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ABSTRACT
Complex Event Processing is an important technology for
information systems with a broad application space rang-
ing from supply chain management, systems monitoring,
and stock market analysis to news services. Its purpose is
the identification of event patterns with logical, temporal or
causal relationships within multiple occurring events.

The Rete algorithm is commonly used in rule-based systems
to trigger certain actions if a corresponding rule holds. Its
good performance for a high number of rules in the rulebase
makes it ideally suited for complex event detection. How-
ever, the traditional Rete algorithm is limited to operations
such as unification and the extraction of predicates from a
knowledge base. There is no support for temporal operators.

We propose an extension of the Rete algorithm to support
the detection of relative temporal constraints. Further, we
propose an efficient means to perform the garbage collec-
tion in the Rete algorithm in order to discard events after
they can no longer fulfill their temporal constraints. Fi-
nally, we present an extension of Allen’s thirteen operators
for time-intervals with quantitative constraints to deal with
too restrictive or too permissive operators by introducing
tolerance limits or restrictive conditions for them.

Categories and Subject Descriptors
D.1.6 [Software]: Logic Programming

General Terms
Algorithms
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1. INTRODUCTION
Complex event processing (CEP) is a technology to monitor
and control information systems driven by events. It is ap-
plied, for instance, in business process or supply chain mon-
itoring to detect complex events consisting of single events
with logical, temporal or causal relationships. Many designs
have been proposed for the necessary event detection, for
instance [5] uses finite state automata and [10] showed the
efficiency of using the Rete algorithm for the detection of a
high number of complex events.

Traditionally, the Rete algorithm [6] is used in expert sys-
tems for production-based logical reasoning, matching a set
of facts against a set of inference rules. A rule defines a
predicate and the action that should take place, if the pred-
icate holds. This corresponds to defining a complex event
combining single events and executing an action such as the
creation of a new event when the complex event is detected.
The algorithm can efficiently handle a high number rules
in the rulebase. Thus, it is capable of dealing with a high
number of complex event patterns.

Business processes are often long-lasting and contain tempo-
ral dependencies. Software for Business Activity Monitoring
(BAM) therefore needs to be able to react to exceptional sit-
uations and determine the current business state considering
temporal relationships. Complex event processing can be
used for this purpose, but requires the definition of complex
events which consider temporal relationships among single
events. Relative temporal constraints are needed to capture
the order of occurrence of events, for instance to create an
alarm event only if two single DeliveryFailed events occur
within five minutes.

The traditional Rete algorithm does not support temporal
operators, but is limited to operations such as unification
and predicate extraction. A simple matching using compar-
isons with timestamp attribute values is possible and ex-
tensions to allow for the detection of relative relationships
have been suggested, e.g. in [2]. However, existing CEP sys-
tems (not based on Rete) commonly use time-point seman-
tics to represent event timestamps, e.g. [18]. This can lead
to semantic misinterpretations [19], since no duration can
be specified for events. For long-lasting events such as those
created during business monitoring, we therefore propose the
usage of interval-time semantics [3] for event timestamps to
allow for the definition of a duration for each event. Further-
more, existing garbage collection mechanism use only a de-



fault life-time for events after which they are discarded and
can no longer contribute to complex events. However, this
does not consider the temporal relationsships of the events,
and can lead the undesired discarding of events.

In this paper, we present an extension of the Rete algorithm
to support the detection of relative temporal relationships
between events and thus to enable complex event processing.
We use interval-based time semantics for event timestamp
definition. In particular, we make the following contribu-
tions:

• We describe a method of how to incorporate the de-
tection of relative temporal constraints in Rete. The
known operators for interval-time introduced by Allen
[1] are often too permissive or too restrictive for real-
world events and thereby limit the expressiveness of
complex event defintions. We propose their extension
to allow for quantitative constraints by providing tol-
erance limits or exact time limits.

• We develop a means to perform time-driven garbage
collection in Rete to delete events which can no longer
fulfill their temporal constraints. For this, we use ref-
erence counting and adopt ideas from incremental and
concurrent garbage collection.

The remainder of this paper is organized as follows. We de-
fine the used terms, give a motivating example, compare the
different time semantics and describe the Rete algorithm in
Section 3. Section 4 presents an overview of our approach for
relative temporal constraints. Section 5 discusses garbage
collection in Rete and explains an algorithm to achieve it.
We give a brief discussion of our implementation in Section
6. Then, we present an overview of related work in Section
7. Section 8 concludes the paper.

2. TEMPORAL SUPPORT IN RETE
In the following, we present our notion of instantaneous and
complex events. We give examples for Business Activity
Monitoring of a Pizza service and present how a point-based
semantic for events can result in unintended event detection.
Finally, we introduce the Rete algorithm as a basis for our
event detection.

2.1 Definitions
Events indicate a state change of the world. They are n-
tuples containing an arbitrary number of data items. For
instance, an OrderArrival event contains data related to an
arriving order, e.g. the customer name and address, the
ordered items and their quantity as well as a timestamp
denoting the occurrence time of the order.

Let T = (T ;≤) be an ordered time domain. Then, let
I := {[ts, te] ∈ T × T |ts ≤ te} be the set of time inter-
vals with ts as start and te as the end time-point of the
interval. Let D be the set of atomic values where atomic
values are elementary data types, such as strings. Then, let
E := {(k1, .., kn, kn+1, ts, te)|ki ∈ D, [ts, te] ∈ I} be the set of
events.

An event is characterized by the time of its occurrence,
which is stored as the event’s timestamp.

Instantaneous events are single events which occur at a cer-
tain point in time. They have a duration of zero, ts = te.
The aforementioned OrderArrival event is an example of an
instantaneous event.

Complex events describe the occurrence of a certain set of
events (instantaneous or complex) having relationships de-
fined using logical and/or temporal operators. These oper-
ators commonly include conjunction, disjunction and nega-
tion as logical operators and can include temporal operators
such as before and after to define the order of events. The
supported operators vary for the different CEP systems.

2.2 Motivating Example: Pizza Service
Consider a Pizza delivery service HappyPizza which offers
Pizza using a Webpage and uses handhelds to confirm suc-
cessful Pizza deliveries. HappyPizza is part of a Pizza chain
which uses Business Activity Monitoring to automate and
monitor its processes. Events are used to inform of the cur-
rent state of the processes, i.e. for instance at the beginning
or the end of processes, e.g. a Pizza delivery, an event is
automatically created.

An example for a complex event is the startOrderProcessing
event which is created when an order arrived from the Pizza
service’s website and a customer check determined that it
came from a valid customer, i.e. the customer has an exist-
ing street name and number. The creation of the complex
event can be automated using the following rule.

IF

OrderArrival AND CustomerCheck AND

OrderArrival.Customer = CustomerCheck.Customer

AND Customer.validCustomer = true

THEN

create startOrderProcessing (OrderId)

As can be seen, the rule consists of a conditional part (IF-
part) and a resulting action (THEN-part) to be performed.
The rule expresses that after the instanteous events Order-
Arrival and CustomerCheck arrived having the same valid
customer, the complex event startOrderProcessing is created
for the order. The complex event can then result in the noti-
fication of the delivery service staff to process the order and
make the Pizza.

An complex event using temporal constraints is, e.g., the
PizzaForFree event, which expresses that a customer gets
her Pizza for free, if she has to wait for more than hour
from the time of her order. The event creation is automated
using the following rule.

IF

OrderArrival BEFORE (1h) DeliveryArrival AND

OrderArrival.OrderId = DeliveryArrival.OrderId

THEN

create PizzaForFree (OrderId)



If the instanteous event OrderArrival is occurring 1h before
the instanteous event DeliveryArrival and both refer to the
same order, then the complex event PizzaForFree is created
for this order. The complex event can result in the notifica-
tion of the delivery person or be considered in the Pizza ser-
vice’s accounting. This example illustrates the importance
of temporal constraints to describe complex events.

2.3 Point-based vs. Interval-based Semantics
An event is characterized by the time of its occurrence,
which is stored as the event’s timestamp. For the times-
tamp definition, point-based or interval-based semantics can
be used. The former describes an event as being instanta-
neous, i.e. it has no duration, but just occurs at a point in
time when it comes to existence. The latter allows an event
to have a duration represented by an interval bound by the
start and end-time of the event.

In point-based semantics, a complex event only has the times-
tamp of the last occurring event contributing to it. In interval-
based semantics, the duration of a complex event is bound
by the start instant of the first and the end instant of the
last contributory event, assuming the first and last event be-
ing instantaneous. An interval-based timestamp definition
for complex events therefore allows a better expression of
the differences in occurence time of the instantaneous events
that contribute to a complex event.

Figure 1 illustrates the difference in event detection when us-
ing point-based timestamp semantics in contrast to interval-
based semantics for complex events. It shows the occurence
time of the instantaneous events A, B and C and an ex-
ample of nested BEFORE operators. A BEFORE opera-
tor BEFORE(E1, E2) defines that event E1 should occur
before or at the same time as E2, i.e. the timestamp of
E1 ≤ E2. Adapted from [19] Figure 1 illustrates an exam-
ple for HappyPizza. Our Pizza oven has certain downtimes
characterized by a startMaintenance event A and an end-
Maintenance event C. A request to use the resource to bake
a Pizza is represented by the occurrence of event B. This
request is automatically create when a Pizza order arrives.
Now, a complex event defines that event B should occur be-
fore the maintenance process starts, i.e. before event A and
C.

A … Start repairing of res. X
B … Start processing using res. X
C … End repairing of res. X

Point-based semantics Interval-based semantics

A

B

C

Seq (A, C)

Seq (B, Seq (A, C) )

Figure 1: Different time representations.

Now, consider the occurrence of event B during the main-
tenance process. Using point-based semantics, the complex

event BEFORE(A,C) would get the timestamp of the last
contributing event, i.e. event C.

The occurrence of event B would then be detected before
the complex event BEFORE(A,C), since the timestamp
of B is smaller than the one of C. This means that the
complex event defined by BEFORE(B,BEFORE(A,C))
would be detected using point-based semantics. This would
result in the baking the Pizza although the oven is currently
maintained. Obviously, this is not the semantic that a user
intends when writing such a rule.

In contrast interval-based time representation considers the
duration of the complex event BEFORE(A,C). Thus, the
complex event BEFORE(B,BEFORE(A,C)) would not
be detected in our example, since B does not occur before
the complex event resulting from BEFORE(A,C). This
corresponds to the detection mechanism that one expects
when defining such a rule.

To avoid this unintended interpretation, we consider time
as an interval consisting of a start and end point for each
event. This notion follows [4] and [7]. This means, complex
events always have a duration, i.e. ts < te.

2.4 The Rete Algorithm
The Rete algorithm [6] is a pattern matching algorithm tra-
ditionally used for production-based logical reasoning sys-
tems. Its aim is to match a set of facts against a set of
inference rules (productions).

Facts reside in the working memory and are n-tuples con-
taining any number of data items. They represent infor-
mation on something that is the case in the world. Facts
are valid until they turn out to be false and are changed or
retracted from the working memory.

A rule contains a premise stating conditions to be met by
fact data items and a set of actions to be triggered if the
premise holds.

The algorithm creates an acyclic network of the rule premises,
the so-called Rete network. Figure 2 shows an example for
a network for two rules with a root node (a Rete tree). The
Rete network, starts with a root node which is split into
the type nodes which distinguish between different facts.
Then, an alpha node network is typically followed by a beta-
node network. Whenever the working memory is changed,
i.e. facts are ”asserted”, ”retracted” or ”updated’, a working
memory element (WME) is created for the changed fact and
then propagated in a forward-chaining fashion through the
network nodes from the root to the leaf nodes. Thereby,
alpha-nodes perform simple conditional tests, i.e. they act
as a filter by passing only the matching WMEs to the next
node. At the end of the alpha node network, the resulting
WMEs matching all previous nodes are stored in the alpha
memory.

Beta-nodes perform joins by combining different WMEs,
typically WME lists (from now on called tuples) coming from
a beta memory with individual WMEs from an alpha mem-
ory. A new WME in the input alpha memory leads to a
right activation on the beta node. Then, the new WME is
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Figure 2: Example Rete network for two rules.

compared to specific WMEs of each tuple of the beta in-
put memory. The specific WMEs to be used are specified
in the join criteria. When a new tuple is added to the in-
put beta memory, a left activation of the beta-node takes
place, specific values of a predefined set of the new tuples
are compared to particular values of each WME in the alpha
memory. Upon an occurring match, a new tuple represent-
ing the match is added to the beta memory of the beta-node
to be passed to subsequent beta nodes or to a terminal node
(action trigger).

In other words, beta nodes store partial matches of rules.
When a tuple has reached the end of the beta node branch,
it is passed to the terminal node. It represents a complete
match of the facts contained in the tuple. The terminal node
activates a rule instance on the agenda which is responsible
for execution of the resulting actions - depending on a con-
flict resolution strategy.

Storing the partial matches avoids re-evaluation of the com-
plete premise on changes of the working memory. Thus, the
detection time is decreased, since only changed facts need to
be re-evaluated. In addition, in order to avoid redundancy
and thus to save memory, nodes are shared in case rule con-
straints occur in multiple rules. However, this also results
in higher memory consumption compared to a complete re-
evaluation.

3. EVENT DETECTION
The detection of complex events is illustrated in Figure 3.
Basically, its task is to detect complex events, e.g. the com-
plex events X, Y, Z, from a stream of single input events
(instantaneous or complex themselves), e.g. the events A,
B, C.

C o m p le x  E v e n t 
D e te c t io nE v e n t S tre a m C o m p le x  E ve n t S tre a m

X , Y , Z , YA , B , B , A , C , B

Figure 3: Complex event detection.

We assume a loosely-coupled system with a global clock.
Our proposed system architecture is illustrated in Figure
4. Different event consumers transmit asynchronously their
events to a central publish/subscribe system. The CEP
system subscribes to all events which can lead to complex
events. Therefore, the publish/subscribe system forwards
these events to the CEP system. There, the arriving events
enter an event queue and are then processed by the Rete En-
gine. The Rete Engine detects the complex events which are
defined in a rule set stored in the Rule component. On detec-
tion of an event, the creation of the resulting complex event
is added to an agenda, which has a scheduler to start the
different event creations. On creation of a complex event,
the event is send to the publish/subscribe system which dis-
tributes it to its subscribers. Finally, the configuration of
the CEP system is possible using a separate tool, the CEP
config tool.

Event Queue

Event 
Producer/
Consumer

Pub/Sub...

Event 
Producer/
Consumer

CEP System

Rules Rete Engine

AgendaScheduler

CEP Config 
Tool

Figure 4: System architecture.

Thus, the occurrence of a complex event can be viewed as the
occurrence of a combination of instantaneous events across
distributed systems. Lamport’s happened-before relation [9]
holds. As stated in [17], where the NEXT operator for com-
plex events was analyzed, Lamport’s happened-before re-
lation does not always hold. However, techniques to deal
with the related issues are known, for instance [14] is using
heartbeats to overcome them.

4. RELATIVE TEMPORAL CONSTRAINTS
In many cases, relative temporal relationships determine
whether events are of relevance for a complex event. For
instance, an complex event MachineAlert may be created
only if a MachineOverheated event occurs 5 minutes before
a MachineFailed event.

The Rete algorithm does not support the detection of tem-
poral relationships per default. Consequently, we extended
the algorithm with support for the thirteen operators de-
fined by Allen [1] for time intervals. After describing these
operators shortly, we will state how we extended the opera-
tors to also account for quantitative constraints. Finally, we
will describe how beta nodes can be used to check for these
constraints.



4.1 Allen’s Operators Extended
Allen defined thirteen possible operators to describe the re-
lationships between two time intervals. These relations are
illustrated in Figure 5. The left side states the relation (with
i meaning inverse), then follows the illustration of the rela-
tion and its interpretation on the right side.

Allen’s operators can be used to describe the relation of
two events (instantaneous or complex). The operators al-
low for the desired expressiveness when defining qualitative
constraints between overlapping intervals such as the times-
tamps of complex events.
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X  b e fo re   Y
Y  a fte r X

R e la tion Illu s tra tion In te rp re ta tion

Figure 5: Possible relations between two intervals.

In contrast, point-based semantics [16] support only three
qualitative constraints between two objects, namely before,
after and equals. Nevertheless, point-based semantics have
their strengths with quantitative constraints such as abso-
lute time points or a duration between time points. Quan-
titative constraints are hard to express using interval-based
semantics.

In order to combine the advantages of both approaches, we
adopt the thirteen relations defined by Allen [1] and en-
hance them by allowing an operator-specific variable num-
ber of parameters denoting quantitative time constraints.
Our method is similar to Meiri [12] who tried to unify both
time-point and interval semantics in his Qualitative Alge-
bra. The arrows in Figure 5 show the possible quantitative
constraints which can now be supplied. Allen’s operators
do assume a predefined distance between the start and end
points of the two intervals, but just assume it to be either
equal or greater than zero. We extend this definition to, adi-
tionally, allow the definition of exact values or a value range
for the distance between the start and end time points of
two time intervals.

For instance for X DURING Y four parameter settings are
possible:

X DURING Y No parameter (default behavior) means
the distance between the start points or the end points
of X and Y defined is greater than zero, undefined

X DURING (a) Y A parameter a states an exact tem-
poral distance between the start of X and the start of
Y, e.g. X DURING(5) Y means X starts 5 time units
after Y .

X DURING (a, b) Y parameter a is given and an ad-
ditional parameter b states the distance between the
end of X and the end of Y, e.g. X DURING(5, 1) Y
means X starts 5 time units after Y and ends 1 time
unit before Y .

X DURING (a1, a2, b1, b2) Y parameters a1, a2 and
b1, b2 are given which state that the distance of the
start of X and the start of Y should be between a1
and a2 and the distance of the end points of X and Y

should be between b1 and b2, e.g. X DURING(1, 3, 2,
5) Y means X starts between 1 and 3 seconds after Y

and ends between 2 and 5 time units before Y .

Thereby, permissive operators, such as DURING can be
used to define restrictive constraints.

Furthermore, we allow for the definition of tolerance limits
to make restrictive operators more permissive. In reality,
having an EQUAL operator checking for the cooccurrence
of events at exactly the same time is impractical, since often
small differences in occurrence exist. Therefore, the user
can specify what she sees as equal. X EQUALS(2) Y would
mean that the an event X would still be considered equal to
another event Y even if it occurs two time units before Y.

It needs to be noted that this freedom of expression comes
with more responsibility for the user who defines the com-
plex events. When using the parameters, the operators are
no longer exclusive. For instance, if event X occurs 2 time
units before Y then, X EQUALS(2) Y as well as X BE-
FORE(2) Y would hold. However, by omitting parameters,
we obtain the original exclusive relations by Allen expressing
only qualitative constraints.

4.2 Realization in Rete
Temporal relationsships can be detected in Rete by explic-
itly stating the conditions in the rules. For instance, the
following rule can be used to describe a complex event Z

which is created when an event X occurs before an event Y .

IF

X.startTimestamp < Y.startTimestamp

THEN

create Z.

However, this soon becomes tedious when different rela-
tionships need to be checked along with other constraints.
Therefore operators realizing the check are more suitable.

The relative temporal constraints can be realized in Rete by
an extension of the beta-nodes. The behaviour of a JOIN
beta-node is as follows.

Left activation If a new tuple of WMEs occurs at the left
input memory, all WMEs of the right input memory



are checked with the WMEs of the tuple to find out if
their combination fullfills the join condition.

Right activation If a new WME occurs at the right input
memory, all WMEs in all tuples of the left input mem-
ory are checked with the new WME to find out if their
combination fullfills the join condition.

This behaviour can be used to check for the relative temporal
constraints as follows.

Left activation If a new tuple of WMEs occurs at the left
input memory, all WMEs of the right input memory
are checked with the WMEs of the tuple to find out
if their combination fullfills the relative temporal con-
straint.

Right activation If a new WME occurs at the right input
memory, all WMEs in all tuples of the left input mem-
ory are checked with the new WME to find out if their
combination fullfills the relative temporal constraint.

We realized Allen’s operators and different parameter com-
binations in beta nodes.

Therefore, these operators can now be used in complex event
definitions. The rule from above can be expressed as:

IF

X BEFORE Y

THEN

create Z.

5. GARBAGE COLLECTION IN RETE
The traditional Rete algorithm stores all WMEs in the beta-
memories forever to allow for their later matching. However,
this behaviour is not desired for event processing in Rete.

In most cases, an event is only of interest during a certain
time frame, e.g. until a new event of the same type was
created. Hence, during pattern matching, the event only
needs to be considered for this period of interest. After
that, it can be discarded from the working memory.

Furthermore, an event is able to fullfill its temporal con-
straints only for a limited time. Then it can no longer con-
tribute to complex events and therefore can be discarded.

Not discarding such events would result in a steady growing
memory consumption relative to the incoming events.

Consequently, garbage collection mechanisms is a solution
to discard events after they are no longer of interest or
cannot contribute to complex events. The Rete algorithm
lacks garbage collection completely. Therefore, we propose
a garbage collection mechanism for the Rete algorithm in
the following.

The time that an event must at least be stored in a beta-
memory is from now on referred to as the event’s lifetime. It

determines when an event can be discarded. In the following,
we present different means of determining an event’s life-
time. Then we continue with presenting an algorithm which
allows the beta-memories to discard their stored WMEs or
tuples as soon as the WMEs can no longer fullfill their tem-
poral constraints.

5.1 Determining an Event’s Lifetime
Garbage collection is supposed to retract only events which
are no longer used by the system, i.e. whose lifetime has
passed. This ensures the correctness of the garbage collec-
tion. Furthermore it guarantees that the system’s behaviour
is not altered by incorrectly retracting events from the sys-
tem which can still satisfy matches in the Rete network.
Different means exist to determine an event’s lifetime and
their choice depends on the application’s needs. The lifetime
can be a fixed time, be based on the desired event interpre-
tation or be calculated, e.g. based on the event’s temporal
relationships.

Maximum event lifetime The maximum lifetime of an
event can be defined by the user to tell the system
when an event can be discarded. The algorithm de-
scribed in 5.2 can then be used to delete events after
their lifetime passed. The definition of a maximum
event lifetime is pursued by ILOG JRules [2] where
a system-wide event lifetime is specified by the user.
This method can also be used, if an event has no tem-
poral relationships to other events.

Time-based windows The lifetime of an event can be de-
scribed individually for rule conditions by using win-
dow operators which determine for how long events
are of interest. The window size determines the event
lifetime. After this time has passed, an event can be
discarded. Using windows is similar to using a maxi-
mum event lifetime but more fine-grainded working on
a per rule level not system-wide. It can also be realized
using the algorithm in 5.2.

Consumption modes Different applications have variable
demands on how events are considered for event detec-
tion, e.g. if an event can be matched multiple times or
only once. These modes of event combinations and us-
age characterise different consumption modes [19]. For
instance, when considering events coming from sensor
readings only the newest event from one reader may
be of interest, since the others just represent old val-
ues. This so-called recent consumption mode can be
used for garbage collection. Then, existing WMEs/-
tuples are deleted from the beta-memories of the Rete
network whenever a new WME/tuple arrives at them.

Lifetime calculation Finally, the life-time of events can
be calculated based on the temporal constraints given
in the complex event definitions. For instance, if event
B arrives and a rule states that event B should occur
two minutes before event A, then B can be discarded
after two minutes.

Teodosiu and Pollak [15] present a method to calcu-
late the lifetime of events by calculating the closure of
the dependency matrix containing temporal distances



between all events. We use this as a basis for the cal-
culation of the lifetime of tuples/WME arriving at the
beta-memories in the Rete tree.

5.2 Incremental Garbage Collection
The basic idea of our garbage collection algorithm is to cal-
culate the lifetime of an event as the temporal distance of
an event based on its relationsship to other events. This
distance states how long an event can contribute to complex
events, i.e. how long it can fullfill its temporal constraints.
The lifetime of a WME/tuple is calculated for each left/right
input memory separately depending on the available WMEs
and their temporal relationships. We use an incremental
garbage collection mechanism which uses a timer-based ap-
proach to discard each WME/tuple individually after its cor-
responding lifetime passed.

Next, we describe the initial lifetime calculation which form
the basis of our garbage collection mechanism. We continue
with a description of the timer-based deletion of WME/tuple
and conclude a consideration of the effects of node sharing
and node independency.

5.2.1 Initial lifetime calculations
An event can be considered unnecessary, if it can no longer
contribute to the detection of complex events. Then it can
be discarded. An event can no longer lead to complex events,
if it can no longer fulfill its temporal constraints. For in-
stance, suppose an event A should occur 2 time units before
an event B to create a complex event X. Now, if event B

occurs, but no event A occured before, then event B can
be discarded straight away, since it can never lead to the
detection of event X.

The constraints an event has to fulfill depend on the com-
plex event definitions. Consequently, the relations of events
can once be calculated when a new complex event definition
(a rule) is added to the system or when a complex event
definition is updated. The relations can be represented in a
matrix Mij containing the temporal distances between two
events.

Initially, the distance matrix is filled with the direct dis-
tances between the single events of the complex event def-
inition and the other distances are set to infinite. Then
the closure is calculated to determine the complete distance
matrix. Details of the calculation can be found in [15]. The
distance matrix is calculated for every complex event defini-
tion separately and updated or deleted whenever the com-
plex event is changed or deleted.

The distance matrix can be used to determine the lifetime
for each event depending on the existance of other events
it is related to. In the Rete network, the aim is to discard
the WMEs or tuples of the beta input memories as soon as
it is noted that they can no longer fullfill their constraints.
Thereby, the beta nodes represent certain system states, i.e.
depending on their position in the Rete tree, the tuples of
the left input memory contain more or less WMEs.

It can be calculated for each left and right input memory of
each beta node separately how long a WME/tuple should be
kept in it depending on which WME/tuple it combines with.

The event lifetime for the left and the right input memory of
a node is again constant as long as the complex event (rule)
does not change that the node belongs to.

In the calculation of the lifetime, it has to be distinguished
between right and left activation of the node.

On right activation, a WME arrives. The type of WME
can be directly identified by checking the constraint of the
preceding alpha or type node.

In contrast, on left activation, a WME tuple arrives. There,
the constraints of all preceding beta-nodes have to be taken
into account to find out all single types of WMEs which
form part of the tuple. The tuple/WME is then used to
find all corresponding entries in the distance matrix. Then
the intersection of the existing distances is calculated. It
represents the maximum time that an event can fullfill all its
temporal constraints. The calculated WME/tuple lifetime is
calculated once and then stored in the temporal beta-node.

5.2.2 Runtime garbage collection
We use incremental garbage collection to discard each WME/-
tuple of a node’s right and left input memory separately.
During event detection, i.e. during runtime of the CEP sys-
tem, a timer is created for each newly arriving tuple/WME
to automatically delete the WME/tuple after its calculated
lifetime passed. ra The garage collection mechanism is illus-
trated in Figure 6 for a sample beta node. It can be divided
into six separate steps.

1. The beta node has lifetimes for the WME/tuples ar-
riving at its right/left input memory stored. These
lifetimes were calculated as described above.

a) Whenever a new tuple arrives at the left input mem-
ory of the beta node, the node informs the working
memory of this arrival and its corresponding life-time
(2 minutes in the example in Figure 6).

b) Whenever a new WME arrives at the right input
memory of the beta node, the node informs the work-
ing memory of the new WME and its corresponding
life-time (3 minutes in the example in Figure 6).

2. The working memory contains the originals of all WMEs.
The Rete network only propagates copies of these WMEs.
To keep account of the number of copies, the WME
keeps a reference counter for the WMEs. When the
working memory is informed of a new WME/tuple ar-
rival at a right/left input memory, the working mem-
ory increases its reference counter for the single WME
or all WMEs in the obtained tuple. Then, the work-
ing memory informs the garbage collector to initiate
the garbage collection for this tuple/WME after the
corresponding lifetime passed.

3. The garbage collector creates a timer-request for the
WME/tuple at the callback service. This request con-
tains the lifetime and a reference to the corresponding
WME/tuple.

4. The timer-service manages a pool of timer threads. An
idle thread is used to setup the timer with the defined
lifetime.



5. After the time passed, the deletion process is initi-
ated for the WME/tuple. A task is created to perform
the deletion directly in the beta node using the tu-
ple/WME reference.

6. Finally, the working memory is informed by the beta
node, to decrease the reference counter for the cor-
responding WME or all WMEs in the tuple. If the
reference counter of a WME is zero, i.e. no copies of it
exist in the Rete tree, the WME can be deleted from
the working memory.

Beta Node

Right Input 
Memory

Left Input 
Memory

Working 
Memory

Garbage 
Collector

Timer 
Service

2 min 3 min

Reference
Memory

Working memory element Copy

Working memory element Tuple of working memory elements 

X

# #
# #
# #

#
#
#

# Copy Counter

(1a) (1b)

(2;6) (3)

(4)

(5)

Figure 6: Garbage Collection mechanism.

Rule-based production systems are used in scenarios where
already little downtime or unresponsiveness of the system
can have a huge impact on the business. That leads to
the fact that halting the system to do garbage collection
tasks is in-acceptable. Instead the garbage collector needs
to run concurrent to the system and compute its tasks. The
production system needs to stay responsive even when the
garbage collection retracts objects from the Rete network.
The different timer threads allow a parallel execution of the
garbage collection. Thus, it is not influencing the detection
mechanism.

The integration of garbage collection into Rete is an ex-
tension which is supposed to help limit memory consump-
tion. But instead of altering the algorithm it should stay
unmodified. Consequently, the influence of the extension
on the existing algorithm, the temporal-beta nodes and the
working memory is kept minimal by having an independent
garbage collector. The garbage collection is independent of
the workings of the Rete algorithm. Thus, it is no problem
to combine facts which do not need the garbage collection
with events which are discarded when no longer needed.

5.2.3 Node sharing
Node sharing of beta-nodes implies that the condition of the
node occurs in several rules, thus having different temporal
constraints. A simple way to deal with this problem is taking
the maximum of the calculated lifetimes resulting from the
different rules the node belongs to. Thus, the event is not
discarded as long as it can still be used.

5.2.4 Dealing with node independency
A disadvantage of the proposed garbage collection mecha-
nism is the independency of nodes. Consider a Rete tree
without node sharing. It is possible, that a tuple may be
discarded from a temporal-node in the Rete tree, but the in-
volved WMEs of the tuple and the tuples in the beta-nodes

preceding the temporal-node may not be deleted, since no
temporal relationship exists between them. Nevertheless,
they could never lead to a rule activation and thus an event
detection. One solution for this problem is to propagate the
deletion upwards in the tree, deleting all preceding WMEs
contributing to the tuple. However, this is not possible for
Rete trees with node sharing, since the WMEs/tuples may
be used further contributing to another rule.

6. IMPLEMENTATION
We have extended the JBoss Drools [8] rule engine with
our proposed concepts for relative temporal constraints and
event support. We are currently adding the support to pro-
cess data streams and time-based windows.

A grammar extension provides the means to specify that
a given object type should be handled as an event instead
of a regular fact. This is achieved by using a special dec-
laration statement. Thus, facts can be distinguished from
events and temporal reasoning as well as specific optimiza-
tion techniques (e.g. event garbage collection) be limited to
events.

To address multiple usage scenarios, four different times-
tamp assignment strategies were identified. They all provide
a common and general framework to determine and assign
a timestamp and a duration for an event when it is asserted
into the working memory. Interval-based time semantics are
used for the timestamps, i.e. a duration can be specified for
an event. The discussion of these strategies is out of the
scope of this paper.

Further, Drools was extended with a framework for plug-
gable operators to ease the addition of operators. Using
this framework, all the relative temporal constraints pro-
posed in Section 4.1 were implemented and are available
now for event correlation. The operators can have at most
four optional parameters. Negative time limits can be given
as parameters which leads to the possibility to use one tem-
poral operator to express others, e.g. A after(−4s, 4s) B ≡
A before(4s, 0s) B ∨ A after(0s, 4s) B.

The current version of the Drools extension is online avail-
able at [13].

7. RELATED WORK
This section introduces related work in the area of temporal
support for the Rete algorithm.

The Padres [10] and the ILOG JRules [2] event processing
systems are based on the Rete algorithm. In both cases, the
Rete algorithm is extended to incorporate clocks. Times-
tamps are used and before and after predicates are intro-
duced. However, the applied time-point semantics causes
misinterpretations which we overcome using interval time
semantics. Furthermore, the realization of time-based win-
dows is not addressed.

In [11], a traditional production system based on the Rete
algorithm is extended with temporal reasoning by storing
past and developing events in a temporal database, a so-
called time map. An interval time representation is used.
The system supports detection of events occurring during,



before or after other events. It is further possible to model
uncertain relationships. However, the semantics of the op-
erators as well as the conceptual details remain unclear. It
is not stated whether the start or the end time-point of the
interval are used for the before and after operators.

As mentioned before, Teodosiu and Pollak [15] proposed a
method for garbage collection in Rete. We calculate our
event lifetimes similar to them. However, in contrast to us,
[15] created a separate Rete network for each rule which is
not how the common Rete implementations work and which
does not facilitate the advantages of node sharing of Rete.

8. CONCLUSION
We have developed a concept to enable the Rete algorithm
to detect relative temporal constraints between events. For
this purpose, we have extended Allen’s thirteen temporal
operators [1] with quantitative constraints and introduced a
method for garbage collection of events that can no longer
fulfill their temporal constraints. Finally, we have described
how the concepts were implemented in JBoss Drools [8] and
we demonstrated that the garbage collection results in a
reduction of used memory while only deleting unused events.

In conjunction with the original features of the Rete algo-
rithm, the proposed concepts offer the ability to detect tem-
poral relationships between events in Rete. Thus, they facil-
itate more expressiveness in complex event processing using
Rete.
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