
Temporal Constraints for Rule-Based Event Processing

Karen Walzer
SAP AG

SAP Research CEC Dresden
Chemnitzer Strasse 48

01187 Dresden, Germany
Karen.Walzer@sap.com

Alexander Schill
Chair of Computer Networks
Dept. of Computer Science

University of Technology
Helmholtzstr. 10

01062 Dresden, Germany
Alexander.Schill@tu-

dresden.de

Alexander Löser
SAP AG

SAP Research CEC Dresden
Chemnitzer Strasse 48

01187 Dresden, Germany
Alexander.Loeser@sap.com

ABSTRACT
Complex event processing (CEP) is an important technol-
ogy for event-driven systems with a broad application space
ranging from supply chain management for RFID, systems
monitoring, and stock market analysis to news services. The
purpose of CEP is the identification of patterns of events
with logical, temporal or causal relationships out of single
occurring events.

The Rete algorithm is commonly used in rule-based sys-
tems to trigger certain actions if a corresponding rule holds.
It allows for a high number of rules and is therefore ideally
suited for event processing systems.

However, traditional Rete networks are limited to oper-
ations such as unification and the extraction of predicates
from a knowledge base. There is no support for temporal
operators.

We propose an extension of the Rete algorithm for support
of temporal operators. Thereby, we are using interval time
semantics. We present the issues created by this extension
as well as our pursued methodology to address them.

Categories and Subject Descriptors
D.1.6 [Software]: Logic Programming

General Terms
Algorithms

Keywords
Rete Algorithm, Event, Temporal, Rule-based

1. INTRODUCTION
Complex event processing (CEP) is the technology used to

perform the detection of complex events consisting of combi-
nations of single events. Complex event detection is the pro-
cess of identifying patterns of events with logical, temporal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PIKM’07, November 9, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-832-9/07/0011 ...$5.00.

or causal relationships out of the single event occurrences.
A description language is used to specify the patterns of
interest. This specification is also called subscription to a
complex event. On the occurrence of the specified event pat-
tern, an action such as the creation of a new event or the
execution of certain function is performed.

CEP is an important component of current information-
systems with possible application in supply chain manage-
ment for RFID (Radio Frequency Identification), real-time
stock trading and systems monitoring [31]. A growing num-
ber of companies are developing products in this space and
many designs have been proposed for complex event pro-
cessing systems, e.g. [23], [32], [26], [8].

The detection of complex events is difficult, since it re-
quires a representation of the single events with the relations
between them as well as the recording of the current state
of a complex event, i.e. if a partial complex event has been
detected it needs to be kept in storage until other events
occur to complete it.

Complex event detection can be performed using differ-
ent methods to represent the participating single events, the
used operators and the state of detection, e.g. finite state
automata [14], [27], colored Petri nets [13] or tree-based ap-
proaches [6] have been used in the past.

Time operators are not always supported in CEP systems.
Current systems often only offer simple temporal conditions,
e.g. the checking of a timestamp of a single event or the
calculation of the duration between single events. If they
exist, temporal conditions are rarely made explicit, but often
hard-coded in the system and difficult to determine [33].

Data Stream Management Systems (DSMS) are a power-
ful alternative to traditional complex event processing sys-
tems, since they present an efficient means of detecting pat-
terns in data streams [18]. They provide extensive temporal
support offering sliding window operators as well as opera-
tions for evaluating timestamps or calculating duration, e.g.
confer to [2].

However, traditional DSMS are not designed for event
monitoring. It is possible to express event patterns, but
the resulting queries are often difficult to optimize. Further-
more, in complex event processing, there is a large number
of concurrent subscriptions that the event processing system
has to deal with. But DSMS only support a small number
of concurrent queries [9].

Pattern matching algorithms used in expert systems such
as the Rete algorithm [11] are traditionally used to detect a

high number of predicates (subscriptions). The efficiency of
the Rete algorithm is independent of the number of rules1

it contains, it is therefore ideally suited to process a high
number of subscriptions for complex events.

Li and Jacobsen [19] first proposed using Rete for com-
plex event detection. They showed that a rule-based event
detection engine is very efficient and suitable for large scale
publish/subscribe systems, matching a publication against
200,000 subscriptions in just 4.52ms in their system Padres.

Traditionally, Rete does not support temporal operators,
but is limited to operations such as unification and predicate
extraction [22]. However, a simple matching using compar-
isons with timestamp attribute values is possible. Exten-
sions of the algorithm to allow for timeouts of operations
have been suggested [3], however sophisticated temporal op-
erators, e.g. for sliding windows, were not regarded so far.

1.1 Contributions
This thesis presents methods to extend the Rete algorithm

with temporal operators for complex event detection. The
focus is on the integration of a sliding windows operator in
Rete. The developed concepts will be realized and evaluated
in a prototype.

The main contributions of the thesis are:

• A flexible event-model is defined which is well suited
for simple and complex events occurring in the field of
business activity monitoring and in the manufacturing
environment.

• The theoretical foundation of the temporal operators,
esp. the sliding window operator, as well as efficient
algorithms to realize these operators are outlined.

• The Rete algorithm is extended to be suitable for tem-
poral event detection and an existing restricted de-
scription language is enriched with the necessary con-
structs to specify the temporal complex events.

• An efficient matching algorithm extending the Rete
algorithm with sliding windows is developed. The al-
gorithm supports interval-based event semantics and
an automatic transformation from the description lan-
guage into the respective Rete network.

1.2 Outline
The thesis proposal is structured as follows: We start with

an introduction of the used terms in Section 2. This is fol-
lowed by the presentation of a motivating example for our
work in section 3. Then, we state the problems related to
sliding window support in the Rete algorithm. Section 5 pro-
poses our solution and discusses the possibilities to approach
it. Finally, section 6 describes related work and section 7
summarizes the paper.

2. TERMS AND DEFINITIONS
Events signify a state change of a system. Complex events

are logical, causal or temporal combinations of single events
[20]. They are also referred to as event composition or com-
posite event, since they aggregate single events.

1A rule defines a predicate and the action that should take
place, if the predicate holds. This corresponds to defining a
complex event and executing an action, if the complex event
is detected.

Typical examples for operators and predicates used to
combine the single events are [33]:

• logical operators: conjunction, disjunction, negation

• relative and absolute timing predicates: before (events
occurring before a certain time frame), after (events
occurring after a certain time frame), sequence (events
occurring after each other), concurrency (events occur-
ring at the same time), time boundaries (events occur
within a certain time frame, e.g. a sliding time bound-
ary)

• data predicates: comparison operators, e.g. ≤,≥, 6=;
aggregation operations, e.g. min, max, avg, sum; arith-
metical operations, e.g. +,−, ∗

We adapt the notion of [18] for sliding windows. Our
sliding window operator assigns a validity for a sequence of
events based on a given time frame. A window size ω is
defined. Then each element in the event sequence is valid
for ω time units starting from the start of its corresponding
validity frame.

3. MOTIVATION: FRIDGE COMPANY
In the following section, we present a supply chain sce-

nario using RFID technology to show the relevance of sliding
window support for a CEP system.

Today companies produce Just In Time (JIT) and Just
In Sequence (JIS) to reduce their inventory and its associ-
ated costs. This increases dependence of the companies on
the timely delivery of their suppliers which creates the need
to respond immediately to arising problems. Nevertheless,
existing production systems often lack the required trans-
parency to identify risks early on, since problem detection
and solution are manual processes.

RFID technology uses radio-frequency waves to commu-
nicate between readers and tagged objects. It allows for
more automation and visibility than traditional identifica-
tion technologies like the barcode, since it requires no line
of sight between readers and tagged objects. Furthermore,
it allows for bulk reading, thus offering the possibility for
product-level tagging, i.e. a unique identification and track-
ing possibility for every product.

RFID data are time-dependent, they change dynamically,
occur in large volumes, and carry implicit information, e.g.
the detection of a tagged pallet at a location stands for the
movement of the items that the pallet carries. Observations
such as the reading of a tag are recorded and associated
with a timestamp of their occurrence. Locations as well as
hierarchical containment relationships change over time.

In supply chain applications, RFID is used to provide
greater process transparency and efficient inventory man-
agement as well as to allow for product tracking and moni-
toring. It also reduces labor costs [29].

A sophisticated event-driven middleware can utilize RFID
technology in order to detect supply shortages and excep-
tional situations. On the occurrence of complex events, a
combination of RFID events and high-level business events,
the necessary actions can be automatically triggered. This
kind of middleware needs the possibility to support tem-
poral operators for complex event definition to specify the
situations that need a reaction. Fulfilling this requirement,
the middleware allows for individual event-driven monitor-
ing and control for JIT and JIS production.

Consider a fridge company producing 600 fridges in an 8
hour shift. Each fridge is equipped with an RFID tag. RFID
readers are installed at the end of the assembly line and at
the entry of the storage area in the company. The produc-
tion manager is responsible for supervising the correct and
on-time manufacturing of fridges. He wants to get automat-
ically informed, if the amount of produced fridges in a time
window of half an hour is below a certain threshold, e.g. 70.
His business activity monitoring (BAM) software should in-
form him of this incident by sending him a message. This is
achieved by defining the following rule:

”If the sum of all occurring read events at the
assembly line is smaller than 75 over the last 30
minutes, then send a message to the production
manager.”

This simple example illustrates how useful the support of
a window operator is during event detection. A definition
language for complex events should offer the possibility to
express these kind of rules.

4. PROBLEM STATEMENT
The following section describes the occurring problems

that the thesis addresses. First, the necessary extensions
for the Rete algorithm to support complex event processing
are briefly explained. Then, the problem of supporting tem-
poral operators in Rete is outlined, focusing on the sliding
window operator.

4.1 Rete for complex event processing
By default, the Rete algorithm considers a fact base and

realizes rules which trigger certain action like a change of
the fact base. It needs to be extended in order to react to
events and to be able to trigger new events when actions are
executed. Furthermore, the Rete algorithm is designed for
high speed, but suffers from a high memory usage due to
the creation of possibly large Rete networks.

It needs to be extended to only consider the occurring in-
put coming from events and to discard events after a certain
time span. The concept of only populating events and thus
data changes is similar to ∆-dataflow networks as suggested
by [22]. These networks only propagate changes of objects
in order to reduce the high memory consumption of the net-
works. This approach limits the major drawback of Rete,
its high memory consumption.

4.2 Sliding Windows in Rete
As stated before, the ability to detect temporal relation-

ships is an important feature of CEP systems. Furthermore,
detecting temporal relationships also leads to the detection
of causal relationships, since a causal relationship implies
a temporal relationship according to Luckham’s cause-time
axiom [20].

As illustrated in the example, support for sliding windows
is a feature that CEP systems should offer. Even though,
there are DSMS supporting this operator, it is not desired
to always use DSMS to perform event detection, since rule-
based algorithms like Rete can be of advantage when a high
number of subscriptions is needed.

The Rete algorithm [11] is a pattern matching algorithm
traditionally used for production-based logical reasoning sys-
tems. A set of rules is defined, each containing a premise

(left-hand-side of the rule) and a set of actions. The algo-
rithm creates an acyclic network of rule premises, also called
Rete network where the nodes correspond to certain oper-
ations, e.g. a join combining two inputs. The leaves of the
network correspond actions to be triggered. Facts from a
knowledge base are propagated in a forward-chaining fash-
ion through the network to determine the satisfied premises,
consequently the actions of the rules whose premises hold are
executed, one at a time. All newly asserted facts are passed
through the network which stores the partial results in order
to detect premises which are fulfilled by the occurrence of
the new facts.

To illustrate the concept of a Rete network, figure 1 shows
a simple network for a sample rule of our fridge company.
In the fridge company, every 10 minutes, an event is cre-
ated containing the number of defect fridges recorded in that
time. The shown Rete network corresponds to the following
rule:

”If the number of defect fridges exceeds the num-
ber of three and the current production order is
finished, then inform the production manager.”

The two left hand-side nodes are the input of the net-
work, namely the event containing the number of defect
fridges and the production order finished-event. The node
with the larger-than symbol performs the test whether the
number of fridges exceeds the value three. If this is the
case, the event is passed through the node, otherwise it is
discarded. The JOIN node combines the production order
finished-event with the result of the test node. If an event
passes the test node and the production order finished-event
is passed to the JOIN node, this node forwards its informa-
tion to the end of the network which automatically triggers
the action ”send message”.

A traditional Rete network is limited to operations such as
unification and predicate extraction [22]. It does not provide
temporal operators and therefore needs to be extended to
allow for their usage.

Time windows are commonly used when only an excerpt of
data is of interest. They also limit the memory requirements
of stateful operators, e.g. in a join [15]. Therefore, means
to extend the Rete algorithm to support the sliding window
operator are needed.

However, the simple example shows already that it is not
sufficient to add another operator node in order to realize the
sliding window operator. The window operator aggregates
the information from different consecutive states of the Rete
network. This leads to the following problems to be dealt
with:

• Actions are needed to observe the future states up to
a limit given by a time window. These actions should
be automatically created.

• There is chance that an additional action influences
other networks, i.e. it can trigger another action. A
mechanism to avoid the resulting actions influencing
each other needs to be defined.

• The occurring events are equipped with a time interval
holding the beginning and the end of the action that
created the event. If the event is propagated through
the network, it needs to be determined, if the begin-
ning or the end time should be considered as limit

Figure 1: Sample Rete network

for the time window. Allen [1] identified thirteen pos-
sible combinations in which two events can occur in
relation to each other when they are allowed to over-
lap, i.e. when time interval semantics is used. Con-
sequently, the semantics of the window operator need
to be specified explicitly or different alternatives for
window definition need to be offered.

5. PROPOSED SOLUTION

5.1 Assumptions
We assume a loosely-coupled system with a global clock.

The occurrence of a complex event can be viewed as the oc-
currence of a combination of single events across distributed
systems. Lamport’s happened-before relation holds. The
single events are transmitted asynchronously to the central
CEP engine which is based on the Rete algorithm. No mes-
sages are altered or spuriously introduced. A FIFO nature
of channels is assumed.

Time is considered as an interval consisting of a start and
end point for each event. This notion follows [4] and [12].
The alternative time-point semantic where each event only
has one timestamp for its occurrence can be misleading and
lead to incorrect event detection in the case of long-lasting
events which cannot be excluded when regarding business
processes.

5.2 Event Processing in Rete
A rule-based system using the Rete algorithm is extended

to process occurring events instead by asserting them as
facts to its knowledge base. It will discard events after a
certain time span has passed when it can no longer be ex-
pected that they will occur in the near future. Furthermore,
the actions to be triggered are adapted in order to trigger
new events to be passed through the network.

5.3 Sliding Windows in Rete
It is possible to incorporate more operators into a Rete

network by extending its nodes with new capabilities.
In the past, it was shown that it is possible to include

clocks as an input node of the trigger network or as an addi-
tion to the operator nodes. Thus, one can measure certain
temporal constraints, such as the distance between the oc-
currence of two input events or the absolute time of an event
occurrence.

However, it is not possible to just add another operator
node for aggregation functions like the sliding window oper-
ator, since they rely on more than one action, i.e. they do

not rely on the current network state only, but also on past
or future states.

Figure 2 presents a simple realization of a window opera-
tor in Rete. It realizes the following rule:

”If the average of defect fridges exceeds the num-
ber of 3 in the next 5 minutes and the production
orders are finished, then send a message to the
production manager.”

The figure shows input nodes with the events to be con-
sidered on the left and actions to be triggered on the right
side. In between both are operator nodes performing joins or
testing conditions. The letters ”y” and ”n” on the edges after
condition nodes represent the evaluation of the condition to
true or false respectively.

There are four input nodes on the left side of the network.
Additional to the ”production order finished”-event and the
event containing the number of defect fridges, there is a
timer to represent the passed time and an event with an
attribute containing the average value of defect fridges.

The two upper joins check if both, the ”production or-
der finished”-event and the event with the defect fridges oc-
curred. If so and the timer is smaller than the limit of 5
minutes, the defect fridges are summed up. If the timer is
out of range, but still unequal zero, the average is calculated
by dividing the current sum of defect fridges by the number
of occurrences of the defect fridges event. The timer is set
back to zero and in the next event propagation, it is checked,
if the current average value is greater than three. If this is
the case, a message is send to the production manager to
inform him.

5.4 Validation
The main contribution of this work will be the develop-

ment of the theoretical basis for the support of temporal
operators in the Rete algorithm. The concepts will be eval-
uated by extending the rule engine JBoss Rules [17] with
the operators and the ability to detect complex events by
processing single events defined as JMS messages.

The following research approach is pursued:

Concepts and theoretical basis - current status A log-
ical description of the operators is created.

The aim is the definition of an abstract conceptual
framework containing the necessary concepts(agents)
and relations required to support the temporal com-
plex events in Rete. Furthermore, a class model, a

Figure 2: Sample Rete network with window operator realization

semantic description of the concepts and a definition
of the constraints of the concepts is achieved.

New language constructs are added to the JBoss Rules-
description language to allow for the specification of
complex events using the operators.

Extending JBoss Rules for event processing The soft-
ware JBoss Rules is extended to allow for event pro-
cessing. This means, e.g. that sample input events are
designed as well as sample transactions to be started.

Concepts and theoretical basis - algorithms The algo-
rithms to support the temporal operators, incl. the
sliding window operator, in Rete are defined. The aim
is a theoretical description of how the selected opera-
tors can be realized using the Rete algorithm.

Extending JBoss Rules with new operators A physical
description of the operators takes place, i.e. the im-
plementation of the algorithms is carried out. The
JBoss Rules description language is extended with the
temporal operators. The focus of the algorithms is as
in the Rete algorithm itself their run-time to detect a
pattern, not their memory usage. Since the number of
event producers constantly increases, performance is
an important feature for event detection systems [22].
The result is an extension of JBoss Rules to support
the temporal operators for event detection as well as
to offer the possibility to describe the corresponding
complex event subscriptions.

JBoss Rules prototype evaluation A centralized system
generating events in a predefined manner is used to
evaluate the prototype in order to demonstrate that
the event detection using the extended Rete algorithm
in JBoss Rules works. Performance and memory anal-
yses of the algorithm are carried out and the extended
algorithm is compared to an existing stream-based sys-
tem with a high number of subscriptions, e.g. Coral8.

6. RELATED WORK
This section introduces related work in the area of event

processing systems as well as temporal support in DSMS
and the Rete algorithm.

6.1 Event Processing
In the field of distributed processing of single events sub-

stantial work has been done already resulting in systems
such as SIENA [5], JEDI [7] or REBECCA [10], HERMES
[25]. A comprehensive overview of existing work is given in
[24].

6.2 Data Stream Management Systems
Complex events were first introduced in the field of ac-

tive databases where events act as triggers to start certain
database transactions.

Later, the developed concepts were applied in Stream-
ing Database systems in order to detect patterns of interest
there. In the following, suggested operators and approaches
in this field are outlined.

Bai et al. [2] propose a stream query language for tem-
poral event detection specifically for RFID data process-
ing. They suggest a sequence operator detecting specific se-
quences from multiple streams where two event tuples have
timestamps occurring after each other. They further de-
scribe sliding windows and tuple pairing modes on top of the
sequence operator. Two operators are suggested to identify
iterative events and exceptional event sequences. The work
only considers timepoints, no intervals. However, this work
can be a basis for the requirements of the extension of the
Rete algorithm.

Wang et al. [30] describe AND, OR and NOT as non-
temporal complex event constructors as well as periodic and
aperiodic sequence operators with or without time distance
constraints. Furthermore, interval-constrained events can be
specified as temporal complex event constructors. Interval-
based semantics are used, but the possibilities to express

events are limited, e.g. one cannot express the complex event
that one event started a specific time after another event
finished. Sliding windows are not supported.

In [29], a dynamic Entity Relationship (ER) model is sug-
gested as a temporal extension of the traditional ER model.
Dynamic relationships for location, containment relation-
ship or reader location changes are modeled using relational
databases. It is suggested to include lifespans (start and
end timepoint) for relationships and timestamps for event-
based dynamic relationships, e.g. observations. This is then
mapped into a relational database management system. The
model supports simple calculations using the timestamps,
e.g. the time an object needs from one location to another is
calculated by subtracting the end from the start time. More
complex temporal functions need to be user-defined, e.g. the
calculation of overlapping time-windows. The model does
not allow for any sophisticated temporal operators, but uti-
lizes standard SQL with timestamp attributes.

Krämer and Seeger [18] define a sound and well defined
temporal operator algebra including a window operator. The
logical operator algebra specifies the semantics of each op-
eration in a descriptive way over temporal multisets, while
the physical operator algebra provides adequate implemen-
tations in form of stream-to-stream operators.

6.3 Rete algorithm
It could be shown in the past that basic temporal support

can be incorporated in Rete. Related work will be outlined
in the following. However, none of the existing systems sup-
ports complex temporal operators, such as a sliding window
operator.

Teodosiu and Pollak [28] present a method to remove ob-
solete temporal facts for a rule-based language for industrial
production systems. The used Rete network is extended
with timers in order to discard events after a specified time
interval elapsed, similar to a garbage collector.

Temporal conditions are specified in the form of time in-
tervals of fixed length between discrete events containing
numerical timestamps which are derived from an internal
system clock. Only relative temporal dependencies between
events can be specified.

In [21], a traditional production system based on the Rete
algorithm is extended with temporal reasoning by storing
past and developing events in a temporal database, a so-
called time map. An interval time representation is used.
The system supports detection of events occurring during,
before or after other events. It is further possible to model
uncertain relationships. However, the semantics of the op-
erators as well as the conceptual details remain unclear. It
is not stated whether the starting or the end timepoint of
the interval are used for the before and after operators.

The Padres [19] event processing system is based on the
Rete algorithm. It can be studied as example for Rete-based
event processing.

Berstel [3] defines extensions for the Rete algorithm for
event management. The Rete algorithm is extended to in-
corporate clocks. Timestamps are used and before as after
predicates are introduced. The idea of incorporating clocks
can be reused by our extension.

Gordin and Pasik [16] describe a method to support set-
oriented methods for forward chaining rule-based systems.
The presented ideas may be used to support sliding windows
in Rete.

7. SUMMARY
Rule-based systems such as those based on the Rete algo-

rithm are ideal for the detection of a high number of complex
events, consisting of logical combinations of single events or
of events having a common context.

Traditionally, rule-based systems only offer limited sup-
port for detection of temporal constraints. The evaluation
of timestamps is possible or the calculation of a duration
between two successive events. Usage of temporal opera-
tors for data aggregation, as obtained by a sliding window
operator, is not provided.

We propose the development of an extension of the Rete
algorithm to include complex temporal operators, e.g. a
sliding window operator. We will introduce the theoretical
basis of the operators and develop algorithms to use them
with other standard operators for logical or contextual com-
bination of events.

This enhances the possibilities of complex event process-
ing with the ability to detect temporal event patterns in
order to create a temporal context for single event occur-
rences as well as to aggregate information carried by single
events.

8. ACKNOWLEDGEMENTS
We wish to acknowledge Michael Ameling and Iris Braun

for helpful comments on earlier drafts of this paper. Fur-
thermore we thank Franz Weber, Sören Balko and Harald
Schubert for the interesting discussions and the contribution
to the presented concepts. Finally, we would like to thank
Klaus Hänßgen for his support.

9. REFERENCES
[1] J. F. Allen. Towards a general theory of action and

time, volume 23. Elsevier Science Publishers Ltd.,
Essex, UK, 1984.

[2] Y. Bai, F. Wang, P. Liu, C. Zaniolo, and S. Liu. RFID
Data Processing with a Data Stream Query Language.
In ICDE, pages 1184–1193, 2007.

[3] B. Berstel. Extending the RETE Algorithm for Event
Management. In TIME ’02: Proceedings of the Ninth
International Symposium on Temporal Representation
and Reasoning (TIME’02), page 49, Washington, DC,
USA, 2002. IEEE Computer Society.

[4] F. Bry and M. Eckert. Temporal order optimizations
of incremental joins for composite event detection. In
Proceedings of Inaugural Int. Conference on
Distributed Event-Based Systems, Toronto, Canada
(20th–22nd June 2007). ACM, 2007.

[5] A. Carzaniga. Architectures for an Event Notification
Service Scalable to Wide-area Networks. PhD thesis,
Politecnico di Milano, Italy, December 1998.

[6] S. Chakravarthy and D. Mishra. Snoop: An expressive
event specification language for active databases. Data
Knowl. Eng., 14(1):1–26, 1994.

[7] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27(9):827 – 850, September
2001.

[8] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and
W. White. Towards expressive publish/subscribe

systems. In In Proceedings of the 10th International
Conference on Extending Database Technology (EDBT
2006), Munich, Germany, March 2006.

[9] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, and W. M. White. Cayuga: A general
purpose event monitoring system. In CIDR, pages
412–422, 2007.

[10] L. Fiege, G. Mühl, and F. C. Gärtner. A modular
approach to build structured event-based systems. In
Proceedings of the 2002 ACM symposium on Applied
computing, pages 385 – 392, Madrid, Spain, 2002.

[11] C. Forgy. Rete: A fast algorithm for the many
patterns/many objects match problem. Artif. Intell.,
19(1):17–37, 1982.

[12] A. Galton and J. Augusto. Two approaches to event
definition. In Lecture Notes In Computer Science.
Proceedings of the 13th International Conference on
Database and Expert Systems Applications, volume
2453, pages 547 – 556, 2002.

[13] S. Gatziu, A. Geppert, and K. R. Dittrich. The
SAMOS active DBMS prototype. In SIGMOD ’95:
Proceedings of the 1995 ACM SIGMOD international
conference on Management of data, page 480, New
York, NY, USA, 1995. ACM Press.

[14] N. H. Gehani, H. V. Jagadish, and O. Shmueli.
Composite event specification in active databases:
Model & implementation. In VLDB ’92: Proceedings
of the 18th International Conference on Very Large
Data Bases, pages 327–338, San Francisco, CA, USA,
1992. Morgan Kaufmann Publishers Inc.

[15] L. Golab and M. T. Özsu. Issues in data stream
management. In SIGMOD Record, volume 32, pages
5–14, New York, NY, USA, June 2003. ACM Press.

[16] D. N. Gordin and A. J. Pasik. Set-oriented constructs:
from Rete rule bases to database systems. In
SIGMOD ’91: Proceedings of the 1991 ACM SIGMOD
international conference on Management of data,
pages 60–67, New York, NY, USA, 1991. ACM Press.

[17] JBoss. JBoss Rules, 2007.
http://labs.jboss.com/drools/.

[18] J. Krämer and B. Seeger. A temporal foundation for
continuous queries over data streams. In COMAD,
pages 70–82, 2005.

[19] G. Li and H.-A. Jacobsen. Composite subscriptions in
content-based publish/subscribe systems. In
Middleware, pages 249–269, 2005.

[20] D. Luckham. The Power of Events: An Introduction
to Complex Event Processing in Distributed Enterprise
Systems. Addison Wesley Professional, May 2002.

[21] M. A. Maloof and K. Kochut. Modifying Rete to
Reason Temporally. In ICTAI, pages 472–473, 1993.

[22] R. Manohar and K. M. Chandy. Delta dataflow
networks for event stream processing. In Proc.
IASTED Parallel and Distributed Processing
Symposium, October 2004.

[23] M. Mansouri-Samani and M.Sloman. GEM: A
generalized event monitoring language for distributed
systems. IEE/IOP/BCS Distributed Systems
Engineering Journal, 4(2):96–108, June 1997.

[24] G. Mühl, L. Fiege, and P. P. Pietzuch. Distributed
Event-Based Systems. Springer-Verlag, Berlin
Heidelberg, 2006.

[25] P. R. Pietzuch. Hermes: A Scalable Event-Based
Middleware. PhD thesis, Queens’ College University of
Cambridge, 2004.

[26] P. R. Pietzuch, B. Shand, and J. Bacon. A Framework
for Event Composition in Distributed Systems. In
M. Endler and D. Schmidt, editors, Proc. of the 4th
ACM/IFIP/USENIX Int. Conf. on Middleware
(Middleware ’03), pages 62–82, Rio de Janeiro, Brazil,
June 2003. Springer.

[27] C. Sánchez, M. Slanina, H. B. Sipma, and Z. Manna.
Expressive completeness of an event-pattern reactive
programming language. In FORTE, pages 529–532,
2005.

[28] D. Teodosiu and G. Pollak. Discarding unused
temporal information in a production system. In Proc.
of the ISMM International Conference on Information
and Knowledge Management CIKM-92, pages
177–184, Baltimore, MD, 1992.

[29] F. Wang and P. Liu. Temporal management of RFID
data. In VLDB ’05: Proceedings of the 31st
international conference on Very large data bases,
pages 1128–1139. VLDB Endowment, 2005.

[30] F. Wang, S. Liu, P. Liu, and Y. Bai. Bridging physical
and virtual worlds: Complex event processing for rfid
data streams. In EDBT, pages 588–607, 2006.

[31] W. M. White, M. Riedewald, J. Gehrke, and A. J.
Demers. What is ”next” in event processing? In
PODS, pages 263–272. ACM, 2007.

[32] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In SIGMOD
’06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data,
pages 407–418, New York, NY, USA, 2006. ACM
Press.

[33] E. Yoneki and J. Bacon. Unified semantics for event
correlation over time and space in hybrid network
environments. In OTM Conferences (1), pages
366–384, 2005.

