were the latest versions of Firefox and Google Chrome available at the time of writing

84 6. Evaluation

6.2. Task Design

The task that was given to the participants had to be designed carefully to allow for amean-
ingful evaluation of all features that were realized. The participants were asked to create a
specific model on their own with focus on re-using parts of their solutions on the way. The
task followed a structure that incentivized participants to seek out for new functions like
the Save Dialog, the Export Dialog, the Template Repository and the possibilities to compose
bigger models from smaller parts.

More concretely, the main objective for the participants was to create a model of three
consecutive question rounds that are each separated by a lecture block. The sample solu-
tion of the overall task can be seen in Figure B.2. The model to be created deliberately
contained repeating but not identical structures. This put participants in a situation where
importing a template or having tabs for nested structures can be useful. In the following
sections, a preliminary step and the four sub tasks that the participants had to solve will
be explained.

Questions about previous experience with stARS

Question Score

How familiar are you with the stARS Editor user interface? very unfamiliar
= 1, very familiar = 5

3.67

How familiar are you with the operation of the stARS editor? very unfamil-
iar = 1, very familiar = 5

3.67

How confident are you in your ability to model the ”three rounds of ques-
tions” structure shown above using stARS? very insecure = 1, very confident
= 5

4.25

Table 6.1.: Results regarding statements to the familiarity of participants with stARS.

In a preliminary step, participants were asked to rate their familiarity and confidence with
stARS and the web editor. A summary of statements regarding this is shown in Table 6.1.
It can be said that participants were moderately familiar with both the user interface and
the operation of the stARS web editor. Furthermore, most participants felt confident that
they would be able to create a model of three consecutive question rounds.

6.2. Task Design 85

Task 1: Creation of a template for a question round

Figure 6.1.: The question round that participants had to model in Task 1.

The first task was a short introduction to the stARS web editor. Participants had to attempt
to model a simple structure consisting of three questions that are preceded by a lecture
block (see Figure 6.1). This reacquainted participants with the canvas and the tools that
allow for model manipulation. Once participants were satisfied with their solution, they
were asked to create a template with a custom name and an optional description. This
meant that participants had to find and use the Save/Export dialog box. Participants were
also asked to create a new category and assign it to their fresh new template. Once they
saved the template, Task 1 was completed. Figure 6.2 shows the responses received to the
questions posed in the first task about UI visualization, the suitability of the tools provided
to solve Task 1 and participant satisfaction regarding the end result. Most participants fully

Figure 6.2.: Summary of the evaluation results of Task 1.

agree with the design and visualization of the Save/Export dialog, which means that user
expectations weremet. In summary, this task was the easiest of the four for all participants,
as no one had any problems creating the model and saving it as a template. 9 Participants
stated that it was very easy to solve the task with the tools that the implementation provided,
while 3 other participants felt that it was easy to do so. Overall, the majority of participants

86 6. Evaluation

was content with the overall workflow and result of the first task (10 were very satisfied,
one satisfied and one had neutral feelings). An interesting question here was how the im-
proved category selector would perform, since its design is significantly different from the
proposed mock-up. Participants had differing opinions on how newly created categories
were displayed. Some participants seemed to have overlooked an confirmation toast at the
top right of the screen, which serves as visual feedback to the user about the successful
creation of a category. In addition, some participants did not notice that their newly cre-
ated category was immediately selected and visualized as a tag below the category selector.
One participant noted that they would have expected checkboxes next to each category
in the category list to indicate whether or not a category was selected. Another participant
stated that they would not have expected selected categories to disappear from the drop-
down list. Instead, they expected selected categories to remain in the list and to be visually
highlighted instead. In summary, all participants were satisfied with the way the first task
had to be solved. The majority of participants was pleased with the way templates can be
created. Furthermore, the category selector (as a component that was heavily modified in
comparison to its original design) was still intuitive to most participants with only minor re-
marks regarding the current selection of categories. A summary of participant statements
regarding Task 1 and the creation of templates is given by Table 6.2.

Task 1: Creation of a template for a question round

Question Score Rating

The design and visualization of the Save/Export dialog meets the
expectations I had after the initial evaluation. strongly disagree =
1, strongly agree = 5

4.67 

The possibilities to enrich templates with additional informa-
tion (name, description and categories) meet my expectations.
strongly disagree = 1, strongly agree = 5

4.67 

To me, the operation of the UI elements to be used for creating
categories was... very unintuitive = 1, very intuitive = 5

4.75 

The way the options for resetting function block attributes and
converting concrete function blocks to abstract function blocks
are provided meets my expectations. strongly disagree = 1,
strongly agree = 5

4.67 

Solving the task using the tools provided by the implementation
was ... strongly disagree = 1, strongly agree = 5

4.75 

How satisfied were you with the workflow and the end result of
this task? very unsatisfied = 1, very satisfied = 5

4.75 

Table 6.2.: Rating of statements regarding the usability of the implementation for Task 1.
(= very bad, = mostly bad, = neutral, = good, =
very good)

6.2. Task Design 87

Task 2: Model Composition

In the second task, the participants had to compose a model by reusing the template that
they created in Task 1. The intermediary structure of the model to be built can be seen in
Figure B.1. The structure consists of the same question round three times in a row. For
this, the participants were asked to add the template twice into the modeling canvas. Par-
ticipants then had the task to try and create the remaining question round via duplication
(e.g. by copying and pasting the question round into the canvas). This task had partici-
pants explore the Import/Load dialog and its Add to Model function that allows for model
composition. One of the challenges for some participants was finding how to access the Im-

Figure 6.3.: Summary of the evaluation results of Task 2.

port/Load dialog. As a result, several participants stated that the icon in the Main Menu was
not intuitive enough and that the tooltip below it gave them the information they needed
instead. Once the Import/Load dialog was found, 8 participants used the Sidebar on the
left to select the category they created in Task 1 to filter the available templates. Overall,
participants indicated that they were able to locate the template they were looking for very
quickly. In summary, participant’s expectations regarding the design and visualization of
the Import/Load dialog (see Figure 6.3) were mostly met. One participant had only average
feelings about the tools provided to solve this task, and justified this by not being able to
undo the addition of a question round to the model. As mentioned in Section 5.7, the un-
do/redo function should also work seamlessly when embedding models. However, this is
still an open issue that needs to be resolved in the future.

At the beginning of the evaluation, doubts were expressed about the comprehensibility
and intuitiveness of the ATM function. It was suspected that the explanatory text within the
confirmation dialog alone would not be sufficient to explain the function to inexperienced
users. Therefore, another question was added to the questionnaire after the first three
individuals had participated in the evaluation. The question asked the remaining 9 partici-
pants if an explanatory illustration of the ATM feature would help them better understand
the purpose of the feature. Participant feedback on this question was very controversial,
with some participants fully agreeing with the suggestion, while others disagreed with the
suggestion altogether (see Table 6.3). Further analysis of the collected data showed that

88 6. Evaluation

some participants who were very familiar with both the UI and the operation of stARSwould
dismiss this suggestion. Some participants who expressed that they were not as familiar
with the user interface and operation would agree to the suggestion. However, no clear
cut can be made between inexperienced users that need support in understanding and
expert users who do not need the extra assistance.

P# 4 P# 5 P# 6 P# 7 P# 8 P# 9 P# 10 P# 11 P# 12

UI Familiarity: very unfamiliar = 1, very familiar = 5

5 4 4 3 2 3 4 2 4

Operation Familiarity: very unfamiliar = 1, very familiar = 5

5 4 4 4 2 3 4 2 4

Modeling Confidence: very insecure = 1, very confident = 5

5 5 5 5 4 3 4 4 3

Feelings towards explanatory illustration: strongly disagree = 1, strongly agree = 5

1 1 3 1 3 4 3 4 3

Table 6.3.: Comparison between user confidence and experience with stARS vs. feelings
towards an explanatory illustration for the ATM function.

One possible interpretation of the data could lead to the idea of treating the additional vi-
sualization for the ATM function as optional information. An idea to further investigate the
usefulness of this feature could be to show the visualization on the first use of the function
and to hide it in subsequent uses while providing a button that allows to show the visualiza-
tion when needed. Another idea would be to integrate an explanation of the ATM function
into the already existing explanatory overlay that is shown on the first launch of the editor.

After having added a question round to the model, most participants were quick to note
that an embedded model can be interacted with just like any other element in the can-
vas. Participants attempted to select an embedded question round and reposition it in
the canvas. Here, many participants indicated that they were not satisfied with the way
the selection of the parent container for the question round worked. Participants noted
that selection was only possible when they clicked in an area near the boundaries of the
Parent Container. Clicking on another area within the container did not result in feedback
to participants. At first, several efforts were made to solve this problem alone before a vi-
able solution was provided by individuals at the bpmn-js community forum2. With this help
and the support of Tommy Kubica, this problem was fixed during the evaluation phase by
implementing a custom event handler that responded appropriately to clicks. The final 3
participants then benefited from this solution and did not notice any difficulty clicking and
moving Parent Containers (i.e. embedded question rounds) in the canvas. When the sec-
ond question round was added, some participants struggled with the remaining space on
the canvas. Some managed to find the zoom function to create more space for the third
question round while others were pointed at the zoom function by the investigator.
2The forum thread can be found here: https://forum.bpmn.io/t/select-subprocess-when-clicking-
inside-of-it/5825, last successful access: 2021-02-23

6.2. Task Design 89

https://forum.bpmn.io/t/select-subprocess-when-clicking-inside-of-it/5825
https://forum.bpmn.io/t/select-subprocess-when-clicking-inside-of-it/5825

Overall, it can be stated that participants were happy with the implementation during Task
2. The Import/Load dialog was praised in terms of its visualization and how fast desired
information can be found. Participants only had conflicting opinions about the aforemen-
tioned explanatory illustrations for certain functions. Further investigations have to be
made in order to determine whether such a feature would make it easier to new users
to understand the ATM function. Participant statements regarding Task 2 are summarized
in Table 6.4 below.

Task 2: Model Composition

Question Score Rating

The design and visualization of the Import/Load dialog meets the
expectations I had after the initial evaluation. strongly disagree =
1, strongly agree = 5

4.75 

The behavior of the controls in the Import/Load Dialog meets my
expectations. strongly disagree = 1, strongly agree = 5

4.83 

I was able to find the template I was looking for very quickly using
the Import/Load Dialog. strongly disagree = 1, strongly agree = 5

4.83 

I find the behavior of the ”Add To Model” function to be... very
unintuitive = 1, very intuitive = 5

4.75 

The visualization of embedded templates is well done and meets
my expectations. strongly disagree = 1, strongly agree = 5

4.58 

An explanatory visualization for the ”Add To Model” function
would have helpedme understand this function. strongly disagree
= 1, strongly agree = 5

2.56 

Dealing with embedded elements (move, connect, duplicate)
turned out to be easy for me. strongly disagree = 1, strongly agree
= 5

4.33 

Solving the task using the tools provided by the implementation
was ... strongly disagree = 1, strongly agree = 5

4.50 

How satisfied were you with the workflow and the final result of
this task? very unsatisfied = 1, very satisfied = 5

4.67 

Table 6.4.: Rating of statements regarding the usability of the implementation for Task 2.
(= very bad, = mostly bad, = neutral, = good, =
very good)

90 6. Evaluation

Task 3: Variation of embedded model structures

Figure 6.4.: Divided opinions regard-
ing minimizing/expanding
Parent Containers.

In the third task, participants should try to
modify the embedded question in different
ways. This task was designed to encourage
participants to further explore the embed-
ded models by modifying both their structure
and their properties. First, participants were
asked to add question and answer text to two
to three different questions of their choice.
In addition, participants were asked to try to
change the type of two to three functional
blocks of their choice. Participants were then
asked to modify one of the question rounds
by adding function blocks for a single-choice
and amultiple-choice learning question. Here,
participants were explicitly asked to try to find
an isolated view in which the question round
could be modified. Not all participants used
the tabs at the bottom of the canvas. 3 partic-
ipants added the two additional learning ques-
tions to an embedded question round from
the main tab with relative ease. One of the
first participants stated that it would be a use-
ful feature to be able to double-click on the
parent container of an embedded question round to switch to a specific tab. This change
was then quickly incorporated. Subsequent participants stumbled upon this feature rather
accidentally, indicating that participants had an expectation of being able to open a ques-
tion round in its own tab with a double-click.

The last part of Task 3 revolved around the functionality that allows minimizing and ex-
panding Parent Containers. As described in the previous chapter, the Context Menu was
not implemented and its functionality was moved to the Properties Panel. Because of this
change, it was anticipated that participants may find it difficult to access this functionality
and may not like the placement of the button. This was reflected in the statements that
participants made about this functionality (see Figure 6.4). Not all participants were happy
with the way Parent Containers can be minimized and expanded. They instead expected
to be able to do so by pressing a button on the top left side of the Parent Container. Fur-
thermore, some participants noted that they expected the plus sign on a collapsed Parent
Container to be clickable which unfortunately was not the case. However, one participant
stated that ”[...] since the property window opened during selection, it was clear that the template
could be expanded via it.” In summary, participants rated the implementation with regards to
Task 3 mostly positively. User expectations were met on the majority of occasions expect
for the interaction with Parent Containers. Most participants had no problem to modify
the question rounds to their liking and to find and use tabs to edit embedded models
in a separate view. Participant statements regarding Task 3 are summarized in Table 6.5
below.

6.2. Task Design 91

Task 3: Variation of embedded model structures

Question Score Rating

The tools provided for modifying embedded templates meet my
expectations. strongly disagree = 1, strongly agree = 5

4.83 

The design and visualization of the tabs for embedded templates
meet the expectations I had after the initial evaluation. strongly
disagree = 1, strongly agree = 5

4.58 

I had no problems switching to an isolated model view for any of
the question rounds. very unintuitive = 1, very intuitive = 5

4.58 

I find the way embedded templates can be minimized and ex-
panded to be... very unintuitive = 1, very intuitive = 5

3.58 

Solving the task using the tools provided by the implementation
was ... strongly disagree = 1, strongly agree = 5

4.50 

How satisfied were you with the workflow and the final result of
this task? very unsatisfied = 1, very satisfied = 5

4.58 

Table 6.5.: Rating of statements regarding the usability of the implementation. (= very
bad,= mostly bad,= neutral,= good,= very good)

Task 4: Finalization of a template and Template Sharing
The last task consisted of a combination of different activities. In the first part of Task 4, par-
ticipants were asked to complete the modeling process by integrating the three rounds of
questions into the rest of themodel. Participants became familiar with the integration func-
tion and learned more about its purpose. Some participants expressed that they missed
the planned Context Menu and its functionality. Nonetheless, all participants found the In-
tegrate Scenario button in the properties bar and the general consensus was that the button
was easy to find, contrary to the feelings about the button for expanding and retracting the
Parent Container. In the second part, participants were asked to export their model as a
template to their file system. Again, all participants were successful in this task and found
the functionality in the Export/Save dialog box fairly quickly. 10 out of 12 participants indi-
cated that they liked the steps required to export the template to their file system and that
the export functionality met the expectations they had after the initial evaluation. Partici-
pants were then asked to import the previously downloaded model back into the canvas.
All participants found the button in the Import/Load dialog with relative ease. However,
there was some confusion as to the effect of pressing either the Add to Model button or the
Replace Model button. Some participants pressed the Add to Model button only because
of its blue color. When asked why they chose the button, participants noted that the Re-
place Model button looked to them like it was disabled and therefore not clickable. Hence,
changing the color of the Replace Model button might be a consideration to avoid further

92 6. Evaluation

Figure 6.5.: Divided opinions regarding
the deletion of categories.

confusion. Other than that, participants had
no problem with both the export to and im-
port from their local file system. Participants
also rated the preview visualization of a model
to be uploaded very positively. In the fi-
nal task of the evaluation participants were
asked to delete both the template and the
category that they created earlier. Deleting
templates was easy to the majority of par-
ticipants, as most participants had already
seen the Delete Button attached to the Tem-
plate Preview Cards while browsing their tem-
plates. However, deleting categories was not
as straightforward to the majority of partic-
ipants, because it was difficult to locate the
Delete Button. The category selector does al-
low for the deletion of categories. However it
was not clear before the evaluation whether
providing access to the delete functionality
from within the category selector would con-
tribute to an intuitive design. To answer this
question, participants were asked whether
they liked the way categories can be deleted.
Participant feedback was very controversial as several different opinions about the cate-

Figure 6.6.: Summary of the evaluation results of Task 4.

gory selector (see Figure 6.5) were stated. One participant noted that they would have
expected some mechanism or dialog outside of both the export and import dialog that
is responsible for category management. Another participant stated that they would in-
stead have expected the category selector to appear in the Import/Load dialog as well. The
participant stated that ”[...] then I do not have to remember exactly where the category selec-
tor is”. In the end it can be said that user expectations regarding the integration and the
export and import of models were met. Participants rated the implementation positively
regarding their expectations after the first evaluation. Some controversy was caused by

6.2. Task Design 93

the category selector and the way that categories can be deleted. The majority of partic-
ipants did visibly struggle to find the category selector and the Delete Buttons attached to
each category. However, as the function to delete categories was added as one of the last
features without any user feedback beforehand, it was anticipated that the way this feature
was implemented will cause problems. The statements of participants regarding Task 4 are
summarized in Table 6.6 below.

Task 4: Finalization of a template and Template Sharing

Question Score Rating

The implementation of the integration function for embedded
model components meets my expectations. strongly disagree =
1, strongly agree = 5

4.58 

I was able to easily find the button to integrate embedded model
components. strongly disagree = 1, strongly agree = 5

4.67 

The ”Integrate Scenario” function behaves as I would expect.
strongly disagree = 1, strongly agree = 5

4.58 

I find theworkflow for exporting amodel as a template to the local
file system to be... very unintuitive = 1, very intuitive = 5

4.83 

The implementation of the export function meets the expecta-
tions I had after the initial evaluation.strongly disagree = 1, strongly
agree = 5

4.83 

I found it easy to find the function to delete templates. strongly
disagree = 1, strongly agree = 5

4.58 

I found it easy to find the function to delete categories. strongly
disagree = 1, strongly agree = 5

3.00 

I found it difficult to find the function for importing a template
from the local file system. strongly disagree = 1, strongly agree = 5

1.17 

The preview for a selected template to be imported from the
file system meets my expectations. strongly disagree = 1, strongly
agree = 5

4.75 

The implementation of the import-from-file-system function
meets the expectations I had after the initial evaluation. strongly
disagree = 1, strongly agree = 5

4.67 

Solving the task using the tools provided by the implementation
was ... very difficult = 1, very easy = 5

4.50 

How satisfied were you with the workflow and the final result of
this task? very unsatisfied = 1, very satisfied = 5

4.58 

Table 6.6.: Rating of statements regarding the usability of the implementation. (= very
bad,= mostly bad,= neutral,= good,= very good)

94 6. Evaluation

6.3. Open Feedback and Improvement Suggestions

During the evaluation, participants provided a lot of open feedback and improvement sug-
gestions either verbally or via the questionnaire. This section will showcase the most im-
portant suggestions that were made by participants.

Sorting Templates inside Import/Load dialog

One participant noted that given enough time, a user could amass many templates during
the usage of stARS. Every time a new template is created, the user has to scroll to the end of
the list of private templates to select it which would take longer the more private templates
exist. Therefore, a way for the user to sort templates has to be provided. The suggestion
of the participant led to changing the implementation so that templates are sorted by their
creation date, with the most recently created template appearing first in the list. However,
other metrics for sorting such as most used, least used or last modified could be interesting
to explore.

Interaction with Elements in the Canvas

Some participants criticized the way of interacting with model elements located inside the
canvas. In particular, the majority of participants criticized the interaction with embed-
ded model elements. The Context Menu was missed by one participant stating that the
“Expand/Hide button could be better implemented overall via extra context menu accessible via
right click or via extra visual element”. Especially the plus button that is visible if a Parent Con-
tainer is collapsed caused many participants to try and click it, expecting their embedded
question rounds to expand. Therefore, future efforts should concentrate on implementing
the Context Menu as it was originally proposed and evaluating its usefulness.

Furthermore, the selection of embedded question rounds was mentioned by several par-
ticipants as it was difficult to select the Parent Container. After several participants com-
mented on this, these difficulties were resolved by troubleshooting between the evaluation.
However, during the discussion of these difficulties, one participant suggested an addi-
tional change in the interaction with embedded model elements. The participant thought
it would be useful to assign different meanings to a double-click on an Parent Container
depending on whether the edge of the container or somewhere else within the box was
clicked. Double-clicking on the border should either expand or hide the Parent Container,
while double-clicking anywhere within the Parent Container should bring up the embed-
ded model’s tab. A different participant had a similar idea to this, stating that a double click
should expand a subprocess and a single click on the expanded subprocess should open
the respective tab for the embeddedmodel. This approach would avoid possible ambiguity
as to where the border of the Parent Container starts and ends and where exactly a click
has to be placed to achieve the desired effect. Future work could implement and com-
pare both approaches in terms of intuitiveness. Another idea from different participant

6.3. Open Feedback and Improvement Suggestions 95

was to allow duplicating elements with a single click. When duplicating one of the question
rounds in Task 2, the participant used the main menu and the “Copy” button. In doing so,
the participant expected that pressing this button would immediately create a copy of the
selected element and automatically place it in the model canvas. The participant reasoned
that he did not know that he had to press the key combination (Ctrl+V) to paste a copied
model into the canvas. This idea is worthwhile to be investigated in future efforts.

Category Management

As results of the evaluation showed, many participants criticized the way categories can be
deleted. For most participants, it was not intuitive that deleting categories is only possible
within the Export/Save dialog. One participant noted that a central location for managing
categories needs to be provided elsewhere in the user interface, while another suggested
adding the category selector and its functions to the Import/Load dialog. Another partici-
pant had the idea of asking users if a category should be deleted once the last template
that belonged to that category was deleted. This could help users manage their categories
more efficiently and could avoid “dead” categories. Furthermore, instead of only allowing
the deletion of categories, editing (renaming) categories should also be possible.

Main Menu Icons

The majority of participants was confused by the icons that are used in the Main Menu
for the import and export functions. One participant stated that “Import/Export/Save/Load
buttons I had to find by trial and error. Based on the icons, it was not immediately clear to me
that these are the right buttons”. In addition, several participants stated that the icons of
the buttons for resetting and centering the canvas were not intuitive enough in each case.
Future work could therefore focus on either identifying and using existing icons that are
more suitable for the use case in question, or designing icons specifically adapted for this
purpose.

Tabs

Most participants praised the tabs that can be used to view and edit embedded model
structures. One participant however noted, that besides labeling the tabs according to
the embedded model’s name, it could be of use to use different colors for each tab. The
Parent Container and its respective tab would share the same background color, further
strengthening the idea that both belong together. However, as this would represent a
more visible change to the user interface, this idea should be further explored in another
user study along with some of the other suggestions.

96 6. Evaluation

6.4. Summary

In this chapter, the extension of the stARSweb editor that was developed during this master
thesis was evaluated. For this purpose, a user study was conducted, which served on the
one hand to test the usability and intuitiveness of the newly added functions and to identify
problems that still need to be solved before the extension can become part of the system
and the functions can be made available to other users. The user study showed that most
of the features were very positively received by the participants and that the expectations
for themock-ups from the initial evaluation were largelymet. Some testers rated aspects of
the implementation negatively (e.g., the lack of a Context Menu or several aspects regard-
ing category management), but the overall rating given by these testers was still positive.
The implemented extension of the stARS web editor thus fulfills the requirement for intu-
itiveness (or comprehensibility and usability), which was formulated at the beginning of this
master thesis. Due to the overall positive feedback, the final version of the implemented
extension for the stARS web editor was merged into the development branch of the stARS
frontend project and already received several smaller improvements in the meantime.

Furthermore, the user study has shown that there still remain some problems at the mo-
ment that need to be solved in the future. Here, the main focus lies on the further refine-
ment of the proposed user interface components, the interaction with embedded model
structures as well as the development of appropriate introductions and assistance. Over-
all, however, some of these problems are due to the immense implementation effort and
time pressure within this master thesis. These issues can be fully addressed with more
time and by further investigation of the main library bpmn-js regarding the realization of
additional suitable extensions to the existing implementation. To achieve these goals, ex-
tensive investigations will have to be carried out in the future.

6.4. Summary 97

7. Conclusion

Chapter 7: Conclusion

The previous chapter described how the extension of the stARS web editor was
successfully evaluated. This evaluation formed the conclusion of the development
phase of this thesis. The final chapter briefly summarizes the research and results of
this thesis before going on to discuss topics that could not be explored in depth within
the scope of the master’s thesis, but are nevertheless important for the continuation
of the project.

99

7.1. Summary and Results

stARS is a novel approach to an ARS that focuses on giving lecturers more flexibility in the
way typical ARS features are used during lectures. This is made possible by the stARS web
editor, an application that allows the creation of workflows that map real-world learning
scenarios and didactic strategies. The task of this thesis was to design a suitable extension
for the stARS web editor that facilitates the modeling process of more complex learning
scenarios. For this purpose, the current state of the art in the context of ARS with mod-
eling capabilities and GMTs was analyzed to gain knowledge about suitable and relevant
features that are missing in the stARS web editor. Based on the identified features, a re-
quirements list for a solution to the shortcomings of the editor was first developed. Then,
using a UCD-based process that incorporated feedback from real end users, a concept was
designed and iteratively refined.

The concept included suggestions for new features that would enable easier reuse of com-
ponents, including the introduction of templates, a template repository, enhanced save and
export functionality, enhanced import and load functionality, and template sharing based
on file exchange. In addition, several proposals were made to enable and facilitate the
composition of complex models from multiple existing models or templates, including a
feature that enables model composition in the first place, concepts for visualizing embed-
ded model structures, concepts for interacting with containers of embedded structures,
an integration feature that flattens nested models, and a design for dedicated tabs that
enable the modification of embedded structures in an isolated manner. The majority of
these features were then implemented by appropriately extending the existing codebase
of the stARSweb editor. During the implementation phase, a lot of knowledge about BPMN,
the data format in which models are managed, was gathered and documented. These in-
sights were appropriately exploited in the implementation of more complex model data
manipulation routines.

After most of the proposals were successfully implemented, a final evaluation was con-
ducted to determine if user expectations were met. Participants in the evaluation were
given a carefully designed modeling task that prioritized the newly introduced features.
The results of the evaluation indicated that the implementation can be considered a suc-
cess for the most part. Participants were predominantly positive in their assessment of
the newly added features, while also providing additional feedback suitable for further im-
proving the current state of the stARS web editor. Table 7.1 illustrates the extent to which
non-functional and functional requirements were met by the implementation in light of
feedback provided by evaluation participants. In summary, the vast majority of features
proposed by the concept were successfully implemented in terms of user expectation and
intuitiveness. Many important features have been added to the stARS web editor to facili-
tate the creation of complex learning scenarios.

100 7. Conclusion

Non-Functional Requirement Notes & Open Issues Status

NFR1 Embeddable Solution fulfilled

The implementation is embeddable in the sense
of requirement NFR1, because it represents an
extension of the existing code base of stARS.

–

NFR2 Increase Usability of Existing Features fulfilled

A user study confirmed, that the usability of exist-
ing features was increasedwhen it comes tomod-
eling complex learning scenarios that contain the
same component multiple times.

–

NFR3 Intuitiveness of New Features fulfilled

The intuitiveness of all newly added features was
confirmed by a user study.

–

Functional Requirement Notes & Open Issues Status

FR1 Save & Export fulfilled

The implementation supports saving any given
model as a template. For this, a fully functional
dialog with several abstraction options was re-
alized. Concrete function blocks can be con-
verted into their abstract counterparts and func-
tion block attributes can be reset. Tomanage and
sort templates, template categories were intro-
duced. Templates can be re-opened, edited and
saved again as often as needed. Furthermore,
any given template can be exported as a .bpmn
file and downloaded to the local file system.

• The possibilities to edit and delete
categories have to be enhanced.

• The preview of the model that should
be saved as a template does not pro-
vide any information regarding the
validity of the model.

• Currently, no categories for public
templates exist. The creation of pub-
lic categories by an administrator is
not supported yet.

FR2 Load & Import fulfilled

The implementation provides a way to load a pre-
viously created model into the canvas for further
refinement. It is possible to load and edit already
created instances or templates. Furthermore, im-
porting models in form of .bpmn files is possible.
A preview for the model to be imported provides
users with more information about a given .bpmn
file.

• Adding a model to the canvas cur-
rently resets the undo/redo history.
The same is true when the canvas
content is replaced by a new model.

7.1. Summary and Results 101

Functional Requirement Notes & Open Issues Status

FR3 Templates & Template Repository fulfilled

The implementation provides a way to create
templates from either newly created models or
already existing instances. Furthermore, a Tem-
plate Repository is provided that allows to browse
private and public templates. Available templates
are visualized in an appropriate manner and a
preview window allows to inspect a template in
full size before import. A sidebar was imple-
mented that allows for coarse grain template fil-
tering on the basis selecting (potentially multiple)
categories. A Search Bar was implemented to fur-
ther facilitate the quick location of desired tem-
plates.

• Other ways to sort templates are
missing.

• Rendering performance can suffer on
low end devices if many templates are
shown at the same time.

FR4 Scenario Sharing fulfilled

The implementation provides a way to share tem-
plates via file exchange. Both an export and im-
port feature were successfully implemented, sup-
porting nested model structures.

• A cloud-based approach of scenari-
o/template/model via stARS as a plat-
form would be a reasonable exten-
sion.

FR5 Model Composition & Embeddable Models fulfilled

The implementation provides a way to compose
bigger models by reusing smaller models. The
Add To Model function allows to combine pre-
existing templates into more complex structures.
Embedded model structures are visualized in-
side a container that can be moved around,
connected, expanded, retracted, duplicated and
deleted like any other model element.

• The current implementation breaks
the undo / redo history, as import op-
erations can not be undone.

FR6 Adequate Visualization of Embedded Model Structures fulfilled

By leveraging the BPMN subprocess, embedded
model structures are visualized adequately. The
implementation realized the hybrid visualization
concept consisting of an in-place visualization of
embedded structures paired with tabs that offer
an isolated view on a given embedded structure.

• The current implementation breaks
the undo / redo history, as modifica-
tions that were made inside a tab of
an embedded model can not be un-
done.

102 7. Conclusion

Functional Requirement Notes & Open Issues Status

FR7 On-demand Abstraction of Embedded Models Structures partially fulfilled

Embedded models can be expanded and re-
tracted on demand. The implementation lever-
aged the pre-existing mechanisms provided by
the library bpmn-js to visualize parent containers
in both retracted and expanded state.

• Expanding and retracting embedded
models is only possible via the Prop-
erties Panel. The Context Menu that
was intended for this purpose has yet
to be implemented.

• A button attached to Parent Contain-
ers of embedded structures that al-
lows to minimize expanded contain-
ers still has to be implemented.

• The plus sign shown on a collapsed
Parent Container does not allow to
expand the container as it was origi-
nally envisioned.

• Transitions and surrounding nearby
modeling elements are not properly
aligned / displaced if an embedded
structure is expanded.

FR8 Modifiable Embedded Models Structures fulfilled

Support for embedded model structures was im-
plemented in such a way that modification of em-
bedded structures is straightforward. Further-
more, tabs were implemented that allow to edit
embedded structures in an isolated view. A func-
tion that allows to integrate embedded model
structures into the rest of the model was realized.

• The integration function sometimes
fails to align transitions to neighbour-
ing elements properly. This is espe-
cially the case when models are cre-
ated that do not follow the left-to-
right metaphor1.

FR9 Exchangeable & Removable Embedded Models partially fulfilled

The implementation provides a basic mechanism
that allows to exchange embedded models. Em-
bedded models can be selected and deleted like
any other model element. A removed embedded
element can subsequently be replaced by import-
ing a different template.

• Due to time constraints, the pro-
posed swap option that should have
been accessible via the Context Menu
was not implemented.

Table 7.1.: Status of Non-Functional and Functional Requirement fulfillment: The imple-
mentation fulfilled the majority of requirements (shown in green). The require-
ments that were only partially met are highlighted in yellow.

1This means the progressive placement of model elements from left to right in the canvas.

7.1. Summary and Results 103

7.2. Future Work

During the processing of this master thesis, some aspects and topics were identified that
proved to be important to consider, but at the same time did not directly fit into the context
of the task, which is why a more detailed consideration of these topics was refrained from.
In the following, these topics, which may be relevant for future work on stARS, are briefly
presented.

Back-end Compatibility

In this work, the concept of embeddedmodel structureswas introduced by using the BPMN
subprocess, a model element that is exactly suited for this use case. However, the in-
troduction of embedded model structures resulted in the loss of compatibility with the
stARS back-end execution engine. The stARS workflow execution engine is not able to han-
dle models that contain subprocess elements. To restore compatibility with the existing
back-end infrastructure, an algorithm was developed to convert any given model contain-
ing subprocesses into an equivalent flat model. While the algorithm works perfectly fine, it
is more of a workaround than a necessary feature in the front-end codebase. Therefore,
future work should focus on making the back-end of stARS compatible with sub-processes
(e.g. by introducing the subprocess to the meta-model). This would significantly reduce
the complexity of parts of the codebase responsible for the web editor.

Front-end Unit testing

By implementing various data manipulation routines that enable model composition, a lot
of complex code was introduced into an already extensive codebase. The new function-
ality has only been tested to a limited extent and the current implementation must be
considered more of a prototype application. Future development of stARS and its front-
end will lead to even more and more functionality being added. To make the application
robust and end-user ready and to ensure software quality standards, the introduction of
unit tests for the front-end module is inevitable. Automated frontend testing, unit testing
and regression testing will provide future developers with the necessary tools to assess the
overall quality of the software. The front-end module of stARS already includes some unit
tests, but no conclusive statements about test coverage and code quality can be made at
this time. Future work should therefore focus on implementing more unit and regression
testing for the front-end module as the complexity of the codebase increases and several
complicated data manipulation routines are executed on the client side that need to be
tested against possible edge cases. Implementing a continuous integration environment
such as Jenkins 2 or TravisCI 3 is highly recommended.

2https://jenkins.io, last successful access: 2021-02-14
3https://travis-ci.org/, last successful access: 2021-02-16

104 7. Conclusion

https://jenkins.io
https://travis-ci.org/

Performance Optimization

With the extension of the stARS web editor, many places were introduced where previews
for models are displayed as scalable vector graphics (SVG). Some examples of this are
the Save/Export dialog where a preview of a template is displayed, or the preview displayed
when importing a model from the local file system. The most notable example, however,
is the Template Repository, where the user is shown a preview of each private template.
The preview images are a convenient way to visualize a model, allowing the user to se-
lect the desired template frommany. However, rendering the models is a time-consuming
process that is run on the client, possibly hundreds of times, depending on the set of tem-
plates and how the user interacts with the web editor. On low-end hardware or laptops,
significant speed penalty and reduced responsiveness is the result. The effect can also be
observed in the web editor’s dashboard, where the user is shown a preview for eachmodel
instance. In extreme cases, it can take up to 30 seconds before any meaningful interaction
with the system is possible. Figure 7.1 shows the time it takes to render 50 model pre-
views in the stARS dashboard. Most of the time is spent evaluating JavaScript on the client

Figure 7.1.: Time required to render 50
model previews in the dash-
board of stARS.

side, which is responsible for creating the
model preview SVGs. Future work should
therefore focus on improving the perfor-
mance and responsiveness of the stARS web
editor to ensure the best possible user expe-
rience. To this end, two suggestions are made
below.

Thumbnail image files To address the de-
lay caused by the extensive rendering of
model previews, one solution would be to use
thumbnail image files for model previews. As
long as a full size model preview is not re-
quested by the user, a jpeg or png file could be used instead. However, the backend server
would then need to persist and manage these preview images. Also, additional bandwidth
would be required to transmit the preview images to the clients.

Server-side rendering Amore comprehensive approach that could eliminatemost causes
of delay is server-side rendering. Currently, the stARS frontend is configured as a SPA, which
means that client-side JavaScript is responsible for rendering the application in the browser.
One approach that would avoid slow rendering on the client would be to move the render-
ing to the server side. Fortunately, nuxt-js, part of the frontend module tech stack, allows
switching to SSR in a very simple way. This would offload the client-side hardware, assum-
ing that a powerful web server handles the rendering instead. Several libraries such as
jsdom4 or svgdom5 allow for the rendering of svg on headless systems (e.g. a node-js
4jsdom documentation: https://github.com/jsdom/jsdom, last successful access: 2021-02-14
5svgdom documentation: https://www.npmjs.com/package/svgdom, last successful access: 2021-02-16

7.2. Future Work 105

https://github.com/jsdom/jsdom
https://www.npmjs.com/package/svgdom

backend server). A guide on implementing server-side rendering of SVG can be found in
[66]. Furthermore, several guides exist that explore the combination of SPA and SSR ren-
dering techniques, as illustrated in [67]. Future work could apply these techniques to the
codebase of stARS and investigate, whether a notable performance gain can be achieved
with SSR.

Transition Management and Model Displacement

A known problem of the stARS web editor is the way transitions are placed by the editor.
Sometimes, transitions have toomanyway points and toomany corners. Other times, tran-
sition placement simply ignores neighboring elements, resulting in transitions that pass
through function blocks. While this thesis was written, a student effort by Niclas Zellerhoff
addressed these issues and developed an algorithm that optimizes transition layouts. This
algorithm works most of the time preferably and produces desirable results. However, it
was not tested with the new collapsed or expanded subprocesses. Future work should
therefore continue the efforts of Niclas Zellerhoff and investigate on how transitions could
be placed in a more optimal way, especially around subprocesses (i.e. Parent Containers).
Furthermore, an unanswered question is whether surrounding transitions and model ele-
ments should be displaced whenever a subprocess is expanded, and whether surrounding
elements should be put back to their original position once the subprocess is collapsed.
This problem is especially noticeable when a collapsed subprocess is moved around and
then expanded, which results in “jagged” and very indirect transitions.

In addition to that, the integrate function for embedded structures causes similar prob-
lems that were observed during the evaluation. Some participants did not create their
models with the left-to-right metaphor in mind. Instead, they placed model elements from
top to bottom. Upon integration of the question rounds, the resulting transitions did not
look very pleasing. Transitions had sharp turns and went straight through other modeling
elements. Most of the participants then manually corrected the layout of the transitions
to the best of their abilities. The unpleasant layout is caused by the rather simple code
that calculates the new transitions during the integration of an embedded model, which
only incorporates the first and last way point of the original transition. Future work should
therefore concentrate on developing a dedicated algorithm that calculates a pleasing and
good looking layout for the resulting transitions automatically.

Cloud-based Template Sharing

This work introduced templates and a basic way of sharing templates via file exchange. A
template can be exported and downloaded as a file, which can be sent to others via e-
mail and re-imported via the Import/Load dialog. However, this way of sharing templates
is cumbersome. A more complete solution would allow users to provide their templates
to other users directly via the Template Repository. Future work could concentrate on
mechanisms that allow to publicize templates in a way that makes them re-usable to other

106 7. Conclusion

users. Users of stARS would then be able to create additional re-usable content from which
all users could benefit. A realistic extension of this feature could include recommendations
for templates based on popularity or use case.

7.2. Future Work 107

Bibliography

[1] Computer im Hörsaal - Fluch oder Segen? [online]
https : / / media1 . faz . net / ppmedia / aktuell / wirtschaft / 2840271525 / 1 .

4065051/format_top1_breit/elektronische-stoerenfriede-in.jpg.
[accessed: 2020-09-06].

[2] Number of smartphone users worldwide from 2016 to 2021. [online]
https://www.statista.com/statistics/330695/number- of- smartphone-

users-worldwide/.
[accessed: 2020-09-26].

[3] Ruth Wood and Shaista Shirazi. “A systematic review of audience response sys-
tems for teaching and learning in higher education: The student experience”.
In: Computers & Education 153 (2020). ISSN: 0360-1315. DOI: https://doi.org/10.
1016/j.compedu.2020.103896. URL: http://www.sciencedirect.com/science/
article/pii/S0360131520300956.

[4] Joshua Freeman and Alison Dobbie. “Use of an audience response system to aug-
ment interactive learning”. In: vol. 37. 1. 2005, pp. 12–4.

[5] Jeffrey R Stowell and Jason M Nelson. “Benefits of electronic audience response
systems on student participation, learning, and emotion”. In: Teaching of psychol-
ogy 34.4 (2007), pp. 253–258.

[6] Tommy Kubica et al. “stARS: Proposing an Adaptable Collaborative Learning En-
vironment to Support Communication in the Classroom.” In: CSEDU (2). 2020,
pp. 390–397.

[7] Ilja Shmelkin. “Entwicklung einesMetamodells zur Beschreibung kontext-sensitiver
Audience Response Systeme”. Technische Universität Dresden, 2019.

[8] Lidia Roszko. “Entwicklung eines graphischen Editors zur Erstellung von beliebi-
gen Lernszenarien inAudienceResponse Systemen”. TechnischeUniversität Dres-
den, 2019.

[9] Eric Mazur. Peer Instruction: A User’s Manual. Upper Saddle River, N.J. : Prentice Hall,
1997. ISBN: 0135654416 9780135654415.

109

https://media1.faz.net/ppmedia/aktuell/wirtschaft/2840271525/1.4065051/format_top1_breit/elektronische-stoerenfriede-in.jpg
https://media1.faz.net/ppmedia/aktuell/wirtschaft/2840271525/1.4065051/format_top1_breit/elektronische-stoerenfriede-in.jpg
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://doi.org/https://doi.org/10.1016/j.compedu.2020.103896
https://doi.org/https://doi.org/10.1016/j.compedu.2020.103896
http://www.sciencedirect.com/science/article/pii/S0360131520300956
http://www.sciencedirect.com/science/article/pii/S0360131520300956

[10] Aliya Nusrath et al. “Jigsaw Classroom: Is it an Effective Method of Teaching and
Learning? Student’s Opinions and Experience.” In: vol. 13. 2. 2019, p. 3.

[11] Martin Ebner et al. “Technologiegestützte Echtzeit-Interaktion inMassenvorlesun-
gen imHörsaal. EntwicklungundErprobungeines digitalenBackchannelswährend
der Vorlesung”. In: Lernräume gestalten - Bildungskontexte vielfältig denken (2014),
pp. 567–578.

[12] Kathy Kotiadis and Stewart Robinson. “Conceptual modelling: Knowledge acqui-
sition and model abstraction”. In: 2008 Winter Simulation Conference. IEEE. 2008,
pp. 951–958.

[13] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. “Process model abstrac-
tion: A slider approach”. In: 2008 12th International IEEE Enterprise Distributed Object
Computing Conference. IEEE. 2008, pp. 326–331.

[14] Michael Redhead. “Models in physics”. In: The British Journal for the Philosophy of
Science 31.2 (1980), pp. 145–163.

[15] Alexander Osterwalder, Yves Pigneur, and Christopher L Tucci. “Clarifying business
models: Origins, present, and future of the concept”. In: Communications of the
association for Information Systems 16.1 (2005), pp. 1–25.

[16] Susanne Strahringer. “Ein sprachbasierter Metamodellbegriff und seine Verall-
gemeinerung durch das Konzept des Metaisierungsprinzips.” In: CEUR Workshop
Proceedings zur Modellierung ’98 January 1998 (1998), pp. 1–6.

[17] Tim Shaffer, Nathaniel Kremer-Herman, andDouglas Thain. “Flexible partitioning of
scientific workflows using the JX workflow language”. In: ACM International Con-
ference Proceeding Series (2019). DOI: 10.1145/3332186.3338100.

[18] Böhm, Corrado and Jacopini, Giuseppe. “Flow diagrams, turingmachines and lan-
guages with only two formation rules”. In: Communications of the ACM 9.5 (1966),
pp. 366–371.

[19] BPMN 2.0 Specification. [online]
https://www.omg.org/spec/BPMN/2.0/.
[accessed: 2020-09-02].

[20] Thomas Allweyer.BPMN2.0: Introduction to the Standard for Business ProcessMod-
eling. BoD–Books on Demand, 2016. ISBN: 9783837093315.

[21] BPMN Examples. [online]
https://camunda.com/de/bpmn/bpmn-examples/.
[accessed: 2020-12-30].

[22] Ilja Shmelkin. Untersuchung der Adaptierbarkeit webbasierter Audience Response
Systeme. 2018.

[23] Thomas Köhler et al. “Wissensgemeinschaften: Digitale Medien - Öffnung und
Offenheit in ForschungundLehre”. In:Wissensgemeinschaften 2011 (2011), pp. 178–
187.

110 Bibliography

https://doi.org/10.1145/3332186.3338100
https://www.omg.org/spec/BPMN/2.0/
https://camunda.com/de/bpmn/bpmn-examples/

[24] Kathleen Marrs and Gregor Novak. “Just-in-time teaching in biology: Creating an
active learner classroom using the internet”. In: vol. 3. 1. Am Soc Cell Biol, 2004,
pp. 49–61.

[25] The Think, Pair, Share Cooperative Learning Strategy. [online]
https://www.teachervision.com/group-work/think-pair-share-cooperative-

learning-strategy.
[accessed: 2020-08-30].

[26] Catherine H Crouch and Eric Mazur. “Peer instruction: Ten years of experience
and results”. In: American journal of physics 69.9 (2001), pp. 970–977.

[27] Catherine H. Crouch et al. “Peer Instruction: Engaging Students One-on-One, All
AtOnce”. In: Research-Based Reformof University Physics (2007), pp. 1–55. ISSN: 10476938.
DOI: 10.1364/OPN.9.9.000037.

[28] Elliot Aronson et al. The Jigsaw Classroom. Sage, 1978. ISBN: 978-0803909977.

[29] Chadia Abras, DianeMaloney-Krichmar, Jenny Preece, et al. “User-centeredDesign”.
In: Bainbridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage
Publications 37.4 (2004), pp. 445–456.

[30] Usability & User Experience (UX) - A definition provided by usability.de. [online]
https://www.usability.de/en/usability-user-experience.html.
[accessed: 2020-09-04].

[31] Jakob Nielsen. 10 Usability Heuristics for User Interface Design. [online]
https://www.nngroup.com/articles/ten-usability-heuristics/.
[accessed: 2020-09-05].

[32] ARSnova - An ARS developed by the Technische Hochschule Mittelhessen. [online]
https://arsnova.thm.de/.
[accessed: 2021-01-11].

[33] PINGO - An ARS developed by the Universität Paderborn. [online]
https://pingo.coactum.de/.
[accessed: 2021-01-11].

[34] Einsatz von Classroom-Response-Systemen und Peer Instruction in der Veranstal-
tung Grundlagen von Datenbanken. [online]
http://www.hochschullehre.org/wp-content/files/die_hochschullehre_

Wolters_2018.pdf.
[accessed: 2021-01-11].

[35] tweedback - A web-based live feedback system of the University of Rostock. [online]
https://tweedback.de.
[accessed: 2021-01-11].

[36] FreeQuizDome - A free software for anonymous surveys and voting for large groups.
[online]
https://tweedback.de.
[accessed: 2021-01-11].

Bibliography 111

https://www.teachervision.com/group-work/think-pair-share-cooperative-learning-strategy
https://www.teachervision.com/group-work/think-pair-share-cooperative-learning-strategy
https://doi.org/10.1364/OPN.9.9.000037
https://www.usability.de/en/usability-user-experience.html
https://www.nngroup.com/articles/ten-usability-heuristics/
https://arsnova.thm.de/
https://pingo.coactum.de/
http://www.hochschullehre.org/wp-content/files/die_hochschullehre_Wolters_2018.pdf
http://www.hochschullehre.org/wp-content/files/die_hochschullehre_Wolters_2018.pdf
https://tweedback.de
https://tweedback.de

[37] LucidChart - A web-based proprietary platform that allows users to collaborate on
drawing, revising and sharing charts and diagrams. [online]
https://www.lucidchart.com/.
[accessed: 2020-09-26].

[38] Gliffy - Web-based diagram editor. [online]
https://gliffy.com.
[accessed: 2020-09-26].

[39] Microsoft Visio - A diagramming and vector graphics application that is part of the
Microsoft Office family. [online]
https : / / www . microsoft . com / de - de / microsoft - 365 / visio / flowchart -

software.
[accessed: 2020-09-26].

[40] bpmn.io. [online]
https://www.bpmn.io.
[accessed: 2020-09-26].

[41] Camunda - An open-source workflow and decision automation platform. [online]
https://camunda.com.
[accessed: 2020-09-26].

[42] Kissflow. [online]
https://kissflow.com.
[accessed: 2020-09-26].

[43] draw.io - A free online diagram software for making flowcharts, process diagrams,
org charts, UML, ER and network diagrams. [online]
https://draw.io.
[accessed: 2020-09-26].

[44] Alfred App - A productivity application for macOS. [online]
https://www.alfredapp.com/workflows/.
[accessed: 2020-09-26].

[45] CPN Tools - A tool for editing, simulating, and analyzing high-level Petri nets. [on-
line]
https://cpntools.org.
[accessed: 2020-09-26].

[46] Visual Paradigm - An all-in-one UML, SysML, BPMN Modeling Platform for Agile, EA
TOGAF ADM Process Management. [online]
https://visual-paradigm.com.
[accessed: 2020-09-26].

[47] cardanit - A BPM editor with dynamic process and decision modeling. [online]
https://cardanit.com.
[accessed: 2020-09-26].

112 Bibliography

https://www.lucidchart.com/
https://gliffy.com
https://www.microsoft.com/de-de/microsoft-365/visio/flowchart-software
https://www.microsoft.com/de-de/microsoft-365/visio/flowchart-software
https://www.bpmn.io
https://camunda.com
https://kissflow.com
https://draw.io
https://www.alfredapp.com/workflows/
https://cpntools.org
https://visual-paradigm.com
https://cardanit.com

[48] Activiti Modeler - A lightweight, java-centric open-source BPMN engine. [online]
https://www.activiti.org/.
[accessed: 2020-09-26].

[49] creately - A visual collaboration tool with diagramming and design capabilities.
[online]
https://creately.com.
[accessed: 2020-09-26].

[50] Flowable - An open-source workflow engine written in Java. [online]
https://flowable.com.
[accessed: 2020-09-26].

[51] HEFLO - A technology platform created for companies that want to control and
scale their business processes. [online]
https://www.heflo.com.
[accessed: 2020-09-26].

[52] Bonita Studio - An open-source business process management and Low-code de-
velopment platform. [online]
https://www.bonitasoft.com/.
[accessed: 2020-09-26].

[53] cacoo - An online diagram software to create flowcharts, wireframes, UML models
and more. [online]
https://cacoo.com.
[accessed: 2020-09-26].

[54] smartdraw - A diagram tool used to make flowcharts, organization charts, mind
maps, project charts, and other business visuals. [online]
https://www.smartdraw.com.
[accessed: 2020-09-26].

[55] mydraw - An advanced diagramming software for drawing flowcharts, org charts,
mind maps, network diagrams and more. [online]
https://mydraw.com.
[accessed: 2020-09-26].

[56] Pingendo - A free app for Bootstrap prototyping. [online]
https://pingendo.com.
[accessed: 2021-01-11].

[57] What Is a Single Page Application? [online]
https://www.excellentwebworld.com/what-is-a-single-page-application/.
[accessed: 2021-01-11].

[58] vue.js - A progressive JavaScript Framework for building user interfaces. [online]
https://vuejs.org/.
[accessed: 2020-12-30].

Bibliography 113

https://www.activiti.org/
https://creately.com
https://flowable.com
https://www.heflo.com
https://www.bonitasoft.com/
https://cacoo.com
https://www.smartdraw.com
https://mydraw.com
https://pingendo.com
https://www.excellentwebworld.com/what-is-a-single-page-application/
https://vuejs.org/

[59] yarn - A package manager for the JavaScript programming language. [online]
https://yarnpkg.com/.
[accessed: 2021-02-22].

[60] nuxt.js - A framework for making web development simple and powerful. [online]
https://nuxtjs.org/.
[accessed: 2020-12-30].

[61] bpmnjs - BPMN 2.0 viewer and editor. [online]
https://bpmn.io/toolkit/bpmn-js/.
[accessed: 2020-11-02].

[62] node2xmljs - A simple XML to JavaScript object converter. [online]
https://www.npmjs.com/package/xml2js.
[accessed: 2020-12-30].

[63] Bootstrap - A responsive, mobile-first front-end framework. [online]
https://getbootstrap.com/.
[accessed: 2020-12-30].

[64] Font Awesome - The web’s most popular icon set and toolkit. [online]
https://fontawesome.com/.
[accessed: 2020-12-30].

[65] patch-package - Lets app authors instantly make and keep fixes to npm dependen-
cies. [online]
https://www.npmjs.com/package/patch-package.
[accessed: 2021-01-17].

[66] Love Generating SVG With JavaScript? Move It To The Server! [online]
https://www.smashingmagazine.com/2014/05/love-generating-svg-javascript-

move-to-server/.
[accessed: 2021-02-14].

[67] SPAs, PWAs and SSR - Comparison and combination of rendering techniques for the
web. [online]
https://simplabs.com/blog/2019/04/05/spas-pwas-and-ssr/.
[accessed: 2021-02-15].

114 Bibliography

https://yarnpkg.com/
https://nuxtjs.org/
https://bpmn.io/toolkit/bpmn-js/
https://www.npmjs.com/package/xml2js
https://getbootstrap.com/
https://fontawesome.com/
https://www.npmjs.com/package/patch-package
https://www.smashingmagazine.com/2014/05/love-generating-svg-javascript-move-to-server/
https://www.smashingmagazine.com/2014/05/love-generating-svg-javascript-move-to-server/
https://simplabs.com/blog/2019/04/05/spas-pwas-and-ssr/

A. Pre-Evaluation Questionnaire

115

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 1/25

1) Fragen zur bisherigen Erfahrung
Bitte beantworten Sie die folgenden Fragen.

1.

Markieren Sie nur ein Oval.

Sonstiges:

Bis zu 1 Jahr

Zwischen 1 und 3 Jahre

Zwischen 3 und 5 Jahre

Zwischen 5 und 10 Jahre

Über 10 Jahre

2.

Sonstiges:

Wählen Sie alle zutreffenden Antworten aus.

< 20 Teilnehmer (z.B. Übung, Seminar)

20 - 49 Teilnehmer (z.B. große Übung, kleine Vorlesung)

50 - 150 Teilnehmer (z.B. Vorlesung)

> 150 Teilnehmer (z.B. große Vorlesung)

Umfrage für die Evaluation von stARS
Sehr geehrte Damen und Herren,
vielen Dank, dass Sie sich die Zeit nehmen, um an der Evaluation von stARS (scenario-tailored
Audience Response System) teilzunehmen.

In den folgenden rund 60 Minuten sollen Sie den aktuellen Stand sowie Vorschläge zur
Optimierung des stARS-Editors zur Modellierung von eigenen Lehrszenarien bewerten.

Wir möchten Sie darauf hinweisen, dass es bei der Evaluation keine richtigen oder falschen
Antworten gibt und bitten Sie die einzelnen Fragen möglichst ehrlich zu beantworten. Sofern
Unklarheiten bei der Evaluation auftreten, fragen Sie bitte jederzeit bei uns nach.

* Erforderlich

Wie lange betreiben Sie bereits Lehre bzw. haben Sie Lehre betrieben? *

Welche Arten von Lehrveranstaltungen haben Sie bereits gehalten? *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 2/25

3.

4.

Sonstiges:

Wählen Sie alle zutreffenden Antworten aus.

Präsentations-Programm (z.B. PowerPoint oder Keynote)

Handschriftliche Notizen (z.B. über Tablet)

Werkzeuge zur Aktivierung von Studierenden (z.B. Audience Response Systeme,
Backchannel Systeme)

Vorlesungsvideos

Aufgaben zur Vor- / Nachbereitung

5.

Halten Sie während der Corona-Krise Lehrveranstaltungen? Wenn ja, welche
Strategie(n) benutzen Sie hierbei? *

Mit welchen technischen Werkzeugen unterstützen Sie allgemein Ihre
Lehrveranstaltungen? *

Sofern bereits benutzt: Wie oft haben Sie bereits Werkzeuge zur Aktivierung von
Studierenden eingesetzt? Welche Werkzeuge haben Sie hierfür eingesetzt und
welche Erfahrung haben Sie dabei gemacht? *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 3/25

6.

Wählen Sie alle zutreffenden Antworten aus.

Editor

Metamodell

Nein

2) Bewertung der
Benutzerfreundlichkeit

Im diesem Teil der Evaluation sollen Sie den stARS-Editor benutzen und
sowohl vorgegebene Szenarien als auch ein eigenes Szenario
modellieren. Zur besseren Einschätzung der Benutzbarkeit bitten wir Sie
Ihren Bildschirm mit uns zu teilen.

Bitte navigieren Sie zu nachfolgender URL und loggen Sie sich als neuer Lehrender ein.
Öffnen Sie anschließend das Fenster zur Modellierung eines neuen Szenarios.
https://stars-project.com/

Aufgabe 1
In der ersten Aufgabe sollen Sie eine einfache Lehrveranstaltung mit drei Inhaltsblöcken modellieren, deren
Präsentation durch zwei Fragerunden unterbrochen wird.

Überlegen Sie sich hierzu im ersten Schritt durch welche Funktionalität Ihre Inhaltsblöcke unterstützt werden
sollen. Fügen Sie diesen Block ein. Anschließend erweitern Sie Ihr Szenario um eine Fragerunde mit zwei parallelen
Lernfragen mit einem Sub-Typ Ihrer Wahl. Erweitern Sie das Szenario um einen zweiten Inhaltsblock, eine zweite
Fragerunde mit zwei parallelen Umfragen beliebigen Sub-Typs sowie um einen abschließenden Inhaltsblock.

Aufgabe 2)
In der zweiten Aufgabe sollen Sie einen Workflow modellieren, um die Lehrmethode "Peer Instruction" (siehe unten)
umzusetzen.

Versuchen Sie diese Lehrmethode mittels geeigneter Blöcke in stARS abzubilden. Der Versuchsleiter wird Sie
hierbei durch das Szenario leiten und steht Ihnen bei Fragen jederzeit unterstützend zur Verfügung.

Haben Sie vor dieser Evaluation bereits schon einmal mit dem stARS-Editor
gearbeitet oder das stARS-Metamodell evaluiert? *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 4/25

Beispielhafter Ablauf von Peer Instruction

Bewertung der
Benutzerfreundlichkeit

Im letzten Abschnitt haben Sie den stARS-Editor kennengelernt. Nun
bitten wir Sie diesen anhand einiger Fragen auf dessen
Benutzerfreundlichkeit zu bewerten.

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 5/25

7.

Markieren Sie nur ein Oval pro Zeile.

Bitte beantworten Sie folgende Fragen: *

Stimme gar
nicht zu

Stimme eher
nicht zu

Weder
noch

Stimme
eher zu

Stimme
voll zu

Ich kann mir sehr gut
vorstellen, das System
regelmäßig zu nutzen.

Ich empfinde das System
als unnötig komplex.

Ich empfinde das System
als einfach zu nutzen.

Ich denke, dass ich
technischen Support
brauchen würde, um das
System zu nutzen.

Ich finde, dass die
verschiedenen Funktionen
des Systems gut integriert
sind.

Ich finde, dass es im System
zu viele Inkonsistenzen gibt.

Ich kann mir vorstellen, dass
die meisten Leute das
System schnell zu
beherrschen lernen.

Ich empfinde die Bedienung
als sehr umständlich.

Ich habe mich bei der
Nutzung des Systems sehr
sicher gefühlt.

Ich musste eine Menge
Dinge lernen, bevor ich mit
dem System arbeiten
konnte.

Ich kann mir sehr gut
vorstellen, das System
regelmäßig zu nutzen.

Ich empfinde das System
als unnötig komplex.

Ich empfinde das System
als einfach zu nutzen.

Ich denke, dass ich
technischen Support
brauchen würde, um das
System zu nutzen.

Ich finde, dass die
verschiedenen Funktionen
des Systems gut integriert
sind.

Ich finde, dass es im System
zu viele Inkonsistenzen gibt.

Ich kann mir vorstellen, dass
die meisten Leute das
System schnell zu
beherrschen lernen.

Ich empfinde die Bedienung
als sehr umständlich.

Ich habe mich bei der
Nutzung des Systems sehr
sicher gefühlt.

Ich musste eine Menge
Dinge lernen, bevor ich mit
dem System arbeiten
konnte.

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 6/25

8.

9.

3) Bereitstellung
einer initialen Hilfe

In diesem Teil der Umfrage präsentieren wir Ihnen Komponenten, die den
Einstieg in den Editor erleichtern sollen.

Bitte beantworten Sie die jeweiligen Frage-Blöcke, sobald Sie auf den
Präsentationsfolien darauf hingewiesen werden.

Was hat Ihnen besonders gut gefallen?

Was hat Ihnen nicht gefallen?

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 7/25

10.

3.1) Initiale
Hilfe:
Overlay

Nach dem ersten Öffnen des Editors wird ein Overlay angezeigt, das helfen soll, die
wichtigsten Elemente und Funktionen schnell zu erkennen.

Die erste Evaluation hat ergeben, dass das Overlay sowohl die allgemeinen Elemente und
Funktionen (Teil 1) als auch ein Beispielszenario (Teil 2) vorstellen sollte.

Welche Elemente oder Konzepte waren für Sie am Anfang unklar? *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 8/25

Overlay Teil 1

11. Würden Sie in der angezeigten Version vom Overlay (Teil 1) andere Elemente zum
Beschreiben auswählen? *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 9/25

Overlay Teil 2

Overlay Teil 2 - Schritte
Schritt 1: “This example shows how one iteration of peer instruction (PI) is modeled.”

Schritt 2: “The first stage of PI is a brief lecture, in which a new topic is introduced. This is represented by a pause
block that describes situation in which no system functionality is required.”

Schritt 3: “In the concepTest, students’ gained knowledge is checked. In our example, this is represented by a
learning question of the subtype multiple choice.”

Schritt 4: “Next, the conditional execution of the lecture based on students’ previously given answers is modeled by
an OR-Fork.”

Schritt 5: “If the minority of students answers correctly, another version of the brief lecture is held. The concepTest
is afterwards repeated.”

Schritt 6: “If the majority of students answers correctly, the topic is concluded and the iteration of PI ends.”

Schritt 7: “If some students answered correctly while others did not, a peer discussion should be executed, in which
students discuss their given answers. In order to form group of students, a group builder is needed.”

Schritt 8: “An AND-Fork enables to display several elements in parallel. In our example, students can chat within
the created groups and see each others previously given answers.”

Schritt 9: “After completing the peer discussion, the concepTest is repeated.”

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 10/25

12.

13.

Wählen Sie alle zutreffenden Antworten aus.

automatisch (Timeout) mittels des Pfeils auf der Oberfläche

mittels Pfeiltasten [→]

Sonstiges:

Würden Sie in der angezeigten Version vom Overlay (Teil 2) andere Elemente zum
Beschreiben auswählen oder die Anzahl der Schritte verringern/erhöhen? *

Wie sollte man während der Präsentation des Beispielszenarios zum nächsten
Schritt übergehen? (Mehrfachauswahl möglich) *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 11/25

14.

3.2)
Initiale
Hilfe:
Decision
Tree

Nach der Auswahl des Glühbirnen-Symbols öffnet sich ein Fenster, das bei der Auswahl von
Elementen behilflich sein kann. Anhand von Fragen wird das gewünschte Element ermittelt
und anschließend zum Canvas hinzugefügt.

15.

Ergänzendes Feedback zum Overlay

Würden Sie in der angezeigten Version vom Decision Tree etwas ändern? *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 12/25

16.

3.3) Initiale
Hilfe:
Reminder-
Nachrichten

Um den Nutzer während der Erstellung eines Szenarios zu unterstützen, könnten kurze
Nachrichten zu bestimmten Zeitpunkten eingeblendet werden. Das Klicken auf sie
würde eine adäquate Aktion hervorrufen.

17.

Könnten Sie sich vorstellen, dass der Decision Tree in Zukunft durch einen
vorschlagsbasierten, interaktiven Suchdialog ersetzt wird? Welche Vor- und Nachteile
sehen Sie hierbei? *

Haben Sie Änderungsvorschläge oder Ideen für andere Nachrichten? *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 13/25

18.

Markieren Sie nur ein Oval.

Sonstiges:

Option 1

Option 2

Option 3

4)
Unterstützung
bei der
Erstellung
komplexer
Workflows

In diesem Abschnitt präsentieren wir Ihnen einige Vorschläge, die die Erstellung von
und den Umgang mit komplexen Workflows vereinfachen sollen. Der Fokus liegt
hierbei auf Mechanismen, die den Import und Export von Workflows erlauben sowie
die Visualisierung und Einbettung importierter Workflow-Inhalte.

Bitte beantworten Sie die jeweiligen Frage-Blöcke, sobald Sie auf den
Präsentationsfolien darauf hingewiesen werden.

4.1) Speichern /
Exportieren
von Templates

Um bestehende Workflows abzuspeichern und zur Wiederverwendung zur
Verfügung stellen zu können, wird ein Speichern/Export-Feature benötigt, das im
Folgenden skizziert wird.

Wie sollte die Markierung von jeweiligen Blöcken aussehen? *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 14/25

Speichern

Exportieren

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 15/25

19.

Markieren Sie nur ein Oval.

Stimme nicht zu

1 2 3 4 5

Stimme voll zu

20.

Markieren Sie nur ein Oval pro Zeile.

21.

Markieren Sie nur ein Oval.

Ja

Nein

Die Darstellung einer Vorschau des zu speichernden / exportierenden Workflows
empfinde ich als sinnvoll. *

Bitte beantworten Sie die folgenden Fragen zum Category-Selector. *

Stimme gar
nicht zu.

Stimme eher
nicht zu.

Weder
noch.

Stimme
eher zu.

Stimme
voll zu.

Ich empfinde den Category-
Selector als angemessenes
Bedienelement um
Workflow-Komponenten
Kategorien zuzuordnen.

Die Darstellung des
Category-Selector
erscheinen mir intuitiv.

Die Platzierung des
Category-Selector
empfinde ich als sinnvoll.

Ich empfinde den Category-
Selector als angemessenes
Bedienelement um
Workflow-Komponenten
Kategorien zuzuordnen.

Die Darstellung des
Category-Selector
erscheinen mir intuitiv.

Die Platzierung des
Category-Selector
empfinde ich als sinnvoll.

Das Speichern/Export-Feature bietet die Möglichkeit, alle Funktionsblöcke vor der
Aktion in ihre abstrakte Form zu überführen. Halten Sie diese Option für sinnvoll? *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 16/25

22.

23.

4.2)
Import
von
Templates

Es soll ein Import-Mechanismus zur Verfügung gestellt werden, der es erlaubt, komplexe
Komponenten mit wenig Aufwand wiederverwenden zu können. Im Folgenden wird der
nächste Verfeinerungsschritt einers bereits existierenden Ansatzes vorgestellt.

Begründen Sie bitte Ihre Antwort. *

Welche weiteren Funktionen würden Sie im Speichern/Export-Dialog erwarten?

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 17/25

Workflow Import - Variante "Preview Cards"

24.

Markieren Sie nur ein Oval.

Stimme nicht zu.

1 2 3 4 5

Stimme voll zu.

Die Informationen im Import-Dialog werden geordnet und intuitiv dargestellt. *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 18/25

25.

Markieren Sie nur ein Oval pro Zeile.

26.

Markieren Sie nur ein Oval pro Zeile.

27.

Bitte beantworten Sie folgende die Sidebar betreffenden Fragen. *

Stimme gar
nicht zu.

Stimme eher
nicht zu.

Weder
noch.

Stimme
eher zu.

Stimme
voll zu.

Das Filtern nach Kategorien
über die Sidebar durch
Mehrfachauswahl
empfinde ich als sinnvoll.

Die farbliche Gestaltung
und das Layout der Sidebar
empfinde ich als intuitiv.

Das Filtern nach Kategorien
über die Sidebar durch
Mehrfachauswahl
empfinde ich als sinnvoll.

Die farbliche Gestaltung
und das Layout der Sidebar
empfinde ich als intuitiv.

Die Platzierung und farbliche Gestaltung der Aktions-Buttons (Import From File
System, Add To Model, Replace Model) empfinde ich als angemessen und intuitiv. *

Stimme gar
nicht zu.

Stimme eher
nicht zu.

Weder
noch.

Stimme
eher zu.

Stimme
voll zu.

Import From File
System

Add To Model

Replace Model

Import From File
System

Add To Model

Replace Model

Welche der vorgeschlagenen Bedienelemente empfinden Sie als unintuitiv oder
störend?

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 19/25

28.

Markieren Sie nur ein Oval.

Stimme nicht zu.

1 2 3 4 5

Stimme voll zu.

29.

4.3) Visualisierung
importierter Elemente

Im Folgenden werden drei verschiedene Ansätze zur Visualisierung und
Einbettung importierter Inhalte skizziert.

Reduzierte Ansicht der importierten Komponente "Peer Instruction"

Der geplante Arbeitsablauf zum Hinzufügen/Importieren von Workflow-
Komponenten zu bestehenden Workflows ist intuitiv und einfach gestaltet. *

Welche Verbesserungsvorschläge haben Sie?

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 20/25

30.

Markieren Sie nur ein Oval.

Stimme nicht zu.

1 2 3 4 5

Stimme voll zu.

Editieren eingebetteter Komponenten

31.

Markieren Sie nur ein Oval.

Stimme nicht zu.

1 2 3 4 5

Stimme voll zu.

Die reduzierte Ansicht für Workflow-Elemente wird auf eine intuitive Art
visualisiert. *

Die Art und Weise wie importierte, eingebettete Workflow-Elemente editiert
werden können empfinde ich als intuitiv. *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 21/25

Expandieren eingebetteter Komponenten

32.

Markieren Sie nur ein Oval.

Stimme nicht zu.

1 2 3 4 5

Stimme voll zu.

Die Art und Weise wie die reduzierte Ansicht von Workflow-Elementen expandiert
werden können empfinde ich als intuitiv. *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 22/25

Integrieren eingebetteter Komponenten

33.

Markieren Sie nur ein Oval.

Stimme nicht zu.

1 2 3 4 5

Stimme voll zu.

Die Art und Weise wie Komponenten in bestehende Workflow-Diagramme
integriert werden können empfinde ich als intuitiv. *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 23/25

34.

Markieren Sie nur ein Oval pro Zeile.

35.

4.4) Konstruktion
zusammenhängender
Elemente

Die Konstruktion zusammenhängender Elemente wie paralleler Flows
soll optimiert werden. Ein Ansatz hierzu wird im Folgenden skizziert.

36.

Markieren Sie nur ein Oval.

Stimme nicht zu.

1 2 3 4 5

Stimme voll zu.

Bitte schätzen Sie die Nützlichkeit der im Context-Menu angebotenen Optionen
ein.

Sehr
überflüssig.

Eher
überflüssig.

Weder
noch.

Eher
nützlich.

Sehr
nützlich.

Edit

Expand

Integrate

Edit

Expand

Integrate

Welche Verbesserungsvorschläge haben Sie?

Eine Funktion zur Erstellung mehrerer paralleler Funktionsblöcke, die über den
AND-Block verknüpft sind, empfinde ich als sinnvoll. *

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 24/25

37.

Sonstiges:

Wählen Sie alle zutreffenden Antworten aus.

OR (Konditionaler Block)

Zusammenängende Gruppenblöcke

Sequentielle Anordnung mehrerer Fragen

38.

Markieren Sie nur ein Oval.

sehr unintuitiv.

1 2 3 4 5

sehr intuitiv.

39.

Vielen Dank für Ihre Teilnahme
Wir bedanken uns vielmals, dass Sie erfolgreich an dieser Evaluation teilgenommen haben. Bitte vergessen Sie
nicht, den Evaluationsfragebogen anschließend abzusenden.

Dieser Inhalt wurde nicht von Google erstellt und wird von Google auch nicht unterstützt.

Für welche weiteren Funktionsblöcke von stARS wünschen Sie sich einen
Assistenten für die Erstellung zusammenhängender Komponenten? *

Die Anordnung der Informationen im Create-Connected-Components-Dialog
empfinde ich als... *

Welche Verbesserungsvorschläge haben Sie?

 Formulare

2/15/2021 Umfrage für die Evaluation von stARS

https://docs.google.com/forms/d/1wc4wrM-KnsdZbl9_6QA0ZcEfiCOOnlKrBdpaVeTttI8/edit 25/25

B. Evaluation: Modeling Task
Sample Solutions

141

Ta
sk

 2
:

Th
re

e
Q

ue
st

io
n

Ro
un

ds

Ta
sk

 3
:

Va
ri

at
io

n
of

 e
m

be
dd

ed
 s

tr
uc

tu
re

s

Fi
gu
re

B.
1.
:S
am

pl
e
so
lu
tio

n
m
od

el
s
fo
rT
as
k
2
an
d
Ta
sk

3.
In
Ta
sk

2,
th
e
qu

es
tio

n
ro
un

d
te
m
pl
at
e
w
as

re
-u
se
d
th
re
e
tim

es
.I
n
Ta
sk

3,
th
e
st
ru
ct
ur
e

of
th
e
se
co
nd

qu
es
tio

n
ro
un

d
w
as

al
te
re
d
to

co
nt
ai
n
tw
o
ad
di
tio

na
lq
ue
st
io
ns
.

143

Task 4:
Integration of em

bedded structures

Figure
B.2.:Sam

ple
solution

m
odelforTask

4.In
Task

4,the
three

question
rounds

w
ere

integrated
into

the
restofthe

m
odel.The

resultis
a
flat

m
odelofthree

consecutive
question

rounds.

144 B. Evaluation: Modeling Task Sample Solutions

C. Evaluation Questionnaire

145

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 1/14

Fragen zur bisherigen
Erfahrung mit stARS

Bitte beantworten Sie zunächst einige Fragen bezüglich Ihrer
Erfahrung im Umgang mit stARS.

Umfrage für die Abschlussevaluation der
Masterarbeit „Unterstützung von
Lehrenden bei der Erstellung komplexer
Lernszenarien in Audience Response
Systemen“
Sehr geehrte Damen und Herren,

vielen Dank, dass Sie sich die Zeit nehmen, um an der Evaluation von stARS (scenario-tailored
Audience Response System) im Rahmen meiner Masterarbeit

„Unterstützung von Lehrenden bei der Erstellung komplexer Lernszenarien in Audience
Response Systemen“

teilzunehmen.

Sie wurden ausgewählt, an dieser Evaluation teilzunehmen, da Sie in der Vergangenheit
bereits an einer Evaluation zur Konzeptfindung für die Erweiterung von stARS wertvolles
Feedback abgegeben haben.
Damals wurden durch mich neben anderen Vorschlägen folgende Features vorgestellt und
durch Sie bewertet:

- Erstellung von Templates
- Import/Load Dialog und Template Repository
- Export/Save Dialog für Templates
- Support für eingebettete Elemente
- Darstellung eingebetteter Elemente durch Tabs

In den folgenden rund 30 - 45 Minuten werden Sie eine Erweiterung des stARS-Editors testen,
die den oben genannten Funktionsumfang zur Verfügung stellt. Ich bitte Sie hierbei um Ihr
Feedback und Ihre ehrliche Meinung zur Umsetzung der genannten Features.

Ich möchte Sie darauf hinweisen, dass es bei der Evaluation keine richtigen oder falschen
Antworten gibt. Sofern Unklarheiten bei der Evaluation auftreten, fragen Sie bitte jederzeit
nach.

* Erforderlich

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 2/14

1.

Markieren Sie nur ein Oval.

Die Benutzeroberfläche ist mir sehr fremd.

1 2 3 4 5

Die Benutzeroberfläche ist mir sehr vertraut.

2.

Markieren Sie nur ein Oval.

Die Anwendung ist mir sehr fremd.

1 2 3 4 5

Die Anwendung ist mir sehr vertraut.

Drei Fragerunden, modelliert mithilfe von stARS

3.

Markieren Sie nur ein Oval.

sehr unsicher.

1 2 3 4 5

sehr zuversichtlich.

Teil 2: Benutzung des
stARS-Editors zur
Erstellung eines
komplexen
Lernszenarios

Im diesem Teil der Evaluation bitte ich Sie darum, den stARS-Editor zu
benutzen um ein vorgegebenes Szenario zu modellieren. Zur besseren
Einschätzung der Benutzbarkeit bitte ich Sie, Ihren Bildschirm mit mir zu
teilen.

Wie vertraut sind Sie mit der Benutzeroberfläche des stARS-Editors? *

Wie vertraut sind Sie mit der Bedienung des stARS-Editors? *

Wie zuversichtlich sind Sie, die oben abgebildete Struktur „Drei Fragerunden“
mithilfe von stARS modellieren zu können? *

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 3/14

Bitte navigieren Sie zu nachfolgender URL und loggen Sie sich als Lehrender ein.
Nutzen Sie dazu die unten stehenden Zugangsdaten. Öffnen Sie anschließend das
Fenster zur Modellierung eines neuen Szenarios.
https://stars-project.com/
Benutzername: evaluation
Passwort: evaluation

Aufgabe 1:
Erstellung des
Templates
„Fragerunde“

In dieser Aufgabe sollen die Möglichkeiten zur Erstellung eines Templates
durch Sie getestet werden. Beurteilen Sie bitte anschließend, ob Ihre
Erwartungen an das System erfüllt wurden.

Template „Fragerunde“

Aufgabe 1: Erstellung des Templates „Fragerunde”
1a) Erstellen Sie mithilfe des stARS-Editors die oben abgebildete Struktur. Versuchen Sie diese mittels geeigneter
Blöcke in stARS abzubilden.

1b) Speichern Sie ihr erstelltes Modell als Template. Vergeben Sie einen Namen und optional eine Beschreibung
und erstellen Sie ebenfalls eine neue Kategorie namens „Meine Fragerunden” für Ihr Template. Setzen Sie
außerdem alle Funktionsblockeigenschaften zurück und konvertieren Sie alle Funktionsblöcke in ihre abstrakte
Form.

4.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

Die Gestaltung und Visualisierung des Save/Export Dialog entspricht den
Erwartungen, die ich nach der ersten Evaluation hatte. *

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 4/14

5.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

6.

Markieren Sie nur ein Oval.

sehr unintuitiv.

1 2 3 4 5

sehr intuitiv.

7.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

8.

Markieren Sie nur ein Oval.

besonders schwer.

1 2 3 4 5

besonders leicht.

Die Möglichkeiten zur Anreicherung von Templates mit Zusatzinformationen (Name,
Beschreibung und Kategorien) entsprechen meinen Erwartungen. *

Die Bedienung der UI-Elemente, die für das Erstellen von Kategorien zu nutzen sind,
war für mich... *

Die Art und Weise wie die Optionen für das Zurücksetzen von
Funktionsblockattributen und das Überführen in abstrakte Funktionsblöcke zur
Verfügung gestellt werden entspricht meinen Erwartungen. *

Die Aufgabe mithilfe der von der Implementierung zur Verfügung gestellten
Werkzeuge zu lösen fiel mir... *

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 5/14

9.

Markieren Sie nur ein Oval.

sehr unzufrieden.

1 2 3 4 5

sehr zufrieden.

10.

Aufgabe 2:
Erstellung
des Modells
„Drei
Fragerunden“

In dieser Aufgabe liegt der Fokus auf der Komposition komplexer Modelle aus
existierenden Bausteinen.

Das Template „Fragerunde“, welches in der ersten Aufgabe erstellt wurde, wird nun
wiederverwendet, um das Modell „Drei Fragerunden“ zu erstellen. Hierbei werden Sie
neue Features nutzen, die es erlauben, bestehende Templates miteinander zu
komplexeren Modellen zu verknüpfen.

Bitte lösen Sie die folgende Aufgabe und bewerten Sie anschließend die Umsetzung
im Hinblick auf die vergangene Evaluation.

Aufgabe 2: Erstellung des Modells „Drei Fragerunden“

Aufgabe 2: Modellkomposition
Das Template „Fragerunde“, welches in der ersten Aufgabe erstellt wurde, wird nun wiederverwendet, um das
Modell „Drei Fragerunden“ zu erstellen. Hierbei werden Sie neue Features nutzen, die es erlauben, bestehende
Templates miteinander zu komplexeren Modellen zu verknüpfen.

2a) Setzen Sie den Modellierungscanvas zurück.

Ziel der nächsten Teilaufgabe ist es durch Nutzung des Templates, welches Sie in Aufgabe 1 erstellt haben, die
oben dargestellte Modellstruktur zu erstellen. Bitte gehen Sie, um den Test verschiedener Features zu ermöglichen,
bei der nächsten Aufgabe folgendermaßen vor:

2b) Importieren Sie zweimal das von Ihnen erstellte Template in die Zeichenfläche. Versuchen Sie, die dritte
Fragerunde durch Duplizieren einer anderen Fragerunde zu erstellen. Versuchen Sie dann, die fehlenden
Verbindungen und Elemente im Modell zu ergänzen.

Wie zufrieden waren Sie mit dem Arbeitsablauf und dem Endergebnis dieser
Aufgabe? *

Sonstige Ergänzungen:

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 6/14

11.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

12.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

13.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

14.

Markieren Sie nur ein Oval.

sehr unintuitiv.

1 2 3 4 5

sehr intuitiv.

Die Gestaltung und Visualisierung des Import/Load Dialog entspricht den
Erwartungen, die ich nach der ersten Evaluation hatte. *

Das Verhalten der Bedienelemente im Import/Load Dialog entspricht meinen
Erwartungen. *

Ich konnte mithilfe des Import/Load Dialog sehr schnell das Template finden, nach
dem ich gesucht habe. *

Das Verhalten der „Add To Model“ Funktion empfinde ich als... *

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 7/14

Vorschlag für Illustration zur Erklärung der „Add To Model“ Funktion

15.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

16.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

In Bezug auf obige Abbildung: Eine erklärende Visualisierung für die Add To Model
Funktion hätte mir beim Verständnis dieser Funktion geholfen. *

Die Visualisierung eingebetteter Templates ist gelungen und entspricht meinen
Erwartungen. *

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 8/14

17.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

18.

Markieren Sie nur ein Oval.

besonders schwer.

1 2 3 4 5

besonders leicht.

19.

Markieren Sie nur ein Oval.

sehr unzufrieden.

1 2 3 4 5

sehr zufrieden.

20.

Aufgabe 3:
Variation des
Modells „Drei
Fragerunden“

Im vorherigen Abschnitt haben Sie drei Fragerunden miteinander verbunden und
ein valides Modell erstellt. Nun geht es darum, die einzelnen Fragerunden auf
individuelle Bedürfnisse anzupassen.

Bitte lösen Sie die folgende Aufgabe und bewerten Sie anschließend die
Umsetzung im Hinblick auf die vergangene Evaluation.

Der Umgang mit eingebetteten Elementen (Verschieben, Verbinden, Duplizieren)
gestaltete sich für mich als einfach. *

Die Aufgabe mithilfe der von der Implementierung zur Verfügung gestellten
Werkzeuge zu lösen fiel mir... *

Wie zufrieden waren Sie mit dem Arbeitsablauf und dem Endergebnis dieser
Aufgabe? *

Sonstige Ergänzungen:

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 9/14

Aufgabe 3: Variation des Modells „Drei Fragerunden“

Aufgabe 3: Variation eingebetteter Modellbestandteile
3a) Formulieren Sie beispielhaft für zwei bis drei der Fragen in Ihrem Modell Frage- und Antwortmöglichkeiten.
Ändern Sie außerdem den Fragetyp für zwei bis drei Fragen Ihrer Wahl.

3b) Versuchen Sie für die folgende Aufgabe mit einer isolierten Ansicht für die zweite Fragerunde zu arbeiten:
Ändern Sie bitte die Struktur der mittleren Fragerunde: Fügen Sie eine Single-Choice- und eine Multiple-Choice-
Lernfrage hinzu.

3c) Stellen Sie nun eine kompaktere Modellvisualisierung für die dritte Fragerunde her. Versuchen Sie, diese
Fragerunde einzuklappen/zu minimieren.

21.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

22.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

Die angebotenen Tools zur Modifikation von eingebetteten Templates entsprechen
meinen Erwartungen. *

Die Gestaltung und Visualisierung der Tabs für eingebettete Templates entspricht
den Erwartungen, die ich nach der ersten Evaluation hatte. *

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 10/14

23.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

24.

Markieren Sie nur ein Oval.

sehr unintuitiv.

1 2 3 4 5

sehr intuitiv.

25.

Markieren Sie nur ein Oval.

besonders schwer.

1 2 3 4 5

besonders leicht.

26.

Markieren Sie nur ein Oval.

sehr unzufrieden.

1 2 3 4 5

sehr zufrieden.

Ich hatte keine Probleme damit, in eine isolierte Modellansicht für eine der
Fragenrunden zu wechseln. *

Wie eingebettete Templates minimiert und expandiert werden können, empfinde
ich als... *

Die Aufgabe mithilfe der von der Implementierung zur Verfügung gestellten
Werkzeuge zu lösen fiel mir... *

Wie zufrieden waren Sie mit dem Arbeitsablauf und dem Endergebnis dieser
Aufgabe? *

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 11/14

27.

Aufgabe 4:
Finalisierung
des
Templates
„Drei
Fragerunden“

Im vorherigen Abschnitt haben Sie die Anpassungsmöglichkeiten für eingebettete
Templates genutzt, um die Fragerunden variieren zu lassen. In dieser Aufgabe geht
es darum, das Modell endgültig in die geforderte Form zu überführen. Des Weiteren
sollen die Funktionen zum Austausch von Templates zwischen Kollegen durch Sie
getestet werden.

Bitte lösen Sie die folgende Aufgabe und bewerten Sie anschließend die Umsetzung
im Hinblick auf die vergangene Evaluation.

Aufgabe 4: Finalisierung des Templates „Drei Fragerunden“

Aufgabe 4: Finalisierung des Templates „Drei Fragerunden“
4a) Integrieren Sie nun nacheinander alle drei Fragerunden in den Rest des Modells. Der Begriff „Integrieren“ meint
hierbei das Auflösen der Eltern-Kind-Relation von eingebetteten Modellen.

Die folgenden Arbeitsschritte sollen nun beispielhaft einen denkbaren Ablauf illustrieren, der das Teilen von
Templates mit Kollegen zum Thema hat.

4b) Versetzen Sie sich zunächst in die Lage einer Lehrperson, die ein Template für das Modell „Drei Fragerunden“
einem Kollegen zur Verfügung stellen möchte. Dieser Vorgang soll in Form eines Dateiaustausches stattfinden.
Versuchen Sie zunächst, das Template herunterzuladen. Exportieren Sie hierzu das Template als .bpmn-Datei und
speichern Sie es auf Ihrem Computer.

4c) Versetzen Sie sich nun bitte in die Lage einer Lehrperson, die von einem durch einen Kollegen zur Verfügung
gestellten Template profitieren möchte. Sie haben dieses Template beispielsweise per Mail erhalten. Versuchen
Sie, das im vorangegangenen Schritt exportierte Template nun in die Zeichenfläche von stARS zu importieren.

Die letzte Teilaufgabe soll abschließend einige Features zum Löschen von Templates und Kategorien evaluieren.

4d) Versuchen Sie, das Template „Drei Fragerunden“ wieder zu löschen. Versuchen Sie außerdem, die Kategorie
„Meine Fragerunden“ zu löschen, die Sie in der ersten Aufgabe erstellt haben.

Sonstige Ergänzungen:

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 12/14

28.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

29.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

30.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

31.

Markieren Sie nur ein Oval.

sehr unintuitiv.

1 2 3 4 5

sehr intuitiv.

32.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

Die Umsetzung der Integrationsfunktion für eingebettete Modellbestandteile
entspricht meinen Erwartungen. *

Ich habe den Button zum Integrieren von eingebetteten Modellbestandteilen leicht
finden können. *

Die „Integrate Scenario“ Funktion verhält sich so, wie ich es erwarten würde. *

Den Arbeitsablauf zum Exportieren eines Modells als Template ins lokale
Dateisystem empfinde ich als... *

Die Implementierung der Export-Funktion entspricht den Erwartungen, die ich
nach der ersten Evaluation hatte. *

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 13/14

33.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

34.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

35.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

36.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

37.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

1 2 3 4 5

Trifft voll und ganz zu.

Mir fiel es leicht, die Funktion zum Löschen von Templates zu finden, *

Mir fiel es leicht, die Funktion zum Löschen von Kategorien zu finden, *

Mir fiel es schwer, die Funktion für das Importieren eines Templates aus dem
lokalen Dateisystem zu finden. *

Die Implementierung der Import-From-File-System Funktion entspricht den
Erwartungen, die ich nach der ersten Evaluation hatte. *

Die Vorschau für ein ausgewähltes, vom Dateisystem zu importierendes Template
entspricht meinen Erwartungen. *

2/15/2021 Umfrage für die Abschlussevaluation der Masterarbeit „Unterstützung von Lehrenden bei der Erstellung komplexer Ler…

https://docs.google.com/forms/d/104P-NEgo_B3qPHvSd3e77cDxv5WQRo3BX5G58VtjTAE/edit 14/14

38.

Markieren Sie nur ein Oval.

besonders schwer.

1 2 3 4 5

besonders leicht.

39.

Markieren Sie nur ein Oval.

sehr unzufrieden.

1 2 3 4 5

sehr zufrieden.

40.

Vielen Dank für Ihre Teilnahme!
Ich bedanke mich bei Ihnen für Ihre erfolgreiche Teilname an dieser Evaluation. Bitte vergessen Sie nicht, die
Antworten Ihrer Evaluation abzuschicken.

Dieser Inhalt wurde nicht von Google erstellt und wird von Google auch nicht unterstützt.

Die Aufgabe mithilfe der von der Implementierung zur Verfügung gestellten
Werkzeuge zu lösen fiel mir... *

Wie zufrieden waren Sie mit dem Arbeitsablauf und dem Endergebnis dieser
Aufgabe? *

Sonstige Ergänzungen:

 Formulare

	Title page
	Abstract
	Contents
	Introduction
	Motivation
	Objectives
	Structure

	Fundamentals
	Audience Response Systems
	Workflow Modeling
	Graphical Modeling Tools
	Didactic Strategies
	User Interface Engineering

	State of the Art
	Other Audience Response Systems
	stARS: scenario-tailored Audience Response System
	The stARS Web Editor
	Graphical Modeling Tools
	Problems and Drawbacks of the stARS web editor
	Requirements Analysis

	Concept
	Methodology
	Saving and Exporting Templates
	Loading and Importing Workflows
	Nested and Embedded Model Structures
	Wizard for Parallel Connected Components
	Summary

	Implementation
	Tech Stack
	General Approach
	BPMN Schema and Data Transformations
	Compatibility with the stARS Execution Engine
	Patching Frameworks and Libraries
	UI Concept Changes
	Open Issues
	Summary

	Evaluation
	Methodology
	Task Design
	Open Feedback and Improvement Suggestions
	Summary

	Conclusion
	Summary and Results
	Future Work

	Pre-Evaluation Questionnaire
	Evaluation: Modeling Task Sample Solutions
	Evaluation Questionnaire

