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Abstract. Complex event processing is an important technology with
possible application in supply chain management and business activity
monitoring. Its basis is the identification of event patterns within multi-
ple occurring events having logical, causal or temporal relationships.

The Rete algorithm is commonly used in rule-based systems to trigger
certain actions if a corresponding rule holds. The algorithm’s good perfor-
mance for a high number of rules makes it ideally suited for complex event
detection. However, the traditional Rete algorithm does not support ag-
gregation of values in time-based windows although this is a common re-
quirement in complex event processing for business applications.

We propose an extension of the Rete algorithm to support temporal
reasoning, namely the detection of time-based windows by adding a time-
enabled beta-node to restrict event detection to a certain time-frame.

1 Introduction

Complex event processing (CEP) is a technology to monitor and control infor-
mation systems driven by events. It is applied, for instance, in business process
or supply chain monitoring to detect complex events consisting of single events
with logical, temporal or causal relationships. Many designs have been proposed
for this purpose, for instance [I] uses a finite state automaton for event detection
and Li and Jacobsen [2] showed the efficiency of the Rete algorithm to match a
high number of rules and thus complex events.

Traditionally, the Rete algorithm [3] is used for production-based logical rea-
soning, matching a set of facts against a set of inference rules. A rule defines
a predicate and the action that should take place, if the predicate holds. This
corresponds to defining a complex event combining single events and execut-
ing an action such as the creation of a new event when the complex event is
detected. The algorithm’s linear complexity makes it capable of dealing with a
high number of complex event patterns.

Business applications often require the definition of complex events which
consider temporal relationships among single events. Then, time-based windows
are utilized to ensure that event detection takes place only for the time of an
events’ relevance. This is achieved by restricting processing to events matching
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a pre-defined time-frame, e.g. occurring within 1 hour or between 1 and 2 pm.
It is often desirable to aggregate events, for instance to calculate the average of
a certain event data item over time, such as a temperature sensor value. Time-
based windows allow for this event aggregation over a pre-defined time. However,
the traditional Rete algorithm does not support such temporal operators, but
is limited to operations such as unification and predicate extraction. A simple
matching using comparisons with timestamp attribute values is possible and
extensions to allow for detection of relative relationships have been suggested,
e.g. in [4[5]. However, sophisticated temporal operators such as sliding windows
were not regarded so far.

In this paper, we present an extension of the Rete algorithm to support tem-
poral reasoning using time-based windows and thus to enable complex event
processing. Our method to support temporal constraints in the Rete algorithm
significantly extends existing work [2l[6] for the detection of event patterns using
time-based sliding windows. It uses an incremental window approach to contin-
uously update the current window and its aggregation values.

The remainder of this paper is organized as follows. We present an overview
of related work in Section [2l Then, we continue with a definition of terms and a
brief description the Rete algorithm in Section 3. Section 4 presents an overview
of our approach for time-based sliding windows in Rete and finally Section 5
concludes the paper.

2 Related Work

This section introduces related work in the area of temporal support for the Rete
algorithm.

The Padres [2] and the ILOG JRules [4] event processing systems are based on
the Rete algorithm. In both cases, the Rete algorithm is extended to incorporate
clocks. Timestamps are used and before and after predicates are introduced.
However, the realization of time-based windows is not addressed.

Gordin and Pasik [6] describe a method to support set-oriented methods for
forward chaining rule-based systems. The presented ideas are extended in our
work to support event aggregation in Rete.

In [7], a traditional production system based on the Rete algorithm is ex-
tended with temporal reasoning by storing past and developing events in a tem-
poral database, a so-called time map. An interval time representation is used.
The system supports detection of events occurring during, before or after other
events. It is further possible to model uncertain relationships. However, the se-
mantics of the operators as well as the conceptual details remain unclear. It is
not stated whether the start or the end time-point of the interval are used for
the before and after operators. Time-based windows are also not considered.

Teodosiu and Pollak [§] present a method to remove obsolete temporal facts
where the used Rete network is extended with timers in order to discard events
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after a specified time interval elapsed. Their concept can be used to discard
events after they are no longer part of a sliding time-based window.

3 Temporal Support in Rete

In the following, we present our notion of instantaneous and complex events and
introduce the Rete algorithm.

3.1 Definitions

FEvents indicate a state change of the world. They are n-tuples containing an ar-
bitrary number of data items. For instance, an OrderArrival event contains data
related to an arriving order, e.g. the customer name and address, the ordered
items and their quantity as well as a timestamp denoting the occurrence time of
the order.

Let T = (T; <) be an ordered time domain. Then, let T := {[ts,te] € T xT|ts <
t.} be the set of time intervals with t, as start and ¢. as the end time-point of
the interval. Let D be the set of atomic values where atomic values are ele-
mentary data types, such as strings. Then, let E := {(k1, .., kn, kny1, s, te)|k; €
D, [ts, te] € I} be the set of events.

An event is characterized by the time of its occurrence, which is stored as
the event’s timestamp. Instantaneous events are single events which occur at a
certain point in time. They have a duration of zero, t; = t.. The aforementioned
OrderArrival event is an example of an instantaneous event.

Complex events describe the occurrence of a certain set of events (instan-
taneous or complex) having relationships defined using logical and/or temporal
operators. These operators commonly include conjunction, disjunction and nega-
tion as logical operators and can include temporal operators such as before and
after to define the order of events. The supported operators vary for the different
CEP systems. We consider the timestamp of a complex event as an interval con-
sisting of a start and end point for each event to avoid the unintended interpre-
tation occuring for time-point semantics [9I0]. This notion follows [I1] and [12].
It allows the usage of Allen’s [13] thirtheen temporal operators to determine
the relationship between two events having interval timestamps. Consequently,
complex events always have a duration, i.e. t5 < t..

3.2 The Rete Algorithm

The Rete algorithm [3] is a pattern matching algorithm traditionally used for
production-based logical reasoning systems. Its aim is to match a set of facts
against a set of inference rules (productions). Facts reside in the working mem-
ory and are n-tuples containing any number of data items. They represent in-
formation on something that is the case in the world. Facts are valid until they
turn out to be false and are changed or retracted from the working memory. A
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Fig. 1. Example Rete network for two rules

rule contains a premise stating conditions to be met by fact data items and a
set of actions to be triggered if the premise holds.

The algorithm creates an acyclic network of the rule premises, the so-called
Rete network. Figure [I] shows an example for a network for two rules with a
root node (a Rete tree). The Rete network, starts with a root node which is
split into the type nodes which distinguish between different facts. Then, an
alpha node network is typically followed by a beta-node network. Whenever the
working memory is changed, i.e. facts are "asserted”, "retracted” or "updated’,
a working memory element (WME) is created for the changed fact and then
propagated in a forward-chaining fashion through the network nodes from the
root to the leaf nodes. Thereby, alpha-nodes perform simple conditional tests,
i.e. they act as a filter by passing only the matching WMEs to the next node. At
the end of the alpha node network, the resulting WMEs matching all previous
nodes are stored in the alpha memory.

Beta-nodes perform joins by combining different WMESs, typically WME lists
(from now on called tuples) coming from a beta memory with individual WMEs
from an alpha memory. A new WME in the input alpha memory leads to a right
activation on the beta node. Then, the new WME is compared to specific WMEs
of each tuple of the beta input memory. The specific WMEs to be used are spec-
ified in the join criteria. When a new tuple is added to the input beta memory,
a left activation of the beta-node takes place, specific values of a predefined set
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of the new tuples are compared to particular values of each WME in the alpha
memory. Upon an occurring match, a new tuple representing the match is added
to the beta memory of the beta-node to be passed to subsequent beta nodes or
to a terminal node (action trigger).

In other words, beta nodes store partial matches of rules to avoid re-evaluation.
When a tuple has reached the end of the beta node branch, it is passed to the
terminal node. It represents a complete match of the facts contained in the tuple
and results in the execution of the corresponding actions.

4 Proposed Solution

In the following, we will describe the assumptions underlying our system and
its semantics. Then, we will introduce a possible approach to sliding window
definition in Rete.

4.1 Preliminaries

We assume a loosely-coupled system with a global clock. The occurrence of a
complex event can be viewed as the occurrence of a combination of instantaneous
events across distributed systems. In our system, the instantaneous events are
transmitted asynchronously to the central CEP engine which is based on the
Rete algorithm. Lamport’s happened-before relation [I4] holds. As stated in [15],
Lamport’s happened-before relation does not always hold. However, techniques
to deal with the related issues are known, for instance [16] is using heartbeats
to overcome them.

4.2 Event Aggregation Using Time-Based Windows

A window is a limitation of the view on data, i.e. instead of considering all input
elements, only an extract of them is considered. Two common types of windows
are distinguished: tuple-based and time-based windows, cf. to [I7L[I8]. Tuple-based
windows limit the view to the last n input items whereas time-based windows pro-
vide only elements which arrived within a fixed time span. We focus on time-based
windows with relative time-constraints, e.g. 5 minutes. We do not support windows
with given absolute time constraints, e.g. a window to occur between 1 and 2 pm.

We define a time-based window as the set of events whose end time-point is in
a given window interval, i.e. w(ts,,te, ) = {x € Elte, > ts, Ate, < te,} where
ts,, denotes the start and ¢., the end time of the window. The size of a window
dy = d(te,,ts, ) states its duration in time units, e.g. 5 minutes. It is defined by
the user for each window. Using this definition means that an event can start
before the window in which it is considered.

Assuming, the current time is ¢y, then the boundaries of the last finished
window can be calculated as follows. The end time of it is the current time, i.e.
te,, = to. The start time is the difference between its end time and the window
size, i.e. ts, = d(ts,,, te, ). The data items with end timestamps between the start
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and the end time are part of the window. Using this calculation, the window is
sliding, i.e. its boundaries are constantly shifted with ongoing time. It is referred
to as a sliding time-based window.

The Rete algorithm performs eager evaluation, i.e. the node network’s inner
state is updated with every inserted, modified or retracted tuple or fact, respec-
tively. Hence, we currently consider only sliding time-based windows without
a slide parameter. For window evaluation, we pursue an incremental approach,
where the current window is continuously updated depending on incoming events
and passing time. The resulting changes, i.e. the addition or deletion of window
elements, are propagated to successive nodes in the Rete tree. This approach is
suited for eager evaluation.

We extend the existing beta nodes with features for window evaluation and
event aggregation. Using a beta-node for this purpose allows for the evaluation
of windows for instantaneous events as well as for tuples. From now on, we will
refer to these extended nodes as time-driven aggregation nodes (TDA). Besides
the join-function of beta nodes, TDAs are capable of keeping track of the current
state of a time window as well as performing on-the-fly aggregation functions to
the elements of the window. A TDA node is used just as a normal beta-node
in the Rete network. Depending on the rule definition, either its aggregation
function, the window function or both are used. For the last case, a TDA node
first performs the join of the incoming tuples and WMEs, then it checks for the
window constraints and finally performs the aggregation function.

The events that should be considered for the window and/or for the aggre-
gation need to be specified explictly, e.g. consider the rule ITF(A.x =3 A B.y <
2Awindow[5min, AVG(C.z) > 40](C.z > 7)) THEN X . It describes the conjunc-
tion of particular events A and B with an average value of an attribute of event
C. The average is calculated time-frames of for 5 minutes using all attributes
with C.z > 7. The resulting Rete tree would look like in Figure 1, except that
the first beta-node (rightmost) would be a TDA node. This means, the TDA
node is inserted right below the alpha node of event C and obtains the WMEs
which have matched the filter criteria C.z > 7.

The process of the window evaluation will be described in the following. Our
approach is inspired by the work of Gordin and Pasik [6] as well as Ghanem et
al. [19).

Tuples (from the left) and WMEs (from the right) arriving at the TDA are
filtered depending on whether their end timestamps are outside the window
bounds or not. The stored window boundaries are adjusted continuously in the
TDA node. Every time an event z € E arrives at the node, the current window
end time t.,, is set to the arrival time of that event. The corresponding window
start time can easily be determined by simply subtracting the window size from
the window end time ts, = d(dy,t.,). The arrived event is propagated to be
considered in the aggregation function or in the child nodes of the TDA node.
Furthermore, each new event is sent to a garbage collection (GC) thread which
creates a callback entry in a queue for it in order to discard the event once it
is out of the window bounds. The time after which the event can be discarded
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is the window size. After this time passed, the positive event is out of window-
bounds and a negative event is send to the TDA node by the GC thread. Then,
the TDA node sends a message that the corresponding event can be discarded
to its child nodes. If the child nodes, e.g. other windows, do not need the event
anymore, the WME reference counter for the event can be decreased by one. If
no references exist any longer, i.e. the reference counter is zero, the WME can
be deleted. In any case, the aggregation function is updated, when an event is
outside a window.

The TDA node keeps track of the current state of the aggregation function.
For instance, in case of the average function, it stores a double value representing
the sum of the event attribute of interest and an integer denoting the number
of events contributing to the aggregated value. With every arriving or expired
event, the beta memory and the aggregation result are updated.

Whenever, an event is no longer part of any sliding windows, it can be dis-
carded from the alpha/beta-memory of the TDA node and possibly also from
the working memory. Consequently, the event can no longer fullfill its temporal
constraints. The other nodes in the Rete network can be informed to determine
if they can also discard the event. Garbage collection mechanisms based on this
sliding window timeout, a default event lifetime or a calculated lifetime based
on an event’s relative relationships are outlined in [8[5].

5 Conclusion

We have presented concepts of how the Rete algorithm can be extended with
the detection of event patterns containing time-based sliding windows by the
introduction of time-enabled beta-nodes.

We are currently evaluating the proposed concepts by extending the business
rule management system JBoss Drools [20] with support for sliding windows.
The current version of the Drools extension is online available at [21].

In conjunction with the detection of relative temporal constraints, event garbage
collection [5] and the original features of the Rete algorithm, the proposed concepts
form a good basis for temporal reasoning in Rete.

Acknowledgements. We wish to acknowledge Maik Thiele, Michael Ameling
and Thomas Heinze for helpful comments on earlier drafts of this paper. Fur-
thermore, we thank the Drools developer team, especially Edson Tirelli, for the
interesting discussions and their contribution to the presented concepts and the
ongoing implementation.
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