
Technische Universität Dresden
Fakultät Informatik
Institut für Systemarchitektur
Prof. Dr. rer. net. habil. Dr. h. c. Alexander Schill

Großer Beleg

XMPP-based Media Sharing for Mobile
Collaboration with Android Phones

Benjamin Söllner

born November 2, 1986 in Plauen, Germany

benjamin.soellner@mail.inf.tu-dresden.de

October 29, 2009

Advisor: Dr.-Ing. Daniel Schuster

daniel.schuster@tu-dresden.de

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Studienarbeit zum Thema

XMPP-based Media Sharing for Mobile Collaboration with Android Phones

selbstständig und ausschließlich unter Verwendung der im Quellenverzeichnis aufgeführten
Literatur- und sonstigen Informationsquellen verfasst zu haben.

Dresden, den 30. Oktober 2009

Unterschrift

iii

Acknowledgements

I would like to thank the staff members of the Mobilis team for their valuable guidance
and helpful input concerning both the theoretical as well as the practical part of this
work. This includes Maximilian Walther, Thomas Springer and in particular my thesis
supervisor Daniel Schuster, who motivated me by showing great interest into my ideas
and always provided valuable feedback, especially concerning the practice of academic
writing which I was fairly new to.

Thanks go also to the my student collegues who worked on other aspects of the Mo-
bilis project in parallel to or before this thesis: István Koren, Dirk Hering, Christopher
Friedrich, Jacobo Eduardo Miranda and Lukas Vierhaus. I am thankful for the passionate
atmosphere in which we shared knowledge, feedback and hints about each others area and
I enjoyed the illuminating conversations and inspirations we had. I also thank my student
collegues from student lab INF/3074 for the creative and social working environment.

I finally owe my family a big debt of gratitude. Ich danke euch vielmals für die al-
lzeitliche Unterstützung meiner Studienpläne, speziell aber für Hilfe und Ruhe in den
letzten hektischen Tagen, in denen ich diese Arbeit fertiggestellt habe.

v

Abstract

With the recent tremendous innovation on the mobile handset, network and operating
system market, the use of mobile phones as content creation and content sharing device
have become commonplace. Although bluetooth, MMS and email obviously seem out-
dated in the social cloud the “Web 2.0” creates, neither the academic nor the economic
world has developed an open media sharing protocol committed to collaborative work and
adapted to a mobile environment.

This thesis has been created within the Mobilis project as a subproject called “Mobilis
Media”. Mobilis is a project developing a service platform for collaborative work with
Android phones. Mobilis chose XMPP, the Extensible Messaging and Presence Protocol,
as a collaborative protocol. Besides this document, a client and a server prototype was
developed which fits into the Mobilis architecture.

The thesis starts by motivating the need of a mobile media sharing platform and by
introducing a user scenario of travel picture sharing. It then examines several file transfer
technologies, both media sharing technologies used within XMPP itself (SI File Transfer
and Jingle) and second-stack technologies (WebDAV, Atom Publishing Protocol, Google
Wave Federation Protocol). Afterwards, related work is evaluated and requirements to the
media sharing platform as well as the mobile client are settled. Moving on, a concrete file
sharing technology is chosen and the XMPP interface of the media sharing platform using
it is described as a custom extension to the XMPP protocol. Subsequently, the structure
of the Mobilis platform is presented and how Mobilis Media fits into it. System boundaries
and extension points for later projects are outlined. Some aspects of the internal structure
and some implementational considerations of the Mobilis Media prototype are highlighted.
Finally, the presented implementation is evaluated qualitatively and quantitatively and a
prospect for future work is given.

Keywords mobile collaboration, services, mobile framework, media sharing, content
sharing, metadata, repository, multidimensional, cube, hypercube, database, social net-
works, Hibernate, Android, XMPP, Jingle, SI File Transfer, Publishing Stream Initiation
Requests, WebDAV, APP, Google Wave

vii

Contents

1. Introduction 1
1.1. The Mobilis Project . 1

1.2. User Scenario: Travel Picture Sharing . 2

1.3. Structure of this Thesis . 2

2. Foundations 3
2.1. The XMPP Protocol . 3

2.1.1. Message . 4

2.1.2. Presence . 5

2.1.3. Info/Query . 5

2.2. The XMPP Extension Protocols . 6

2.2.1. SI File Transfers with Published Stream Initiation Requests 8

2.2.2. Jingle – An XMPP Signalling Protocol 13

2.2.3. Jingle Transport Method Specifications 15

2.2.4. Jingle Application Format Specifications 15

2.2.5. File transfers and XML Streams using Jingle 16

2.2.6. Further XEPs concerning Jingle . 17

2.3. Second-Stack Technologies . 17

2.3.1. WebDAV . 17

2.3.2. Atom Publishing Protocol . 18

2.4. Conclusion . 19

3. Related Work 21
3.1. Belimpasakis et al. 21

3.2. Tolvanen et al. 23

3.3. Matuszewski et al. 24

3.4. Risto Sarvas et al. 25

3.5. Android Applications . 26

3.6. Google Wave Attachments (Google Wave Federation Protocol) 27

3.7. Conclusion . 28

4. Requirements Analysis 31
4.1. Functional Requirements . 31

4.2. Device Capabilities . 33

4.3. Non Functional Requirements . 34

4.4. Human Factors . 35

4.5. Conclusion . 36

ix

Contents

5. Conceptual Design 37
5.1. Finding an XMPP-based File Transfer Protocol 37

5.1.1. SI File Transfers . 37
5.1.2. One-to-one File Transfers . 38
5.1.3. One-to-many File Transfers . 38

5.2. The Cube Media Repository . 38
5.3. Breaking down the Architecture . 39

5.3.1. Decomposition into Entities . 39
5.3.2. Decomposition regarding the Mobilis Architecture 40

5.4. Service Primitives . 42
5.4.1. Custom IQs . 43
5.4.2. Service Discovery & Register / Unregister Service Pimitive 45
5.4.3. Browsing Service Pimitive . 48
5.4.4. Download Service Pimitive . 49
5.4.5. Upload/Replacing Service Primitive 51
5.4.6. Deletion Service Primitive . 54

5.5. Conclusion . 55

6. Implementation Considerations 57
6.1. The Mobilis Architecture . 57
6.2. Reuse of the XMPP layer using XMPPBeans 59
6.3. Mobilis Media as a Mobilis Project . 60

6.3.1. Server Prototype . 61
6.3.2. Client Prototype . 61

6.4. The Mobilis Media Server Prototype . 62
6.4.1. General Mobilis Server Class Model 62
6.4.2. Mobilis Media Server Class Model 64
6.4.3. Mobilis Media Database Model . 66

6.5. The Mobilis Media Client Prototype . 66
6.5.1. Interprocess Communication on Android 66
6.5.2. External Service: TransferService 67
6.5.3. External Service: RepositoryService 70
6.5.4. User Interface . 71

6.6. Conclusion . 74

7. Evaluation 75
7.1. Applicability of SI File Transfer . 75

7.1.1. Test Environment and Methodology 75
7.1.2. Measurement of Transfer Time . 76

7.2. Evaluation of the Repository Architecture 76
7.3. Evaluation of the Implementation . 81

7.3.1. Server Side . 81
7.3.2. Client Side . 82

7.4. Conclusion . 83

8. Prospect 87
8.1. Possible Enhancements of the Prototype 87

x

Contents

8.2. Possible Enhancements of the Repository Architecture 87
8.2.1. Practical Comparison with other File Transfer Technologies 88
8.2.2. Practical Comparison with other Repository Models 88
8.2.3. Thinking Big: Replication and Partitioning 88

8.3. Coupling with other Media Repositories 89
8.4. Conclusion . 90

A. Appendix 91
A.1. XSD Schema of used custom IQs . 91
A.2. Data Source of the Performance Evaluation 94

Bibliography 109

List of Figures 112

List of Tables 113

xi

1. Introduction

The capabilities of mobile networks and handset devices has dramatically in the last few
years. Broadband mobile network technologies like UMTS, HSDPA or HSUPA allowing
high speed data connections are finally available for reasonable prices to end users. Ad-
ditionally, global players like Apple or Google joined the competition in the smart phone
market recently with the Android Operating System or the iPhone, intensivating compe-
tition, supporting innovation and lowering prices for those ubiquitous gadgets. On the
other hand, the so-called “Web 2.0” phenomena has achieved a social change in developing
for and using the web. The user is not longer solely involved as the consumer of contents
but rather of the creator.

Current development of mobile handset and network technologies suggests that the
“Web 2.0” will reach the mobile phone for a bigger amount of consumers in the near
future. That is mostly to the fact, that the mobile phone is permanent companion of
the owner. That way, the mobile phone is used as a content creation tool based on the
built-in camera. It’s use is huge and still growing. Compared to still cameras, mobile
cameras have been sold 4 times as much in 2008 and are estimated to reach a ratio of 7:1
in 2010 [art03]. The desire of the user to share this created content in social platforms
can be percieved when observing the Web 2.0 phenomena.

The conventional technologies to share mobile phone images are bluetooth, MMS or
email. Bluetooth relies on proximity and user-initiated device pairing and therefore is
fairly inflexible for a big or spacially distributed group formed by a social network. MMS
is to restricted in terms of file size, annotations and number of recieptients, and to cost
intensive. Even email is not vivid enough concerning the dynamics of mobile networks -
it does not allow any repository-like browsing or pull functionality.

Economy has percieved this need and social network providers offer the possibility of
content submission in their APIs. Of course, the submission will happen to the specific
social network only. Successing bluetooth and MMS, there is no current open standard
for ubiquitous media sharing. Instant messaging protocols, like Skype, ICQ or XMPP
define how to send files between single users and are partially already ported to mobile
operating systems but there is no method to share content using a central repository with
browsing, pulling and management functionality.

1.1. The Mobilis Project

The development of a mobile media sharing repository suggest integrating a media repos-
itory service into the architecture of the Mobilis platform. The Mobilis platform is a
server-client system using XMPP, the open Extensible Messaging and Presence Protocol,
as a communication protocol. The platform is developed within the Mobilis project, a
brasilian-german research project of TU Dresden’s chair of computer networks coorpo-
rating cooperating with the Pontif́ıcia Universidade Católica do Rio de Janeiro and the

1

1. Introduction

Universidade Federal de Minas Gerais in Belo Horizonte.
The goal of the Mobilis project is to develop a generalized and open framework for

mobile collaboration with a set of central services offered to the mobile clients via the
XMPP interface. In earlier work already a number of such services was developed: a mo-
bile tourist guide [Kor08a] (MobilisGuide), a geolocation service [DS09] (MobilisBuddy)
and a collaborative drawing application [Kor08b] (MobilisMapDraw) to mention a few.
Along with the development of the respective services matching sample mobile client ap-
plications were created. These clients are usually developed on top of the Google Android
Operating System and make use of the services based on a concrete user scenario.

The prototype developed within this thesis will uses the name Mobilis Media and
consists of the named media sharing service a sample client allowing picture sharing based
on a tourism scenario.

1.2. User Scenario: Travel Picture Sharing

Travel is only glamorous in retrospect.
– Paul Theroux, born 1941, US novelist, in The Washington Post

Reviewing and reminiscencing a past tourist trip is an activity highly enjoyed by trav-
elers and tourists. Pictures, which are taken during the journey are exchanged with travel
mates. They are shown to friends at home, shared with the world to give an impression
for future travelers or simply kept in a private library for personal memories.

During a voyage, it is desirable to have a tool at hand which can accomplish the ex-
changing and sharing task automatically. Given the advancements of mobile networks
and mobile phone cameras, the mobile phone camera might finally be used instead of still
image camera during a journey. Images taken with the mobile phone camera are also
tagged with a timestamp and are geotagged, if the mobile phone posesses a GPS sensor.
Hence, management of the metadata of the images should be taken into account.

The goal of this thesis is to develop such a tool as a prototype additional to theoretical
elaborations concerning a mobile media sharing repository. The tool should be able to
store taken pictures into the repository adding a user defined title and taken into account
metadata stored with the image. It should be possible to upload new pictures or replace
current ones as well as delete them. On the other hand, it should be possible to browse
existing pictures in an intuitive GUI. Remembering the geotagging feature, a map is a
possible artifact where images could be visualized.

1.3. Structure of this Thesis

Starting with chapter 2, this work lays the foundations of this work by introducing the
XMPP protocol and a set of possible protocols to allow file transfer or transfer of binary
data between entities. In the following chapter 3 related work is introduced which copes
with the task of mobile media repositories. Chapter 4 presents the requirements set to
the media repository and the client prototype. The actual media system is then designed
in chapter 5 and implementation specific issues are adressed in chapter 6. Chapter 7
evaluates the presented solution and chapter 8 finally concludes the accomplishments of
this work and gives a prospect for future work.

2

2. Foundations

Mobile media sharing can be split up into two general problems: file transfer, content
repository management and mobile collaboration. Earlier work in the Mobilis Project
(see section 1.1) has shown, that XMPP, a protocol for messaging and presence, suits
exeptionally well for the purpose of mobile collaboration, enabling cloud computing with
both the users and the services being equally participating entities of a XMPP session.
In this chapter, we will provide a brief introduction into XMPP in section 2.1.

Moreover, the basic task of this work is to find a proper file transfer and content
repository management technologies. That is why in section 2.2 we will present how
the XMPP comunity developed extensions to XMPP and which extensions would suit
well for our purpose of media sharing. We will contrast two general approaches: SI
File Transfer with Published Stream Initiation Request (2.2.1) and on the other side an
XMPP signalling protocol called “Jingle” (2.2.2). In section 2.3, we will introduce two
other technologies, Atom and WebDAV, which are commonly used for media sharing.
Finally, section 2.4 will compare introduced technologies side-by-side, especially examine
library support facilitating future development.

2.1. The XMPP Protocol

The Extensible Messenging and Presence Protocol (XMPP) is an implementation of the
Internet Engineering Task Force (IETF) model for near real-time instant messaging and
presence (e.g., buddy lists). Beyond, XMPP recently evolved into a protocol used in the
realm of message oriented middleware [Joh05]. Thus, it can be used in much broader
domains, e.g. shared editing or collaborative drawing - and file transfer. XMPP is an
open standard and many free and open source client and server implementations exist.
The origins of XMPP lie in the Jabber project, which was formed in 1998. IETF formed
an XMPP Working Group in 2002 and produced four specifications, which were approved
by the IESG as Proposed Standards in 2004. RFC 3920 [SA04a] and RFC 3921 [SA04b]
are currently undergoing revisions to promote them to a Draft Standard.

One of the key strengths of XMPP are built-in security mechanisms. Since XMPP is
an open standard, everybody can run their own XMPP server. XMPP servers can be
isolated from the public, so they can also be installed inside of a company network. The
XMPP core furthermore specifies robust security mechanisms like SASL or TSL to encrypt
the transport stream. The XMPP Standards Foundation also runs an own certification
authority at xmpp.net to encourage the use of channel encryption. Moreover, certain
security threats are defeated by automated identity check of connected users using a
dialback protocol.

Additionally, no multi-hop routing is possible. In email, if a server A needs to deliver a
message to server B the message might be routed via a number of itermediate servers Ci.
In XMPP, server A would perform an appropriate DNS lookup and then open a direct

3

2. Foundations

XMPP

Client

XMPP

Client

XMPP

Mobile

Client

client1@server.org

client2@server.org

client2@server.org

XML Streams

XMPP

Server

(server.org)
Message

Presence

Get/Set
IQ

IQ

IQ

IQ

Result/Error

XEP1

XEP2

XEP3

Figure 2.1.: A basic XMPP architecture scenario

connection to the server B. This prevents changes of the messages along the way, so that
addresses cannot be modified. On the other hand, it means that XMPP servers have to
maintain “always-on” connections to the network, i.e. more reliable uptime than email
servers.

XMPP users communicate via an XMPP-address similar to an email-address. The
XMPP-address is formed out of an username and the XMPP server’s domain, both sepa-
rated by an “at” sign (“@”). Multiple server logins are allowed by definition. The distinc-
tion between multiple clients connected to the same XMPP-address is made by appending
a ressource identifier immediately following the address after a slash (“/”).

After connection establishment and possible encryption and authorization initializa-
tion, information is exchanged on top of the TCP/IP protocol as two XML streams, one
transmitting client-to-server and one server-to-client. A transmission unit exchanged from
client to server or vice versa is called stanza: each stanza is a well-formed piece of XML,
carrying at least the information about sender, receiver and identifier. Further on, stanzas
are devided into three classes: Message, Presence and Info/Query. The meaning of every
stanza type is illustrated in figure 2.1 showing a scenario with one server three clients by
bidirectional XML streams. We will detail each stanza type in the following sections.

2.1.1. Message

A Message can be seen as pushed data from one entity of the XMPP network to another. In
Instant Messanging scenarios, this usually corresponds to a chat message sent to another
user with a body part similar to an email. But messages can be used also in other
scenarios, for example when notifying XMPP entities about an event, for which the entity
has subscribed.

A basic message stanza would be looking like this:

<message from=’juliet@shakespeare.lit/balcony ’

to=’romeo@shakespeare.lit/yard’

id=’m940AE74 ’>

O romeo ...

4

2.1. The XMPP Protocol

</message >

Notice, how a random unique number is assigned to the message and the sender and
recieptient of the message are defined as attributes of the <message/> tag. The actual
payload of the <message/> tag is not restricted to plain text but can rather be any well-
formed XML content – possibly qualified by an xmlns attribute. For example, in case of
event notification in the publish/subscribe extension [MSAM08], the message body would
consist of an <event/> tag containing the event information.

2.1.2. Presence

Presence Information can generally be regarded as multicast information of the user to the
XMPP network. In particular, multicast would mean delivery to all addresses which have
subscribed to a user’s presence updates by having the specific user on their buddy list, in
XMPP terms called “roster”. The roster – and also the delivery of presence multicasts – is
managed by the server. In instant messaging scenarios, a Presence stanza would contain
all information about the users current context, like availability (online/offline/away/...),
status message, location or any other relevant data.

The <presence/> tag contains a type attribute describing the overal presence state
of the sender, which is mentioned in the from attribute. A corresponding example of a
presence tag is:

<presence from=’juliet@shakespeare.lit/balcony ’ type=’

unavailable ’/>

2.1.3. Info/Query

Info/Query (IQ) stanzas are a mean to realize a request-response mechanism between
any two XMPP entities. IQ stanzas can be on either of the type get, set, result or
error. Therefore, each get- or set-IQ (request) has to be answered by a result- or error-IQ
(response). The IQ stanza contains usually custom XML as child element describing the
information which is to be obtained (get) or changed (set) and the answer in a positive
(result) or negative case (error).

A well-known application of IQ-stanzas is the service discovery used to identify the
capabilities offered by an XMPP entity, that is, a list of feature sets explaining which
particular stanzas a XMPP entity can understand. [HMESA08] An XMPP entity would
request information from another entity about which XMPP extension this entity sup-
ports. This is done using a get-IQ, containing a <query/> tag qualified by an appropriate
xmlns attribute showing that the query is about service discovery:

<iq from=’romeo@shakespeare.lit/yard’

to=’juliet@shakespeare.lit/balcony ’

id=’m940AE76 ’ type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>

</iq>

The receiver would normally reply sending back a corresponding result-IQ (with the
same id attribute):

5

2. Foundations

<iq from=’juliet@shakespeare.lit/balcony ’

to=’romeo@shakespeare.lit/yard’

id=’m940AE76 ’ type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>

<feature var=’urn:xmpp:jingle:1 ’/>

<feature var=’urn:xmpp:jingle:apps:rtp:1 ’/>

<feature var=’urn:xmpp:jingle:apps:rtp:audio ’/>

<feature var=’urn:xmpp:jingle:apps:rtp:video ’/>

</query >

</iq>

The answer contains a list of“features”the entity supports. Features are qualified by the
identifier of an XML namespace mentioned in the var attribute. This namespace concept
is inherent to all XMPP extensions. Every XMPP extension belongs to a namespace. If
the entity supports an extension, it should mention its namespace upon service discovery.
There is a number of extensions standardized by the XMPP community and we will
introduce some of them in section 2.2. However, defining your own proprietary namespaces
is also possible.

When using an extension, i.e. sending a stanza which is characteristic to the extension,
the extension-specific tags are qualified by the respective namespace using an xmlns at-
tribute. This is a well-known concept in every extension. In chapter 2.2 we will oftenly
mention “qualified elements”, which means elements (tags) with a xmlns="..." according
to the namespace of the Extension. In our example above, Juliet supports the Jingle
protocol (which we will describe in section 2.2.2). Here is a Jingle-related IQ – notice,
how the Jingle payload is qualified with the correct namespace (“urn:xmpp:jingle:1”):

<iq from=’juliet@shakespeare.lit/balcony ’

to=’romeo@shakespeare.lit/yard’

id=’m940AE77 ’ type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’

action=’session -initiate ’

initiator=’juliet@shakespeare.lit/balcony ’

sid=’a7840fe940ece580 ’>

<!-- ... -->

</jingle >

</iq>

2.2. The XMPP Extension Protocols

On top of the above mentioned building blocks, the XMPP community has developed
further specifications to standardize XMPP communication in various areas like file shar-
ing, collaborative drawing, event publication/subscription, avatars and much more. Each
standard is published as a so-called XMPP Extension Protocol (XEP) which runs through
a commonly agreed standardization process.

Below, a few XEPs related to media exchange and sharing are introduced. We con-
centrate on two broad concepts: First, in subsection 2.2.1, we step-by-step introduce a
technology called SI File Transfers with Published Stream Initiation Requests. Second,

6

2.2. The XMPP Extension Protocols

Jingle Transport

Methods Jingle Application Types

XEP‐0176 RTP Sessions

XEP‐0262

ZRTP

XEP‐0262

Codecs

XEP‐0065

SOCKS5

Bytestreams

XEP‐0047

In‐Band

Bytestreams

XEP‐0137

Publishing SI Requests

XEP‐0060 Publish/Subscribe

XEP‐0260

Jingle SOCKS5

Bytestreams

XEP‐0260

Jingle In‐Band

Bytestreams

XEP‐0269

Early

Media

XEP‐0166

Jingle Core

XEP‐0137

SI File Transfer

XEP‐0095 Stream Initiation

XEP‐0095 Bidirectional‐streams Over

Synchronous HTTP (BOSH)

Fallback

Fallback

XEP‐0234

File Transfers

XEP‐0247

XML Streams

XEP‐0181

DTMF XEP‐0176

Jingle ICE UDP

XEP‐0177

Jingle Raw UDP

Fallback Packet‐

loss

yes

no

Figure 2.2.: Selected XEPs for media transport and their interdepencies.

7

2. Foundations

in subsection 2.2.2ff., we will have a look at a more sophisticated and advanced stream
initiation protocol “Jingle” and present it as an alternative to the approach mentioned
before. Figure 2.2 shows both set of XEPs, the SI File Transfer XEPs sitting on top
of XEP-0095 “Stream Initiation” and the Jingle XEPs, building on their core XEP-0166
“Jingle Core”.

2.2.1. SI File Transfers with Published Stream Initiation Requests

The need to develop an extension to exchange binary data was percieved early by the
XMPP community. Already 2002, it was possible to exchange URLs of external resources
using the Out Of Band Data extension. Later, XEPs were published, which allowed
controlled streams of binary data: first as In-Band Bytestreams, later using out-of-
band SOCKS5 Bytestreams. Around those streaming methods, a standard called
Stream Initiation was developed for initiating a bytestream independent from streaming
method and application. Different applications, like SI File Transfer, were classified in
profiles and standardized. Now, push-like file transfer was possible with XMPP. Another
extension, called Publishing Stream Initiation Requests, made pull-like transfers
possible by allowing information about a stream to be published to interrested subscribers
or to a repository. In this subsection, we will step-by-step introduce every of the mentioned
extensions and their functionality.

XEP-0066: Out Of Band Data

The first XMPP extension protocol specified for binary data exchange was XEP-0066
[SA06]. It provides a mean to inform XMPP entities about available ressources under a
certain URL. It is the receiving entities responsibility to retrieve the data from this URL,
if desired. This method can still be used in file transfer scenarios as a fallback solution, if
more sophisticated technologies fail.

The URI is communicated by a Set-IQ with a qualified <query/> element which then
contains a <url/> and optionally a <desc/> element which hold the URI and the metadata
of the shared resource respectively. The receiver of this Set-IQ will retrieve the ressouce
and send an empty Result-IQ, if it succeeds.

The XEP specifies more advanced technologies, where this combination of <url/> and
<desc/> may be used: for example, it can be included inside data forms [EHM+07]. Data
forms are a mechanism similar to web forms, which are exchanged between and filled
out by XMPP entities to communicate arbitrary record-like information between XMPP
entities. With the combination of Out Of Band Data and Data Forms it is possible to
exchange complete files inside of Data Forms, similar to the “Choose file...” field of web
forms. Furthermore the XEP provides a mean to include the out-of-band transport inside
of Stream Initiation Requests [MME04b], which will be detailed later in this section.

XEP-0047: In-Band Bytestreams

In-Band bytestreams [KSA09] send binary data directly along the XMPP channel. Since
the XMPP channel is pure XML, the stream has thus to be base64-encoded. This results
in a large overhead and high server load. For those reasons, that technology is - especially

8

2.2. The XMPP Extension Protocols

in the mobile sector - only a fallback option but may still be used in other low-bandwidth
applications like games, shell-sessions or encrypted messaging.

An in-band bytestream is initiated by a Set-IQ with an qualified <open/> element. The
<open/> tag provides all necessary information, like block-size, a sid which is unique for
this transfer and the attribute stanza, which describes, if IQs (iq) or messages (message)
should be used to exchange the actual data. IQs should be preferred, since they are always
acknowledged by Result-IQs. The receiving entity confirms the opening of the stream with
an empty Result-IQ.

After the stream is opened, it may be used bidirectionally. Chunks of data are exchanged
by the two participating entities inside of Set-IQs with <data/> elements containing the
base64-encoded data. Each <data/> element is tagged with a seq and sid attribute which
identify the data chunck’s stream and its position inside of the stream. Finally, the stream
may be closed by either party with a <close sid="..." /> element.

XEP-0065: SOCKS5 Bytestreams

SOCKS5 Bytestrams xep:0065 are a mean to initiate a out-of band binary connection
between two XMPP entities. It is NAT-safe (Network Address Translation) since it uses
the SOCKS5 protocol which makes it possible to mediate the connection through so-
called StreamHosts, which are nothing else than SOCKS5 proxies enhanced by XMPP
functionality.

The SOCKS5 protocol rfc:1928 is an internet proxy protocol between application and
transport layer. It makes it possible for any client-server application to use the services of a
so-called SOCKS proxy server transparently and independently from the actual underlying
protocol. That means, if both clients are behind a NAT, they can connect to a SOCKS
proxy and exchanged data is transparently forwarded to the opposite entity. A SOCKS
connection is established by the client sending first its supported authentication methods
to the server. Then, the server chooses one authentication method and replies. The
client authenticates and then issues a connection request containing, among others, the
destination address, port and used protocol (TCP open, TCP accept or UDP). The server
finally confirms the connection request.

The initiation of a SOCKS5 Bytestream via XMPP is as follows (see figure ...):

1. The initiator queries the target for SOCKS5 bytestream support.

2. The initiator tires to find a StramHost using service discovery by querying its
XMPP server for a list of potential StreamHosts and then querying each poten-
tial StreamHost to find out, if it really is a StreamHost.

3. The initiator requests the full network address from the StreamHost using a Get-IQ
with a qualified <query/>.

4. The StreamHost replies with an respective Result-IQ whose <query/> contains a sid

attribute used as an unique identifier from now on and furthermore a <streamhost/>

child elements with information about host and jid.

5. The initiator informs the target about all gathered streamhosts by sending a Set-IQ
with a list of <streamhost/> elements inside an appropriate qualified <query/>

element.

9

2. Foundations

Initiator
SOCKS5

Proxy
Target

Discover full network address (Get‐IQ)

Propose Bytestream (Set‐IQ: JID & network address of StreamHost(s), stream ID)

Open TCP connection

Open SOCKS5 connection,

DST.ADDR, DST.PORT

Open TCP connection

Open SOCKS5 connection,

DST.ADDR, DST.PORT

Activate bytestream (Set‐IQ: stream ID)

Acknowledgement (Result‐IQ)

Bytestream activated – data is now relayed between Initiator and Target.

Initiator and Target are using the bytestream

Answer (Result‐IQ: streamhost network

address)

Streamhost used (Result‐IQ: stream ID, streamhost used)

(3.)

(5.)

(4.)

(6.)

(7.)

(8.)

(9.)

(10.)

(11.)

Figure 2.3.: SOCKS5 Bytestreams negotiation

10

2.2. The XMPP Extension Protocols

6. The target tries to connect to one of the StreamHosts by opening a SOCKS5 TCP
connection. The reported SOCKS5 destination address (DST.ADDR) is the SHA1-
encrypted concatenation of sid, initiator JID and target JID. The destination port
(DST.PORT) is set to 0.

7. The target notifies the initiator about the used StreamHost by sending a Result-IQ
containing an appropriate qualified <query/> element with a <streamhost-used/>

subelement.

8. The initiator opens a SOCKS5 TCP connection to the StreamHost. The destination
address (DST.ADDR) and port (DST.PORT) are set like in (6.). That way, the
server can be sure that both the initiator and the sender are willing to accept the
connection.

9. The initiator opens the bytestream by sending a Set-IQ with an appropriate qualified
<query/> tag containing an <activate/> tag.

10. The StreamHost activates the bytestream and replies with a Result-IQ.

11. The media may now be exchanged over the TCP connection via the SOCKS5
StreamHost.

There are situations, where the use of a StreamHost is not necessary, that is, when
NAT is not applied and a direct TCP connection between the both XMPP entities can
be established. In this case, the protocol flow is simplified: Only steps (5.) and (7.)
are executed where the initiator itself is advertised as the StreamHost. Afterwards, the
initiator will activate the bytestream and the media may be be exchanged over the TCP
connection.

XEP-0095: Stream Initiation

The methods presented inside this section up to now are rather different streaming meth-
ods where different forms of streamed communication may be executed on top. There has
been little told about stream negotiation and metadata exchange. This is the scope of
XEP-0095 about Stream Initiation: it negotiates an out-of-band content stream between
any two XMPP entities, i.e. choses the streaming method, provides sufficient metadata
in advance and may be used for file transfers, audio/video chat and other applications.

Streams are initialized by a Set-IQ from the initiator containing a qualified <si/>

element. The content of the <si/> element has two parts. Firstly, it contains a so-called
profile, which describes the use case of the bytestream and its metadata. This may, for
example, be a qualified <file/> element in case of file transfer. Secondly, it contains
a qualified <feature/> element by http://jabber.org/protocol/feature-neg. This
element posesses a <x/> tag carrying a data form [EHM+07] which is used to negotiate
the file streaming parameters, i.e. the streaming method used. The data form may offer
several possible methods from which the responder will choose one. One example of a
complete Set-IQ might look like (taken from [MME04b]):

<iq type=’set’ id=’offer1 ’ to=’receiver@jabber.org/resource ’>

<si xmlns=’http:// jabber.org/protocol/si’ id=’a0’

11

2. Foundations

mime -type=’text/plain ’

profile=’http: // jabber.org/protocol/si/profile/file -

transfer ’>

<file xmlns=’http:// jabber.org/protocol/si/profile/file -

transfer ’

name=’test.txt’ size=’1022’>

<desc>This is info about the file.</desc>

</file>

<feature xmlns=’http:// jabber.org/protocol/feature -neg’>

<x xmlns=’jabber:x:data ’ type=’form’>

<field var=’stream -method ’ type=’list -single ’>

<option ><value>

http: // jabber.org/protocol/bytestreams </value ></option >

<option ><value>

jabber:iq:oob </value ></option >

<option ><value>

http: // jabber.org/protocol/ibb</value></option >

</field >

</x>

</feature >

</si>

</iq>

Here, the responder has the choice between SOCKS5-bytestreams, Out-Of Band Data
and In-Band Bytestreams. In the case of success, the receiver will respond by with Result-
IQ having a similar <si/> element with a filled-out data form. The stream will then be
opened according to the chosen streaming method.

XEP-0096: SI File Transfer

The SI File Transfer XMPP extension protocol [MME04a] finally adds metadata to a file
transfer and provides, together with the streaming methods and negotiation technolo-
gies presented before, the possibility to carry out seamless file transfers, enhanced with
metadata, reliable, even via NATs and optionally even featuring ranged transfers.

XEP-0096 defines a profile to be used with Stream Initiation Requests, which announces
a file transfer: An appropriately qualified <file/> element may be specified inside a
stream initiation request (<si/>). This element contains attributes with metadata of the
file (size, name, date, hash) and optionally a <desc/> element to provide a human-
readable description plus an empty <range/> element to indicate support for ranged
transfers which makes it possible for the receiver to specify offset and length when
requesting a portion of the file.

XEP-0137: Publishing Stream Initiation Request

XEP-0137 [MM05] introduces a pull model for streams by bringing the XMPP exten-
sion “Publish-Subscribe” [MSAM08] and Stream Initiation Requests together. Publish-
Subscribe is a generic XMPP extension to allow entities to publish items to a PubSub
service. The item is published to a node, which covers an area of interest. Other entities

12

2.2. The XMPP Extension Protocols

may subscribe to this node and receive events when new items are published. An entity
may also create new nodes or subnodes or delete them. In fact, the PubSub-service hosts
a whole node-tree. Entities may query the service for its nodes or for the published items.
Owners of a node – i.e. entities which created that node – may query or manage sub-
scriptions to their node or modify the items inside of the node. Subscriptions and nodes
may be configured using Data Forms [EHM+07] to specify the behaviour of the PubSub
service regarding the notification or access control.

By combining both PubSub and Stream Initiation Request, one gets a powerful model
to publish links to binary ressources in a hierarchic content repository. Note, that only
Stream Initiation Requests are published, the data itself is located elsewhere. It is re-
trieved from the publisher, when the stream is initiated based on the published Stream
Initiation Request stored in the PubSub-tree and retrieved from subscribers or from en-
tities which browse that tree.

A generic publish-IQ is a Set-IQ with a qualified <pubsub/> element containing a
<publish/> element. In the case of Stream Initiation Requests, <publish/> posesses
a <sipub/> element, which is similar to <si/> but does not contain any feature negotia-
tion. The <sipub/> element is then pushed to all subscribers in accordance to “Publish-
Subscribe” using XMPP-Messages containing an <event/> with a list of <items/> and
the <sipub/> inside of a final <item/>. Note, that this is not the real stream initiation
request yet but only a notification, that there is such a source available at the respective
entity.

After the subscriber has recieved the <sipub/> notification, it may request the actual
Stream Instantiation from the initiator. This is done by sending a Get-IQ with <start

sid="..." /> to the initiator. The initiator will answer with a Result-IQ containing a
similar <starting/> element and will then issue the actual Stream Initiation Request
(<si/>) in accordance to “Stream Initiation” described earlier [MME04a].

2.2.2. Jingle – An XMPP Signalling Protocol

Jingle is a signaling protocol first introduced to allow simple video and voice chat. It
is specified in XEP-0166 [LBSA+09]. It resembles the Session Initiation Protocol (SIP)
[RSC+02] and was introduced after a long discussion inside the XMPP community which
showed that two-stack clients working on both SIP and XMPP are difficult to realize.
However, interworking of Jingle entities with SIP entities is made possible since many
Jingle-related XEPs define direct mapping between SIP and Jingle so that translating
gateways can be developed easily.

Jingle was designed with a maximum of flexibility concerning application types (i.e.,
what data is transmitted - voice/video chat, file transfer etc.), transport methods (i.e., how
the data is transmitted - via UDP, TCP, Socks 5 etc.) and security preconditions. The
XMPP core leaves the specification of those technologies to further XEPs while specifying
only a common template to which all the related specifications have to comply. We will
have a look onto application types in subsection 2.2.4 and onto transport methods in
subsection 2.2.3. Further design goals of Jingle was strict separation of signalling from
data, lightweighted clients and the support of session management functions.

A basic Jingle stanza is usually an IQ containing a qualified <jingle/> tag with at-
tributes such as action, initiator, responder or sid (session-ID). action takes a spe-

13

2. Foundations

PENDING

session_initiate

content‐accept

content‐add

content‐modify

content‐reject

content‐remove

description‐info

session‐info

transport‐accept

transport‐info

transport‐reject

transport‐replace

ACTIVE

session‐accept

content‐accept

content‐add

content‐modify

content‐reject

content‐remove

description‐info

session‐info

transport‐accept

transport‐info

transport‐reject

transport‐replace

session‐terminate

ENDED

Figure 2.4.: The Jingle protocol states.

cial role, since it defines how one XMPP user wishes to modify the session with their
counterpart.

The <jingle/> element itself usually contains one or more <content/> elements -
one for each stream to be established. The <content/> element then consists of one
<description/> and one <transport/> element, specifying the application data (the
“what”) and the transport method (the “how”). Application data is further described by
a <payload-type/> subelement and a transport method by a <candidate/> subelement.

A basic Jingle session passes through the 3 states “pending”, “active” and “ended” (see
figure 2.4.

1. After resource determination, the initiator sends an Set-IQ initialization request to
the responder (action="session-initiate"). The responder has to answer with
an Result-IQ or an Error-IQ. In the case of succes, the session is in the transits to
the state “pending”.

2. Now, further negotiation can be performed, like adding/removing/editing transports
or contents (action="transport-info", transport-replace, content-modify,
content-add, content-replace).

3. Then, the session will be accepted by the responder (session-accept IQ-set), which
will be acknowledged by the initiator (IQ-result). The sender will choose a subset
of listed <payload-type/>s and <transport/>s which she supports herself. The
session is now in the state of being “active”.

4. Even after, further modifications to transports and contents can be carried out.

5. Finally, one party will end the session (session-terminate IQ-set with <reason/>

element). Also this will be confirmed with a IQ-result.

14

2.2. The XMPP Extension Protocols

During the whole session process, informational messages with action="session-

info" can be sent, e.g. the IQs containing a <ringing/> tag are used to signalize that
the session initiation was received but not accepted yet.

2.2.3. Jingle Transport Method Specifications

XEP-0176: Jingle Raw UDP Transport Method

XEP-0176 defines a transport method for establishing and managing out-of-band sessions
using raw-UDP between two entities defined by their IP address and port. This transport
method is applicable where some packet loss is tolerable, e.g. in audio/video chats. Raw-
UDP works as a “hit-or-miss” protocol: the transfer might work end-to-end, especially
when the sending entity is a gateway / relay, e.g. when the back-to-back user agent sends
an early media offer to the initiator on behalf of the responder.

XEP-0177: Jingle ICE-UDP Transport Method

XEP-0177 defines a transport method for establishment and management of out-of-band
sessions using ICE-UDP. ICE-UDP stands for Interactive Connectivity Establishment
and is suitable for the use of media applications communicating over Network Address
Translators (NATs), where some packet loss is tolerable. ICE-core is currently available
as a RFC draft [Ros07]. However, this RFC focusses on sessions negotiated via SIP, while
XEP-0177 makes the use of ICE-UDP possible with XMPPs signalling protocol Jingle.
XEP-0177 specifies furthermore a mapping between SIP and Jingle in this particular case.

XEP-0260: Jingle SOCKS5 Bytestreams Transport Method

The Jingle SOCKS5 Bytestream Transport Method (XEP-0260 [SAM09]) brings together
the SOCKS5 Bytestream Protocol defined in XEP-0065 [SMSA07] (see section 2.2.1) and
the Jingle protocol defined in XEP-0166 [LBSA+09]. With this extension, it is possible
to instantiate Jingle Sessions in accordance to the Jingle protocol with data flowing over
SOCKS5 Bytestreams.

XEP-0261: Jingle In-Band Bytestreams Transport

The Jingle In-Band Bytestream Transport Method (XEP-0261 [SA09c]) combines In-
Band Bytestreams defined in XEP-0047 [KSA09] (see section 2.2.1 and the Jingle protocol
defined in XEP-0166 [LBSA+09]. With this extension, it is possible to instantiate Jingle
Sessions in accordance to the Jingle protocol with data flowing directly over the XMPP
channel itself, that is, not over any signalling channel. Because of that, this transport
method should be only a failsafe solution. The In-Band Bytestream Transport Method is
a lossless transport method.

2.2.4. Jingle Application Format Specifications

XEP-0167: Jingle RTP Sessions

XEP-0167 [LSAE+06] describes an application format for negotiating Jingle RTP media
sessions and complies to the standard template for Jingle application formats defined

15

2. Foundations

alongside with the Jingle core specification in XEP-0166 [LBSA+09]. Special attention
has been paid to the coverage of all possible RTP-parameters and their mapping to SDP.
Also, all necessary informational messages (e.g. ringing, on hold, mute) are defined.

The Jingle RTP application format is usually used with datagram transports (raw-UDP
as in XEP-0177 or ICE-UDP as in XEP-0176, see subsection 2.2.3) if the media is light
and the latency low – this may, e.g., apply to streamed media. Usually, the transported
content consists of two components: an RTP channel (1) and an RTCP channel (2).

XEP-0262: Use of ZRTP in Jingle RTP Sessions

ZRTP [Ros07] is a variant of RTP supporting secure RTP transmission. It can be used
as an alternative to the Secured Real Time Protocol (SRTP). Negotiating ZRTP happens
rather on the signal level base. However, in the SDP protocol a zrtp-hash attribute is
required with ZRTP which communicates version and Hello Message.

XEP-0262 describes how this SDP attribute translates to Jingle. In Jingle, a session-

info action would be sent after session initiation, containing a <zrtp-hash/> element.

XEP-0266: Codecs for Jingle RTP Sessions

XEP-0266 [SA09a] is strictly informational and provides suggestions about which codecs
a Jingle entity should support. Since codecs are often subject to patents, the discussion
about this topic has been very controversial in the XMPP community. In XEP-0266, some
audio and video codecs are discussed according to criterias like quality, RTP packetization
standard, cross-platform availability and patents. The audio codecs mentioned are Speex
and G.711, the video codecs are Theora, Dirac and H.264.

The extension protocol suggests, that support for patent-clear, freely implementable
and commonly deployed codecs should be supported. For audio, this would apply to
both Speex and G.711. For video, no recommendation can be made yet, but Theora and
Dirac are seen to have the most chances for the future, when they are deployed to more
platforms.

2.2.5. File transfers and XML Streams using Jingle

XEP-0234: Jingle File Transfer

XEP-0234 [SA09b] shall improve SI File Transfer defined in XEP-0096 [MME04a] (see
section 2.2.1, “File Transfer using Stream Initiation Requests”). The XMPP community
identifies two drawbacks in that early standard: first, it supports no negotiation of File
Transfer parameters but only acceptance or denial. Second, it is the only technology
which uses Stream Initiation Requests – instead, one could use Jingle, which is much
more powerful.

The extension protocol defines how the Jingle Protocol defined in XEP-0166 [LBSA+09]
and the file description format in “SI File Transfer” (XEP-0096 [MME04a]) work together
and describes a clear update path how to move from SI File Transfer to Jingle File
Transfer.

File transfer is usually accomplished using the SOCKS5 or the In-Band transport meth-
ods of Jingle (see section 2.2.3), since loss of data is not tolerated. The XMPP community

16

2.3. Second-Stack Technologies

announces the development of another transport method, ICE-TCP, to provide more ef-
fective TCP transport over NAT.

A file transfer is initiated like every other Jingle session by sending a set-IQ with a
<jingle/> tag with action="session-initiate". The <description/> subtag will
contain a <offer/> or <request/> element, depending on if the file is pushed or pulled
from the initiator. This element then contains a qualified <file/> element. The <file/>

element describes the file according to the structure defined in XEP-0096 [MME04a].

2.2.6. Further XEPs concerning Jingle

XEP-0181: Jingle DTMF

XEP-0181 [PSA08] defines an extension for XMPP to send Dual Tone Multi-Frequency
(DTMF) events for dialing and issuing commands, e.g. of interactive voice response
applications. Normally native RTP methods (like“audio/telephone event”or“audio/tone”
media type) should be preferred, but when communicating with RTP-unaware entities,
e.g. gateways to the PSTN, this protocol may be used. A DTMF event is signalled by
sending a <jingle/> set-IQ with action="session-info", which contains a tag of the
following structure:

<dtmf xmlns=’urn:xmpp:jingle:dtmf:0 ’ code=’0-9,#,*,A-D’

duration=’milliseconds ’ volume=’0-63’/>

XEP-0269: Jingle Early Media

Jingle Early Media, defined in XEP-0269 [CSA09], defines a mean of exchanging me-
dia before the session is definitively accepted. It is comparable with the SIP header
Early-session and accomplished using a content-add Jingle action. The media may
be generated by the initiator or an intermediary. If an intermediary generates the early
media, it has to use a codec and a transport method advertised by the initiator. This
protocol may be used when dealing with ringtones or announcements using audio streams
or Dual Tone Multi Frequency events (DTMF).

2.3. Second-Stack Technologies

This section will concisely present two other technologies – WebDAV (2.3.1) and the Atom
Publishing Protocol (2.3.2). We name these protocols “Second-Stack Technologies” since
they are independent from XMPP, which is used in the Mobilis Project. The use of those
second-stack technologies would definitively require either wrapping or changing of the
protocol fragments to fit into the XMPP stanza concept or it would require to introduce
a second protocol stack and negotiation between XMPP and the respective protocol. We
will also shortly motivate, how this can be done.

2.3.1. WebDAV

The WebDAV protocol (Web based Distributed Authoring and Versioning Protocol) is
an extension to the Hypertext Transfer Protocol 1.1 (HTTP) which removes certain re-

17

2. Foundations

strictions of the classical HTTP protocol. Originally, HTTP only allows Get and Post
Request, i.e. downloading and uploading of information. WebDAV is developed by the
WebDAV Working Group, the DASL Working Group and the Delta-V Working Group
of the Internet Engineering Task Force. It is specified by numerous RFCs, mainly RFC
4918 [Dus07].

WebDAV adds support for much more operations like deletion, directory creation
or modification or even versioning. To be precise, the following methods are added:
PROPFIND (to access the metadata of a ressource), PROPPATCH (to modify the metadata of
a ressource), MKCOL (to create a directory – called“Collection” in WebDAV), COPY (to copy
a ressource), MOVE (to move a ressource), LOCK (to disallow modifications of a ressource
temporarily), UNLOCK (to remove a lock).

More complex technologies, like the version controlling system Subversion [Ste02] are
based on WebDAV. There is also a WebDAV extension called CalDAV [web08] which
makes it possible to manage a calendar using the WebDAV protocol – this extension is
specified in RFC 4791 [DDD07] and used e.g. by Google Calendar [Goob].

On the one side WebDAV seams like a promising technology: It is wide-spread – sup-
ported in many desktop operating systems like Windows XP and Linux – and first appli-
cations have been built which bring WebDAV to mobile phones (see section 3.2 and 3.5).
WebDAV can handle the transport of binary data like HTTP can do – without the need of
base64-encoding. When integrating WebDAV into an XMPP protocol stack, one can use a
dedicated repository server to store the media ressources and use e.g. Out-Of-Band Data
(see section 2.2.1) to communicate the URLs of the ressource. A very similar approach to
managage binary ressources inside of collaborative documents has been taken by Google
with their product Google Wave – we will present this solution in more detail in section
3.6.

However a WebDAV repository has the drawback. It uses a directory structure as the
underlying ressource classification system. This concept is too restrictive. What we are
looking for is an architecture, which distributes ressources according to it’s metadata – not
according to a physical location like a webserver path. Also, there are no open frameworks
for WebDAV available except Jakarta SLIDE 1, which is discontinued.

2.3.2. Atom Publishing Protocol

The Atom Syndication Format (ASF) is a standard for platform independent information
exchange and an alternative to RSS (Really Simple Syndication) [webe]. On top of that,
the Atom Publishing Protocol (AtomPub or APP) is a platform independent XML format
for editing web ressources. It was originally developed to provide a mean for webfeed
administrators to publish feed items to an Atom feed in a standardized way. Today, it is
standardized by the IETF in RFC 5023 [Gdh07].

The Atom Publishing Protocol runs on top of the HTTP protocol. A client, who is
interested in publishing an entry to a collection first retrieves a so-called service document
via HTTP-GET from a dedicated URL. This service document is from the content type
application/atomserv+xml and contains one single <service/> element with one or
more <workspace/> element containing <collection href="..." />” elements. The

1http://jakarta.apache.org/slide/

18

http://jakarta.apache.org/slide/

2.4. Conclusion

client will then issue a POST request to the address specified in href. Also requests like
DELETE are possible.

The idea of collections makes the Atom protocol more attractive for the use with
metadata-driven content repositories, since the APP server may decide itself, where it
should put the uploaded content and in which context it should offer the ressource to
other participants. However, certain other drawbacks limit the use of APP in our situ-
ation: firstly, APP was developed for XML data where Media sharing, especially image
sharing handles pure binary data. Secondly, again, APP is a protocol which needs a sepa-
rate web server and thus a second protocol stack. And thirdly, library support in this area
is not mature yet and there have been no efforts to bring APP to a mobile platform. Two
libraries on java basis have been published to our knowledge: ROME propono, currently
available in version 0.6 2 and Apache Abdera, currently available in version 0.4 3.

2.4. Conclusion

In this chapter, we introduced four possible technologies to allow media sharing in collab-
orative environments: SI File Transfers with Published Stream Initiation Requests (2.2.1)
and Jingle File Transfers (2.2.5) as a solution integrated into XMPP as well as WebDAV
(2.3.1) and the Atom Publishing Protocol (2.3.2) as second-stack technologies. Table 2.1
summarizes the insights made in this chapter according to support of metadata-driven
repositories, a suiting transport method for media sharing purposes and library support
for mobile applications.

Metadata-driven
repositories

Suiting Transport
Method

Library support

SI FT Yes SOCKS5 Smack
Jingle FT Yes SOCKS5, later: ICE-

TCP
Not available

WebDAV No HTTP Apache Slide (discon-
tinued)

APP Yes HTTP Rome Propono,
Apache Abdera (un-
sure)

Table 2.1.: Overview of presented technologies

2http://wiki.java.net/bin/view/Javawsxml/RomePropono
3http://abdera.apache.org/

19

http://wiki.java.net/bin/view/Javawsxml/RomePropono
http://abdera.apache.org/

3. Related Work

Media sharing, or more general, file sharing on mobile devices is a widely discussed topic in
the academic as well as in the economic sector. However, there are only a few elaborations
who combine media sharing techniques with social collaboration mechanisms provided by
mobile systems and, in particular, XMPP.

In the following section, we want to present a selection of promissing solutions. We
will start by discussing academic papers. In section 3.1, we will introduce the work of
Belimpasakis et al. [BLB07], who developed an independent content sharing middleware
which can connect to a given list of content repositories. Then, in section 3.2, we will
present a paper from Tolvanen et al. [TSLA06] who integrated remote file systems into
the mobile device. Section 3.3 shows the work of Martuszewski et al. [MBLH06], who
implemented a distributed file sharing service using on the Session Initiation Protocol.
Section 3.4 introduces the work of Sarvas et al. [SVPN04] who outlined how to build up
a collaborative photo album enhanced with contextual metadata provided by the mobile
phone.

In section 3.5 and 3.6, we will present recent approaches from the economic sector: first,
we introduce file sharing applications for mobile devices running on the Google Android
platform (3.5) and second, we will present how the transfer and storage of binary data
is handled in a new collaborative tool called Google Wave (3.6). Section 3.7 concludes
this chapter and compares presented work to our vision of a collaborative media sharing
repository.

3.1. Belimpasakis et al.: Content Sharing Middleware for
Mobile Devices

Belimpasakis et al. [BLB07] focus on the use of smart phone cameras as primary source
of digital images to be shared. Like us, they distinguish between two primary use cases:
sharing media with third party servers which act as intermediary hosts (e.g. Flickr) and
sharing media device-to-device (e.g. based on proximity based ad hoc networks or based
on remote connections).

In their work, they develop a middleware, which abstracts from specific sharing proto-
cols and lets the user connect to arbitrary sharing repositories to browse or search them
or to upload and download files. Also aggregated browsing across multiple repositories is
possible. The middleware consists of the following parts (see figure 3.1:

1. An API which provides a common interface of the functionality offered by all shar-
ing protocols to third party applications (“sharing applications”). This includes
methods for uploading and downloading media, (aggregated) browsing a repository
or accessing media’s metadata (like EXIF-metadata or thumbnails).

21

3. Related Work

Plug‐in API

Service API

Application Application Application

Sharing Middleware Settings /

Credentials

UPnP Atom WebDAV WebDAV

Access Bearers

Figure 3.1.: Sharing Middleware Simplified Design

2. Extension points to add maximum flexibility for upper and lower layers. New
sharing protocols can be added “at the botton” as so-called “sharing plugins” and
new functionality for the overlaying sharing applications can be added “at the top”
as so called “sharing services”.

3. A middleware configuration utility to manage the sharing repositories and their
respective techniques. The authors anticipate that in future work, this configuration
will be much more context-aware or user-centric. One could e.g. use ad-hoc or
proximity-based connectivity mechanisms to discover available repositories or one
could fetch a list of the available media repositories from a user database, e.g. from
the phone book, which could containing a respective field for each person. In our
work, we will be presenting a way, how to come closer to this goal using the Mobilis
platform with it’s services, which feature integration into social networks [DS09].

To pay special attention to restrictions in a mobile environment (traffic cost, battery
power, slow CPU), downloaded data is only updated by client request, i.e. when down-
loaded again. This avoids development of sophisticated caching and conflict resolving
mechanisms and is also the way we choose. Furthermore, the API provides clear distinc-
tion between the use case of browsing a repository and downloading the content from it.
In the first case, only thumbnails and metadata is accessed to save bandwidth.

The discussed sharing protocols are UPnP AV (for the “Home environment domain”),
Atom (for the “Internet domain”) and WebDAV (for the “Business domain”). In our work,
we will concentrate on one single sharing protocol.

The client-server related sharing is driven by the idea to use arbitrary third party servers
as sharing repositories. That is, because the introduced sharing application is middleware
solution which doesn’t provide it’s own client-server architecture but rather enables the
client to connect to any already existing sharing service. This enables the integration of
well-established repositories with associated communities (e.g. Flickr). In this sense, the
introduced work is different from our work as we will concentrate on a client-server solution
with our own, central Mobilis server. However, there have been already efforts to integrate
social networks into the Mobilis platform, so we refer in this case to [HFV+] [DS09].

22

3.2. Tolvanen et al.

Figure 3.2.: Concept UI for uploading & downloading content [BLB07]

3.2. Tolvanen et al.: Remote Storage for Mobile Devices

Tolvanen et al. [TSLA06] designed and implemented a solution to integrate remote repos-
itories transparently into the Symbian file system. The framework makes it possible to
mount practically every arbitrary WebDAV or FTP repository onto a new drive letter of
the phone. The contents of the repository can then be used like local files on the device.
Even offline access and modification with later synchronisation is possible.

The foundations of this project are inspired by Coda and WebDAV. Pure Coda was
not considered to be appropriate in the mobile sector, since it was mainly designed for
high-bandwidth carriers. The decision was finally made to use WebDAV, although there
were certain limitations in comparison to Coda (no callback-promise, no replication mech-
anisms, no path-independent identifiers).

The underlaying file systems have been adapted for disconnected operations using so-
phisticated file caching techniques. In particular, two general approaches of file caching
are presented with their trade-offs, especially when applied in the mobile sector.

• File block caching for immediate file access Only a part of the file is requested
from the server and stored in a cache. The size of the transfered block should be
at least the size needed to fulfill the issued read(..)-request. In practise, however,
multiple read(..)-requests are issued in a row which would result in too many
round trips. This problem is resolved by requesting bigger blocks, depending on the
file structure of the according MIME type and on the typical application behaviour
to access this file type (e.g. skimming for metadata, streaming). Once a block is
received, it is stored in a cache having a user-defined size and running with a LRU
strategy. However, with this technique incompletely cached files cannot be accessed
in disconnected mode.

• Aggressive (whole-file) caching for disconnected access The complete file is
requested from the server and stored in a cache. This allows the user to access the
file also in disconnected mode but disables “skimming” files in real time, e.g. for
browsing or streaming, without the files being transmitted completely.

To combine the best of both worlds, a hybrid solution is used: files are requested block-
wise. Once transmitted completely, they are made available for disconnected operations.
The framework allows user intervention (“cache hoarding”), e.g. the definition of sticky
flags for the cache using a dedicated user interface. It also provides means to modify files
(i.e., the cache contents) when disconnected or “weakly connected” (using e.g. GPRS).

23

3. Related Work

Content

Repository

SIP Proxy /

Registrar

Application

Server

TCP

 Relay

SIP

Content

Transfer

Protocol

Mobile

Network

Figure 3.3.: Prototype Architecture

Several methods to resolve conflicts when re-integrating local changes are also discussed
in the paper.

The framework consists of an“Enhanced File Browser”for cache control and a“Mounter”
on the user interface side. Furthermore, a Remote Storage Client component is plugged in
the symbian-own file server which communicates with the“Remote File Engine”managing
the communication over arbitrary protocols - e.g. WebDAV and FTP. Multiple mounted
repositories all have their own file server thread, so caching can be realized parallely.

3.3. Matuszewski et al.: Mobile Peer-to-Peer Content
Sharing Application

The work of Matuszewski et al. [MBLH06] presents a mobile peer-to-peer content sharing
service in cellular networks based on SIP (the Session Initiation Protocol), which is part
of the IP Multimedia Subsystem (IMS). It introduces an architecture which is based on
peer-to-peer media sharing rather then centralized client-server media sharing, since a
client-server approach is considered to have poor scalability, a slow content publishing
process, a low variety of offered content and the lack of possibility to experiment due to
high usage of the centralized server.

A demo is developed using “Registrars” and “Finders” as core components. The “Regis-
trar” provides information to super-peers about the current state of the sub-peers (service
started/stopped). The super-peer can subscribe to the information of the sub-peers. The
“Finder” component is responsible for generating and receiving SIP XML-messages used
for content retrieval. Alongside the core, a “Transfer” component exists for managing the
transport of files between two peers (e.g. using TCP/IP). It is responsible for session-
initialization, hash-checking and managing local shared content.

This work is only of marginal relevance for our research. Building dual-stack applica-
tions using both XMPP and SIP is considered to be difficult [LBSA+09], which is why we
consider purely XMPP-based solutions, like introduced in section 2.4 to be a good alterna-
tive for file transfer session initialization. Also, the related project was developed relying
on GPRS architecture, while nowadays 3G connections like UMTS/HSDPA provide much
more opportunities.

24

3.4. Risto Sarvas et al.

Figure 3.4.: The posting process where (a) the images are selected, (b) posting initiated,
(c) new folder created, d) named, (e) the people selected, and (f) finally the
images are uploaded. [SVPN04]

Figure 3.5.: The Horizontal Timeline View of the user’s (Chris) own folders and folders
shared by others (Markus and Anna). The two selected folders are in darker
color. [SVPN04]

3.4. Risto Sarvas et al.: MobShare: Controlled and
Immediate Sharing of Mobile Images

Sarvas et al. [SVPN04] developed an architecture for personal image management and
photo sharing using mobile phone cameras. The designed and implemented prototype
allows posting mobile images into an organized web album. The teoretical work in this
paper focusses on issues of user interface design and user habits in taking and sharing
photographs and outlines the characteristics of a mobile phone camera being rather a
communication device with several network connections, advanced computing ressources
(like J2ME or Symbian) and access to contextual or social information which may enrich
metadata assigned to a picture.

This work differs from other work presented before in the dual architecture which has
been applied: On one side, a mobile phone application based on Symbian is used. On
the other side, a web platform on a Struts-driven Tomcat-server exists. This distinction
is made because of two general identified use cases:

25

3. Related Work

The first is capturing the picture and sharing it with other users. This is done via the
mobile phone (see figure 3.4. After pictures are selected for sharing, they are distributed
in two steps. First, the user is asked explicitly to assign the pictures to a folder, which
forces a strong organization of the images. Then, the user selects a set of persons to
share the pictures with from her phonebook. The phone number (MSISDN) is used as an
unique identifier to retrieve the user – users who are not part of the system get invited to
the system by a short message.

The second use case is viewing and commenting the picture. This is done on a web
platform using a desktop PC, where every user can login using her phone number and
password. The contents of the repository are displayed in 3 granularity levels: The highest
level is a horizontal timeline view with separated users and their folders aligned vertically.
New pictures are highlighted (see figure 3.5). One level down, a user can compare the
content of two folders using a vertical timeline view with both folders side-by-side. The
second-lowest level is a folder view showing a chronological thumbnail list of one folder.
The lowest level finally is the view of a single image with a caption and discussion.

To compare this solution with our approach, we can admit, that todays mobile phones
have advanced and the use of them has changed. The distinction between a desktop and a
mobile platform is not necessary anymore since todays smartphones, networks and users
can handle tasks like displaying and navigating through big repositories on the phone.
Nevertheless, the principles defined in this paper, like the dependency on 3 dimensions
- user, folder and time - is an important aspect which we incorporated into our design,
adding another dimension: location. However, using the phonebook as user base does not
apply to our work, since we bet on XMPP and JIDs.

3.5. Android Applications: OnAir and ES File Explorer

The Developer Community of Google’s Mobile Phone Operating System Android 1 has
developed first applications to facilitate file sharing on mobile devices. Those applications
are “OnAir” [Clo] and “EStrongs File Explorer” [webb].

OnAir [Clo] is a free Android software which opens a WebDAV or a AppleTalk server
on the Android phone where it is installed. One can then connect to this server with
any device running a WebDAV client and having access to the IP address and port of the
WebDAV server running on the mobile phone. That way, OnAir allows simple file transfers
only under “happy circumstances” – i.e., if the phone and the client are logged in to the
same WLAN network. Also, contextual aspects are not taken into consideration, e.g. to
tag the transmitted files with metadata and thus allow rich media sharing. Furthermore,
this program provides only a simple, directory-based client-server solution and social
information is not taken into account to allow collaborative sharing.

EStrongs File Explorer [webb] is another free Android application which can browse
shared directories to NetBIOS servers running e.g. on Windows platforms or as Samba
servers on Linux platforms. In contrast to OnAir, the application is realized as a client
while the paired device has to run the server. However, similar restrictions apply: no

1http://developer.android.com/

26

http://developer.android.com/

3.6. Google Wave Attachments (Google Wave Federation Protocol)

Figure 3.6.: The Google Wave Attachment Server Architecture [LT09]

context or social information are used and no collaborative sharing is possible. Also,
the server has to be reachable by its IP address and port. Note, since we consider the
paired device to be a desktop station, this is easier since desktop stations are more likely
accessible from a known IP address than mobile phones.

3.6. Google Wave Attachments (Google Wave
Federation Protocol)

Google Inc. recently published a collaborative product called “Google Wave” 2 which tries
to combine communication tools like email, instant messanging, wikis, collaborative edi-
tors and other collaborative “gadgets” into one single extensible product. The elementary
unit in “Google Wave” is a “wave”, a conversation object hosted on the server in which
multiple users participate. A wave is split up into a tree structure of wavelets which user
can read, modify or reply to in near real-time. The protocol used to propagate those
changes is called the Google Wave Federation Protocol, and it will be be open-source
according to Google Inc. Already now, multiple white-papers are available [web09].

Inside of wavelets, binary data can be embedded. In [LT09], Michael Lancester explains
how binary data is stored on so-called attachment servers, how it is referenced inside of
XML-based wavelets and how changes to the attachment repository are communicated
(see figure 3.6).

2http://wave.google.com/

27

http://wave.google.com/

3. Related Work

The attachment server, where all binary data of the attachments is stored, is an HTTP
server. It supports upload (HTTP POST) and download (HTTP GET) of the attach-
ments, which are stored in a database. For every attachment, one row exists, storing the
thumbnail, the actual attachment content and the metadata of the attachment. Thumb-
nail and content are stored in BLOB fields (Binary large objects), the metadata is stored
in a protocol buffer [Gooa], a format developed by Google Inc. to store serialized data
efficiently. Every attachment is further referenced by a globally unique ID. Inside of the
wavelet object, which embeds the attachment, a portion of the metadata is repeated –
if changes are done to the metadata at the attachment server side, they are pushed via
Remote Procedure Calls (RPC) to the wave server.

Creation and modification of attachments can be done in various ways: a thumbnail
can be uploaded via HTTP POST, the attachment content (or non-overlapping parts of
it) can be uploaded via HTTP POST or a link to an existing attachment can be created.
These operations are idempotent, that means, they can be executed in parallel. With
every attachment operation, the attachment ID, wavelet name and other metadata is
specified as HTTP headers. An attachment is downloaded by an HTTP GET request
with special HTTP headers specifying the attachment ID and a token, stored inside the
wavelet object.

In contrast to our work, Google Wave concentrates on hosted conversations (wave ob-
jects) with participants instead of locations as the key concept of media exchange. It
also is not targeted primarily to the mobile sector. Also, it uses XMPP only marginally
to store binary media – in fact, most of the communication takes part using HTTP and
RPC. Furthermore, the introduced technology is not standardized by any authority.

3.7. Conclusion

In the previous sections, numerous previous efforts in media sharing on mobile devices
were introduced which covered the basic scenario introduced in 1 by using technologies
described in 2. However, none of them provided the necessary features to fulfill the
requirement of a collaborative social mobile media sharing platform integrable into an
XMPP-powered system. Most of the introduced examples concentrated on directory-
based file sharing or file transfers without taking the numerous affiliations of the user and
available context information or metadata into account. The work of Sarvas et al. (3.4)
comes closest to our vision but it lacks the support for a standardized technology like
XMPP. Furthermore, location awareness is not supported. Also, not all mobile use cases
are covered, since management, viewing and discussing the media ressources is done in
a web browser even though mobile phone operating systems, SDKs and handsets have
dramatically improved which allows to build applications with advanced functionality.

As we showed in chapter 2, the XMPP standards foundation lately developed appro-
priate standards to make media sharing with annotated metadata possible using XMPP.
In fact, none of the works specified before ran applications using the XMPP protocol –
despite of the Google Wave Foundation Protocol, which, although, uses proprietary nego-
tiation mechanisms not developed by the XMPP standards foundation. Also, most of the
communication in this protocol takes part out-of-band from the XMPP stream without
proper XMPP negotiation.

28

3.7. Conclusion

In the next chapter (4) we will thus settle requirements to detail our vision of a new
collaborative metadata-driven mobile media sharing platform based on XMPP.

29

4. Requirements Analysis

Based on the preceeding introduction of the tourism scenario (1.2) which showed the
business need for a collaborative mobile media sharing platform, we will now introduce
the requirements set to such a system to improve currently available systems introduced
in the previous chapter (3). This system will run on top of available collaborative media
sharing technologies evaluated in chapter 2 and be integrated in the current Mobilis system
presented in section 1.1.

Requirements are descriptions of what a system should do and how this goal should be
reached. Therefore, we will start in section 4.1 by introducing functional requirements
based on the presented user scenario. We will oppose them to the minimum device capa-
bilities needed to accomplish this goal in section 4.2. Then, non functional requirements
are introduced in section 4.3 and finally Human-Computer Interaction considerations are
presented in section 4.4. At the end of each section, the elaborated requirements are
summarized in a prioritized table (tables 4.1, 4.2, 4.3 and 4.4). The last section (4.5) of
this chapter concludes the key guidelines for developing the prototype system.

4.1. Functional Requirements

The primary functional requirements in our media sharing scenario is the publication of
pictures (FR-1). In mobile environment, pictures are usually taken with the mobile phone
camera, so it should be possible to load them directly in the sharing application (FR-1.1).
However, the system should not be restricted to store pictures only – moreover it should
be possible transmit any file to the repository (FR-1.2). The selected picture or file may
be sent to a picture repository for other users to retrieve it (FR-1.3) or only a thumbnail
file with metadata may be sent to the repository and the actual file may stay at the users
device for users to retrieve it later (FR-1.4). The user may also choose the option to share
the image with one single user only (FR-1.5), where a direct and instant file transfer would
be initiated without the repository seeing any of the transmitted data.

The prototype should support the management of metadata stored alongside with the
content (FR-2). First, the image is geotagged with the location where the image is taken
or, if this information is not available, with the location where the image is stored into
the repository (FR-2.1). The image is also tagged with a date from when it is taken or,
if this information is not available, with the date of the upload (FR-2.2). Furthermore,
the image was shared by a specific owner, which classifies images according to their user
(FR-2.3). The user may finally enter a free title which is stored as well (FR-2.4). All
those classifications should be further classifications (FR-2.5).

The repository should be browsable by other users (FR-3). Browsing the repository
means retrieving information about a set of pictures meeting a specific condition. Brows-
ing has to be done using easy-to-use filtering controls (FR-3.1). The repository should be
browsable by the location classification using map view (FR-3.2), by date by entering a

31

4. Requirements Analysis

start and end date in a calendar view (FR-3.3) and by the creator of the picture (FR-3.4).
The system should moreover support custom types of browsing (FR-3.5).

After the repository has been browsed and the user has found a picture of interest, she
can invoke certain actions on it (FR-4). This includes displaying all metadata associated
with the picture (FR-4.1), replacing the picture by another (FR-4.2), downloading the
item to the local disk (FR-4.3) or deleting the item (FR-4.4).

Security considerations have to apply during the whole process (FR-5). The repository
should have provide access control – i.e., not every user should be able to browse or down-
load from the repository, what may be accomplished by using the roster as a whitelist
(FR-5.1). On a picture level, all modifications to the picture, i.e. deletion (FR-4.4) and
replacement (FR-4.2) should be possible for the owner only, if not more sophisticated ac-
cess control mechanisms are introduced (FR-5.2). If possible, the data transfer connection
should be encrypted (FR-5.3).

Finally, it should be possible to use existing functionality provided by the Mobilis Plat-
form (FR-6). The JID should be the central entity, which identifies users and services
(FR-6.1). Functionality from the previous prototypes MobilisBuddy [HFV+] and Mobilis-
Guide [Kor08a] should be integrated (FR-6.2) and the status of other work in the Mobilis
Project has to be followed (FR-6.3).

Description Priority

FR-1 Publishing of content High
FR-1.1 Publishing of images taken with the phone camera High
FR-1.2 Publishing of arbitrary files High
FR-1.3 Publishint to a group of users (client-server) High
FR-1.4 Publishing to a group of users (hybrid) Low
FR-1.5 Publishing to a single user (peer-to-peer) Medium
FR-2 Metadata classifications High
FR-2.1 Spacial classification High
FR-2.2 Temporal classification High
FR-2.3 Classification concerning ownership High
FR-2.4 User provided title Medium
FR-2.5 Arbitrary classification Medium
FR-3 Browsing of content High
FR-3.1 Specialized views for every type of browsing High
FR-3.2 Browsing based on location by map view High
FR-3.3 Browsing based on date by calendar view High
FR-3.4 Browsing based on creator High
FR-3.5 Browsing based on arbitrary criteria Medium
FR-4 Interacting with content High
FR-4.1 Listing of the complete metadata set of one item High
FR-4.2 Replacing the item by another High
FR-4.3 Downloading the item High
FR-4.4 Deleting the item High
FR-5 Security Medium
FR-5.1 Access control on repository level (e.g. using Roster) Medium
FR-5.2 Access control to content level (e.g. using ownership) Medium

32

4.2. Device Capabilities

Description Priority

FR-5.3 Privacy considerations (e.g. encryption) Low
FR-6 Support of previous and future work High
FR-6.1 JID as central identity High
FR-6.2 Seamless integration of MobilisBuddy and MobilisGuide Medium
FR-6.3 Coordination with current Mobilis project Medium

Table 4.1.: Summary of Functional Requirements

4.2. Device Capabilities

To realize the preceedingly explained use cases, the mobile device and the mobile network
have to fullfil some necessities concerning capacity, performance and equipment. First
of all, collaborative solutions, especially such, which are based on client-server or peer-
to-peer architecture, require constant connectivity to a wireless networks (DC-1). Given
the relatively large size of media files sent media sharing scenarios, even newer wireless
technologies with sufficient bandwidth and data rate – so-called 3G networks – should be
available and supported by the device (DC-1.1). The device may also connect to pure
IP networks like WLAN or be handovered between several networks (DC-1.2). However,
generally the user can be assumed to be “always online” (DC-1.3).

To allow spacial classification of shared images (see FR-2.1) the device has to pro-
vide sensors to determine its location (DC-2.1). This can be done by GPS triangulation
(DC-2.1) or by location determination using the service provided through the mobile net-
work, like Assisted GPS (A-GPS), location determination by the networks CellID or a
database containing WLAN-Footprints (DC-2.2). If all automated or assisted location de-
termination functionality fails, the device should offer the possibility to enter the location
manually (DC-2.3).

For publishing images taken by the mobile phone camera (see FR-1.1), the mobile
phone flash drive can be accessed (DC-3.1). Furthermore, the Camera-API should allow
aquiring images directly from the mobile phone camera (DC-3.2). Geotagging of taken
images (DC-3.3) and date-tagging (DC-3.4) should be possible for further classification
(see FR-2).

Finally the development environment for applications on the mobile device should sup-
port common software technology practises (DC-4) to facilitate easy and modular devel-
opment (see FR-6). The operating system which suits this purpose best is the Android
Operating System with the Android Software Development Kit (SDK), currently available
in release 1.6, which is used in the Mobilis Project (DC-4.1). Android applications are
written in Java (DC-4.2) and are portable between any handset, which runs the Android
platform (DC-4.3).

Description Priority

DC-1 Connectivity to a wireless network High
DC-1.1 Wireless network has sufficient bandwidth High
DC-1.2 Occasional availability of higher capacity wireless net-

works like WLAN
Medium

33

4. Requirements Analysis

Description Priority

DC-1.3 “Always-online” assumption High
DC-2 Location sensitivity (see FR-2.1) Medium
DC-2.1 Automatic location retrieval using GPS High
DC-2.2 Assisted location retrieval using A-GPS, CellID or

WLAN-Footprint
Medium

DC-2.3 Manual setting of location Low
DC-3 Mobile images accessible High
DC-3.1 Aquiring media from images stored on the mobile phone

flash drive
High

DC-3.2 Aquiring media directly from the camera Low
DC-3.3 Geo-tagging of taken pictures High
DC-3.4 Date-tagging of taken picture High
DC-4 Developer-friendly Platform (compare to UC-6) High
DC-4.1 Operation system: Android 1.6 High
DC-4.2 Programming language: Java High
DC-4.3 Portability Medium

Table 4.2.: Summary of Device Capabilities

4.3. Non Functional Requirements

In addition to functional requirements to realize and the device capabilities to be as-
sumed, there are a number of non functional requirements concerning design and later
implementation of the collaborative media sharing platform. First, the designed architec-
ture should provide a maximum of exchangability, variability and reusability according
to best-practices of software technology (NF-1): It should fit into the service oriented
architecture of the Mobilis Project defined in [Mac07] (NF-1.1) and thus be a layered
framework architecture using design patterns [GHJV95] (NF-1.2). Concerning extensi-
bility, especially support for new media types (other than images) (NF-1.3) and future
media sharing technologies (e.g. Jingle) (NF-1.4) should be added.

During development, standardized and elaborated technologies and frameworks should
be used, where applicable (NF-2). We use XMPP as collaborative protocol (NF-2.1). If
possible, the transfer of binary content should underly a standardized protocol (NF-2.2).
The implementation of this protocol should be reusable for future work (NF-2.3).

Finally, the mobile sector requires some special considerations which do not apply to
the desktop sector (NF-3). A mobile connection may face sudden loss or handover, to
which the application has to adapt (NF-3.1). Also, transmitting data should be considered
expensive and thus minimized. (NF-3.2). Firstly, because data fares are still higher than
on fixed networks, especially in the tourism case, where roaming rates apply (NF-3.2).
Secondly, because sending data over the air is battery consuming (NF-3.3). Thus, file
transfers have to be optimized, that is, compressed (NF-3.4). On the other side, a certain
trade-off has to be made considering computational expensive operations, which should
be delegated from the weak mobile device to the server (NF-3.5). What comes to peer-
to-peer connections, one should consider, that the opposite party may use an unreliable

34

4.4. Human Factors

connection, like oneself may do (NF-3.6).

Description Priority

NF-1 Exchangability, variability, reusability High
NF-1.1 Integration into the Mobilis architecture (see UC-6) High
NF-1.2 Layered service architecture, Use of Design Patterns High
NF-1.3 Support for other media types High
NF-1.4 Support for other media sharing technologies (e.g. Jin-

gle)
Low

NF-1.5 Server support for other clients / client platforms High
NF-1.6 Reusability on client level for other applications High
NF-2 Standardized or elaborated technologies Medium
NF-2.1 Collaborative protocol: XMPP High
NF-2.2 Standardized file transfer protocol High
NF-2.3 Implementation of standardized file transfer reusable for

other applications
High

NF-3 Considerations concerning the mobile environment High
NF-3.1 Adaptions to the mobile network High
NF-3.2 Low traffic cost approach (consider roaming!) High
NF-3.3 Energy awareness High
NF-3.4 Efficient file transfers, use of compression Medium
NF-3.5 Server-client balance (traffic vs. computation power) High
NF-3.6 Keep in mind peer-to-peer connection problems Medium

Table 4.3.: Summary of Device Capabilities

4.4. Human Factors

Although the mobile user interface is not the main focus of this work, there are some
issues which should be highlighted and cannot be underestimated. Comparing using a
mobile phone and using desktop PC, one can recognize, that the mobile phone is used in
a context, where the user may not be primilary focused on solving tasks with the mobile
phone itself. Especially in the tourism case, the mobile phone is rather an accessoire
than a device where oneself puts all ones attention to. Thus, input behaviour differs from
working on a PC (HF-1). Operations should be executed with the fewest clicks possible
(HF-1.1) and suggestions should be provided upon typing considering small mobile phone
keyboards (HF-1.2). UI elements should be arranged in a clear way for the user to find her
desired operation immediately (HF-1.3). Multitasking should be provided to execute file
transfers in the background, so users can deal with other tasks in the meantime (HF-1.4).

The user interface should be goal-oriented to imitate the users thinking (HF-2). This
means, that multiple image collection views have to be shown (see NF-3) to allow the user
to solve the task of finding one image without the need to search manually (HF-2.1). The
map, however, should be the main artifact (HF-2.2), since location is the most important
concept in mobility [Lau]. Finally, it should be possible to interlink between different
social objects (HF-2.3), that is, e.g., to contact a user who published a certain picture or

35

4. Requirements Analysis

to show all pictures of a certain user.

Description Priority

HF-1 Mobile phone input considerations High
HF-1.1 Fewest clicks possible High
HF-1.2 Suggestions upon typing Low
HF-1.3 Clear arrangement of UI elements High
HF-1.4 Multitasking / background downloads High
HF-2 Goal-oriented user interface High
HF-2.1 Multiple image collection views (see UC-4) High
HF-2.2 Map as main artifact (see UC-4.1) High
HF-2.3 Interlink between social objects Medium

Table 4.4.: Summary of Human Factors

4.5. Conclusion

In the previous sections, functional requirements were elaborated from the introducing
user stories and minimum device capabilities to realize those requirements where identi-
fied. Besides, non-functional requirements and human factors where gathered. While non
functional requirements and device capabilities focus mostly on the collaborative media
sharing aspect of our work, non-functional requirements and human factors take the spe-
cial conditions of a mobile environment into account, stressing both the nature of mobile
networks as well as mobility and thus the necessarity for location sensivity. In the follow-
ing chapter, we will introduce the design of such a media sharing system, which will meet
the requirements preceedingly defined.

36

5. Conceptual Design

This chapter introduces an architecture of distributed entities communication via the
XMPP protocol to exchange media (or, in more specific, images), store that media in
a repository or access it according to the requirements settled in the previous chapter.
In the first section (7.1) we will review file transfer technologies from the foundations
chapter (2) and decide upon one technology for one-to-one file transfers. We will then
work out a repository architecture which fits best our needs for a multimedia repository
of our requirements (5.2), continue by discussing methods to break down the repository
into several so-called “broker services” and finally choose a decomposition which fits best
to the mobilis architecture (5.3). For this decomposition, we will work out the service
primitives and how they translate to sequences of XMPP-IQ messages (5.4) issued between
the broker services. Section 5.5 concludes this chapter.

5.1. Finding an XMPP-based File Transfer Protocol

In chapter 2 we presented four possible file transfer mechanisms: SI File Transfers, Jingle
File Transfers, WebDav and APP. We compared these technologies based on different
criteria in table 2.1. In this section, we explain our decision for one of them and the
resulting protocol architecture.

5.1.1. SI File Transfers

According to our findings, we decided to build a media sharing environment based on
SI File Transfers. With that come several advantages: First, the underlaying XMPP
protocol stack does not have to be extended by a second protocol stack (SIP, WebDav,
APP) possibly resulting in a parallel client-server architecture which has to be maintained
asynchroneously. Instead, the Mobilis framework can continue to use XMPP as the only
core technology and that way build on a future-proof protocol.

Another argument for SI File Transfers is the available library support. The Mobilis
Framework runs on Android devices (DC-4.1), with user applications based on Java (DC-
4.2). At Mobilis, we are using the Ignite Realtime Smack library to realize communication
via XMPP. Smack also supports stream initiation requests. The library was found to be
portable to the Android platform while other java-based file transfer libraries, like Apache
Slide (for WebDav) or Rome Propono and Apache Abdera (for APP) might not be so
cooperrative.

For Jingle, no suitable library existed, since this technology is a relatively new, but
newertheless promising technology. An argument for Jingle is that it is generic and usable
in other out-of-band-sessions. However, this protocol fastly becomes heavyweight in that
context, especially for mobile devices. Furthermore, a complete implementation of the
Jingle-standard is behind the scope of this work.

37

5. Conceptual Design

5.1.2. One-to-one File Transfers

A one-to-one file transfer using stream initiation requests is executed as described in
the “Foundations” chapter in section 2.2.1. We take this one-to-one file transfer as the
atomar building block to publish a file peer-to-peer to another user (FR-1.5). Later (in
subsections 5.4.4 and 5.4.5) we will show, how this atomar file transfer can be used in a
custom XMPP extension to store files into a repository (FR-1.3) or to allow a directory-
based hybrid technique with pulling the file from the user on-demand (FR-1.4).

5.1.3. One-to-many File Transfers

The XMPP community already developed a mechanism to allow file storage and pulling
from a central repository: Published Stream Initiation Requests (XEP-0137 [MM05]). It
is based on the idea to hold a pubsub trees containing pubsub items, each one representing
one repository item enhanced with metadata. However, plain published stream initiation
request does not fit our requirements of in two ways: First, multidimensional metadata
(FR-2) cannot be mapped logically onto a pubsub tree. Second, a hybrid solution (FR-
1.4) where the actual file content stays on the sender side until it is pulled by a receiver, is
hard to realize, since the server cannot store any actual media content but only a reference
where it can be found. In the next section, we will introduce a solution to this problem.

5.2. The Cube Media Repository

According to our requirements, media content – in our scenario, images – are classified
by a range of metadata aspects. For our prototype requirements, we chose location, date
and ownership (FR-2.1, FR-2.2, FR-2.3). Since these aspects are independent from each
other, they cannot be mapped onto a tree structure without loosing this independence.
Instead of a tree structure, which lays the foundation of the pubsub mechanism, a“cube”
structure is desired. This cube structure is visualized in figure 5.1. The “cube” contains
every repository item at a discrete position inside a multidimensional hyperspace spanned
by all orthogonal dimensions of metadata classification. We call the position of an item
in every dimension a slice, so that every item is assigned to a number of slices, one slice
for each dimension.

When browsing this repository (FR-3) it should be possible for a requester to filter only
repository items located in a well-defined area of the hyperspace. Additionally to slices, a
repository item holds a set of rigid properties: alongside with a unique identifier uid, the
user which has ownership of the item (i.e., who uploaded it) is saved. Also, a reference
to a content store is held.

The content store physically stores the binary content of the repository item along with
some information needed for efficiently carrying out SI File Transfers. This is, to large
parts, the mime-type and file size of the stored content.

38

5.3. Breaking down the Architecture

Repository Cube

Slice Repository Item
• Uid, Source
• Content Store

Content Store

Content Item
• Description, Owner
• Mimetype, Filename, Size

• Location
• Time
• Ownership

Figure 5.1.: Multidimensional metadata classification system “cube”

5.3. Breaking down the Architecture

5.3.1. Decomposition into Entities

The decomposition of the design into two areas of concern – management of a repository
cube and a content store – is an important principle for the future design. It allows
load-balancing: while the repository cube is in charge of classifying repository items and
browsing the repository in – possibly complex – queries (FR-2.5), the content store only
holds the actual content but therefore needs sufficient storage space.

There are various approaches how both repository cube and content store can be incor-
porated into a mobile networked system. Three general ways are shown in figure 5.2. The
most simple realization (combined scenario) is done by combining repository cube and
content store in one single entity, which is connected to its mobile clients. This approach
is easy to implement and has few management overhead but also allows no form of load
balancing like described above.

A distributed scenario realizes content store and repository cube in different entities.
This allows repository cubes to distribute contents to multiple content stores for load-
balancing. However, it requires the development of a sophisticated algorithm to choose
the content store which should be used, if a new repository item should be stored. A
content store then could also have multiple repository cubes registered and a mobile
client might finally be able to connect to one or more different repository cubes.

The hybrid scenario facilitates a peer-to-peer media sharing architecture with central

39

5. Conceptual Design

Repository
Cube

Mobile
Client

Content
Store

Combined Scenario Distributed Scenario Hybrid Scenario

Figure 5.2.: Decomposition approaches of architecture in repository service and content
broker

repository cubes working as directories. However, here, the actual file content stays at
the client side, so the client itself plays the role of a content store. This scenario is
therefore close to the hybrid scenario introduced in requirement FR-1.4. In this situation
no additional server storage is required, but client outage due to disconnections from the
network must be carefully considered, in which case contents from the repository might
not be available (NF-3.6).

It should be noted, that these three approaches are not discreet options but rather
principles, which might be combined. It is indeed possible to develop a heterogenous
system, in which some content items are stored on the client devices (hybrid scenario)
while other files are stored in a central independent content store. Since an item in a
repository cube always points to the correct content store, the content may always be
localized by a requester.

5.3.2. Decomposition regarding the Mobilis Architecture

The Mobilis architecture introduces a Mobilis server which offers several services to a
client, while a set of services is always encapsulated by one single “broker services” [DS09]
[DS09]. To allow communication of a client with its broker service, Mobilis server and
client connect to an XMPP server opening a bidirectional XML-stream over TCP. The
overall architecture of the Mobilis platform is shown in figure 5.3.

By convention, the XMPP server acts under one XMPP user, e.g., mobilis@xmpp, with
each broker service having its own XMPP connection using a seperate XMPP resource, i.e.,
mobilis@xmpp/Buddy, mobilis@xmpp/Coordinator etc. This convention brings several
advantages:

First, an end user, who configures her client, has to know only the Mobilis server XMPP
user (mobilis@xmpp) and does not have to take care about all the broker services which

40

5.3. Breaking down the Architecture

XMPP Server
(Openfire)

Mobile
Client

Mobile
Client

xmpp

client1@xmpp/MXA

client2@xmpp/MXA

Mobilis
Server

mobilis@xmpp/Content

mobilis@xmpp/Repository

mobilis@xmpp/Buddy

mobilis@xmpp/Coordinator

ä

Figure 5.3.: Decomposition with regard to the Mobilis archtiecture

are running on the server. The broker services, that is, the resources of the connected
XMPP user (mobilis@xmpp), however, might be easily queried from the XMPP server
by sending a Service Discovery message for all items to mobilis@server. The XMPP
server will reply to this message with a list of connected resources if both Mobilis server
(mobilis@xmpp) and the client XMPP entity have each other at their XMPP roster with
a subscription state set to “both” (see [HMESA08]). This mechanism provides also a
simple trust mechanism to be negotiated between Mobilis server and client before any
communication can occur between both (FR-5.1).

Second, since every broker service has their own XMPP connection, the broker services
can be deployed as well on different physical machines as also be realized in one software
package only. Having all the same XMPP user (mobilis@xmpp), the only requirement for
setting up a new broker service next to existing ones is to know the account data of the
server XMPP user (mobilis@xmpp) which is a fair amount of trust that a broker service
can work with the other broker services under the name of a combined XMPP server.

For our media repository, we introduce two new broker services: a repository broker
(mobilis@xmpp/Repository) and a content broker (mobilis@xmpp/Content). Although
they are realized in the same software package (the Mobilis server prototype) they are
not connected to each other but communicate with each other via XMPP only. Hence,
the realization can be classified as a distributed scenario (see subsection 5.3.1) with
one repository cube and one content store. However, we will see, that the realization also
contains elements of the hybrid scenario, as the Mobilis server can decide to leave the
content on the client device without an upload process to the content broker (FR-1.4). In

41

5. Conceptual Design

Mobile Client Repository
Broker Service Content

Broker Service

Service Discovery &
Registration / Unregistration

ä

Service Discovery

Browsing

Download

Upload

Deletion

Figure 5.4.: Service primitives of content service and repository service

this case, the client plays the role of the content broker and can be contacted to deliver
its contents right to requesters.

5.4. Service Primitives

Figure 5.4 shows the service primitives, that is, the fundamental requests which can
be issued by a user to the media repository. The fundamental service primitives are
browsing of the repository (FR-3 and FR-4.1) as well as upload (FR-1) / replacing (FR-
4.2), download (FR-4.3) and deletion (FR-4.4) of content. Additionally, a service discovery
and registration / unregistration mechanism is used to couple the user, repository broker
and content broker together.

It should be outlined, that the mobile client issues its requests to the repository service
only. However, despite of service discovery, browsing the repository is the only primitive
which the repository broker may fulfill on its own. In all other processes (download, upload
and deletion), a content broker is involved in handling a request. The repository service
will then itself generate a specific request and issue it to the content broker service. This
would be, for content deletion, a request to remove the content from the content store.
In case of download, this is a request to send the content to the requester. And finally in
case of upload – the most complex scenario – the repository broker requests the content
broker to ask the mobile client to transfer the file to the content broker.

Figure 5.5 shows that each service primitive translates to a set of XMPP IQs issued
between the entities. These IQs are either taken from a public XEP or they are custom IQs.
Requests are always sent by Set-IQs and Get-IQs, where Set-IQs are ment to change the
persistent state of a receiver and Get-IQs are a mean to retrieve information. According

42

5.4. Service Primitives

mobilis@xmpp
/Repository

mobilis
@xmpp
/Content

client@xmpp
/MXA

XEP‐0030 Service DiscoveryXEP‐0030 Service Discovery

Service
Discovery &
Registration

<repository‐query> Get‐IQ
Browsing

<content‐register> Set‐IQ

<content‐unregister> Set‐IQ

<content‐transfer> Get‐IQ<content‐transfer> Get‐IQ

Download

Upload /
Replacing

<content‐transfer> Set‐IQ<repository‐query> Set‐IQ

XEP‐0096 SI File Transfer

<content‐transfer> Get‐IQ

<content‐delete> Set‐IQ<repository‐delete> Set‐IQ
Deletion

XEP‐0096 SI File Transfer

Figure 5.5.: Service primitives of content service and repository service detailed by IQ

to the XMPP specification [SA04b] every Set-IQ and Get-IQ has to be acknowledged by
a Result-IQ or Error-IQ, depending on if the request could be fulfilled or not. In our
design, the Result-IQ following a Get-IQ will always carry the requested information. A
Result-IQ following a Set-IQ may contain nothing or the repeated request payload, parts
of it or detailed information about the performed actions.

5.4.1. Custom IQs

The custom IQs used to manage the media repository contain either a child element of the
form <repository-.../> or <content-.../>, depending on if they are handled by the
repository broker or the content broker. The only exception is the <content-transfer/>

IQ, which is sent to the repository broker but will be directly forwarded then to the respec-
tive content broker. The child elements <repository-.../> are declared in the names-
pace http://rn.inf.tu-dresden.de/mobilis#services/RepositoryService and the
child elements of the form <content-.../> are declared in .../ContentService.

Every child element contains further child elements as a payload to detail the request
or acknowledgement. Figure 5.6 illustrates both namespaces with their containing IQs.
Refer to section A.1 of the appendix for a complete XSD schema definition of all custom
IQs.

The Mobilis Namespace

<condition/> is an XML element to describe arbitrary boolean conditions on a set of
key-value pairs. It is used inside of a <repository-query/> tag to browse a

43

5. Conceptual Design

http://rn.inf.tu‐dresden.de/mobilis

…#services/RepositoryService

…#services/ContentService

<repository‐query>
<repository‐delete>

<condition>

<repository‐
item>

<repository‐
item>

<repository‐
item>

<repository‐
item>

<repository‐
item>

<repository‐
item>

<condition>
key op value

<condition>

item

<repository‐item>
uid owner content

<content‐delete>
<uid>

<content‐register>

<content‐unregister>

<content‐transfer>
<uid> <retrieve‐from>

<send‐to>

<content‐
item>

<repository>
<uid>

<description>

<repository‐
item>

<repository‐
item>

<slice>
key value

Figure 5.6.: Mobilis Namespaces and their Custom IQs

repository and filter out certain items of it in an arbitrary way (FR-3.4). However,
since the backing concept is more widely applicable, it was decided that the element
should be included in the core Mobilis namespace. A <condition/> contains an op

attribute describing the operator. op may be either one of the comparison operators
eq (equal), ne (not equal), gt (greater than), lt (lower then), ge (greater or equal),
le (lower or equal) or one of the logical operators and, or or not. In case of
a comparison operator, the key and value attribute represent the values to be
compared. In case of a logical operator, one or more <condition/> elements may
be used as subelements to represent subterms.

The RepositoryService Subnamespace

<repository-query/> is used as an IQ child element in the primitive to browse the
repository (FR-3) and to upload/replace items into the repository (FR-1 and FR-
4.2). Depending on the actual primitive and whether it is used as a request or as an
answer, the payload of the element is either a <condition/> element, that describes
which repository items should be queried, or one or more <repository-item/>

elements describing the repository elements which are inserted into the repository
or read-out while browsing the repository.

<repository-delete/> is used as an IQ child element in the primitive to delete items
(FR-4.4) from the repository. The element contains as a payload one or more
<repository-item/> elements which should be deleted.

44

5.4. Service Primitives

<repository-item/> is a child element used in both <repository-delete/> and <repository-

query/>. It provides information about a item stored in the repository. According
to our model specification (see section 5.2) these can be rigid values like a unique
identifier (uid attribute), the owner / creator of the repository item (owner at-
tribute) or a reference to the content broker where the item is stored (content
attribute). Furthermore, the slices of the repository item may be listed as a se-
quence of <slice/> child elements inside of the <repository-item/> element.
Every <slice/> element will contain a key and a value attribute to identify the
dimension and position of the slice. Not all information about a repository item has
to be represented inside of a <repository-item/> element. If it is, we speak of a
complete <repository-item/> element. If only <slice/> elements are specified,
we call the <repository-item/> element simple, if additionally a uid attribute is
present concrete. If only a uid attribute (and optionally a content attribute) is
present we speak of a referencing <repository-item/> element.

The ContentService Subnamespace

<content-register/> and <content-unregister/> are used as IQ child elements to
register and unregister a repository broker service at a content broker service.
Since the intent of the request (repository and content brokers JIDs) can be deter-
mined from the sender and receiver of the IQ packets, no payload has to be attached
to these elements.

<content-transfer/> is used as IQ cild element during the download (FR-4.3) and up-
load (FR-1) / replace (FR-4.2) primitive to request the initiation of a file transfer.
It consists of three child elements containing plain text only: <retrieve-from/>

being the source where the content item should be retrieved from, <send-to con-
taining the destination of the file transfer and <uid/> to identify, together with the
repository from which the <content-transfer/> request was issued the content
item itself.

<content-item/> is used as a child element of the <desc/> subelement inside a Stream
Initiation Request based file transfer following on a <content-transfer/> request
to assign the SI File Transfer uniquely to a content item.

<content-delete/> is used as IQ child element in the deletion (FR-4.4) primitive to
delete content from a content broker. It as the only child element an <uid/> element
to identify the content item to be deleted. Since the <content-delete/> can only
be issued from the repository broker, the content item can be uniquely identified
that way.

5.4.2. Service Discovery & Register / Unregister Service Pimitive

To start communication of the participating entities, it is first necessary, that the mo-
bile client knows the JID of the repository broker and the repository broker the one of
the content broker. Per default, the address of the mobilis server (mobilis@xmpp) is al-
ready known to both entities. The challenge is to find out the correct ressource(s) of the
repository and content broker(s).

45

5. Conceptual Design

In case of the client discovering the repository broker service, it will first query the
connected resources of mobilis@xmpp from the XMPP Server. This is possible using the
following XEP-0030 service discovery mechanism [HMESA08]:

<iq type=’get’ id=’mobilis_1 ’
from=’client@xmpp/MXA’ to=’mobilis@xmpp ’>

<query xmlns=’http:// jabber.org/protocol/disco#items’ />
</iq>

If both Mobilis client and Mobilis server are on each others roster and subscribed to
each other, the XMPP server will return the connected resources, in this case equivalent
to the list of broker services:

<iq type=’result ’ id=’mobilis_1 ’
from=’mobilis@xmpp ’ to=’client@xmpp/MXA’>

<item jid=’mobilis@xmpp/Repository ’ />
<item jid=’mobilis@xmpp/Content ’ />
<item jid=’mobilis@xmpp/Coordinator ’ />
<item jid=’mobilis@xmpp/Buddy’ />

</iq>

The mobile client will then discover the supported service namespaces of each broker
service by querying the items of the Mobilis service namespace node:

<iq type=’get’ id=’mobilis_2 ’
from=’client@xmpp/MXA’ to=’mobilis@xmpp/Repository ’>

<query xmlns=’http:// jabber.org/protocol/disco#items’
node=’http://rn.inf.tu-dresden.de/mobilis#services ’ />

</iq>

The repository broker will answer with a list of items, each item mentioning one service
namespace.

<iq type=’get’ id=’mobilis_2 ’
from=’mobilis@xmpp/Repository ’ to=’client@xmpp/MXA’>

<query xmlns=’http:// jabber.org/protocol/disco#items’
node=’http://rn.inf.tu-dresden.de/mobilis#services ’>

<item node=’http://rn.inf.tu-dresden.de/mobilis#services/
RepositoryService ’

name=’ContentService ’ />
</query>

</iq>

That way, the mobile client will look for a broker service supporting the correct names-
pace .../RepositoryService. If the discovery process yielded more than one repository
broker service, a list will be shown to the end user to choose one repository broker.

The repository broker will discover the content broker in an analogue way (by discover-
ing broker service supporting the .../ContentService namespace). Once it has found a
content broker, it will register at the content broker to show the desire to manage contents
of the store:

<iq type=’set’ id=’mobilis_3 ’
from=’mobilis@xmpp/Repository ’
to=’mobilis@xmpp/Content ’>

<content -register xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentService ’ />

</iq>

46

5.4. Service Primitives

client@xmpp/MXA mobilis@xmpp
/Content

<content‐register> Set‐IQ

<content‐register> Result‐IQ

client@xmpp/MXA mobilis@xmpp
/Content

<content‐unregister> Set‐IQ

<content‐unregister> Result‐IQ

Figure 5.7.: Service registration and unregistration service primitive

The content service will confirm the registration with a respective Result-IQ:

<iq type=’result ’ id=’mobilis_3 ’
from=’mobilis@xmpp/Content ’
to=’mobilis@xmpp/Repository ’>

<content -register xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentService ’ />

</iq>

It may also send an Error-IQ instead, if the repository already was registered or, for
whatever reason, it decides that the repository cannot register at the content broker
service. Currently, there is no specific security mechanism developed, but future work can
include such mechanisms in the registration process.

Before the repository broker service finishes its work, it will unregister from the content
service:

<iq type=’set’ id=’mobilis_4 ’
from=’mobilis@xmpp/Repository ’
to=’mobilis@xmpp/Content ’>

<content -unregister xmlns=’http://rn.inf.tu-dresden.de/mobilis#
services/ContentService ’ />

</iq>

This will be acknowledged by an Result-IQ (or an Error-IQ, if unregistration is not
possible, that is, if, e.g., the repository is not registered):

<iq type=’result ’ id=’mobilis_4 ’
from=’mobilis@xmpp/Repository ’

47

5. Conceptual Design

Query

client@xmpp/MXA mobilis@xmpp
/Content

<repository‐query> Get‐IQ
with <condition> element

<repository‐query> Result‐IQ
with complete <repository‐item> elements

Query
Repository
Cube

Figure 5.8.: Browsing service primitive

to=’mobilis@xmpp/Content ’>
<content -unregister xmlns=’http://rn.inf.tu-dresden.de/mobilis#

services/ContentService ’ />
</iq>

Figure 5.7 shows the sequence diagram of both registration and unregistration.

5.4.3. Browsing Service Pimitive

Figure 5.8 shows the sequence diagram for the browsing service primitive. Browsing the
repository (FR-3) means requesting the metadata of all those repository items which slices
match a certain condition (FR-3.4). The mobile client thus issues a <repository-query/>

Get-IQ with a <condition/> element stating the filter conditions:

<iq type=’get’ id=’mobilis_5 ’
from=’client@xmpp/MXA’
to=’mobilis@xmpp/Repository ’>

<repository -query xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
RepositoryService ’>

<condition op=’and’ xmlns=’http://rn.inf.tu-dresden.de/mobilis ’>
<condition key=’taken ’ op=’lt’ value=’1256468400000 ’ />
<condition key=’taken ’ op=’gt’ value=’1256461200000 ’ />

</condition >
</repository -query>

</iq>

The <condition/> element of the above example states that the date when the photo
was taken (taken) should be before (lt) October 25 2009 12:00 (1256468400000) and
(and) after (gt) October 25 2009 10:00 (1256468400000). The value of the date is repre-
sented as a unix-timestamp (milliseconds since 1970). While the mobile client is waiting
for the result, the repository broker will query the repository cube according to the <con-

dition/> element and finally return a IQ-Result with one <repository-item/> element
for every matching item to the mobile client:

<iq type=’get’ id=’mobilis_5 ’
from=’client@xmpp/MXA’
to=’mobilis@xmpp/Repository ’>

48

5.4. Service Primitives

client@xmpp/MXA

<content‐transfer> Get‐IQ
with item‘s uid and
retrieve‐from = item‘s content
broker‘s JID send to = clients JID

<content‐transfer> Get‐IQ
with item‘s uid and
retrieve‐from = item‘s content

Mobilis
@xmpp
/Content

Mobilis
@xmpp
/Repository

broker s JID, send‐to = clients JID

XEP‐0096 SI File Transfer
with <content‐item> mentioning
repository and uid

retrieve‐from = item s content
broker‘s JID, send‐to = clients JID

<content‐transfer> Result‐IQ
(may repeat request payload)<content‐transfer> Result‐IQ

(may repeat request payload)

Figure 5.9.: Download service primitive

<repository -query xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
RepositoryService ’>

<repository -item uid=’8a808081246fc4e201246fc54f480002 ’
owner=’client@xmpp/MXA’
content=’mobilis@xmpp/Content ’>

<slice key=’taken’ value=’1256464800000 ’ />
<slice key=’longitude_e6 ’ value=’12105000 ’ />
<slice key=’latitude_e6 ’ value=’47080000 ’ />
<slice key=’owner’ value=’client@xmpp/MXA’ />
<slice key=’title’ value=’Image.jpg’ />

</repository -item>
</repository -query>

</iq>

The returned <repository-item/> elements are complete, that means, they mention
all the data which is available about the item in the repository: the uid (uid), a refer-
ence to the content broker (content), the owner/creater (owner) as well as a sequence
of all <slice/>s the item is assigned to. In our case, these are the dimensions time
(taken) (FR-2.2), origin (owner) (FR-2.3), user defined name (title) (FR-2.4) and place
(longitude_e6, latitude_e6 – longitude and latitude multiplied with 106) (FR-2.1).

5.4.4. Download Service Pimitive

The downlaoad service primitive (illustrated in figure 5.9) aims to retrieve the actual con-
tent of a repository item from its content broker service. The mobile client will therefore
send a <content-transfer/> Get-IQ to the repository service stating that it wants the
content with the specified uid to be transferred from the content broker (retrieve-from)
to itself (send-to):

<iq type=’get’ id=’mobilis_6 ’
from=’client@xmpp/MXA’
to=’mobilis@xmpp/Repository ’>

49

5. Conceptual Design

<content -transfer xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentService ’>

<uid>8a808081246fc4e201246fc54f480002 </uid>
<retrieve -from>content@xmpp/Content </retrieve -from>
<send -to>client@xmpp/MXA</send -to>

</content -transfer >
</iq>

Both <retrieve-from/> and <send-to/> are optional since they can be derived from
the IQ sender and the content broker reference of the repository item.

The repository broker will forward this element to the content broker (eventually with
additional retrieve-from and <send-to/> elements).

<iq type=’get’ id=’mobilis_7 ’
from=’mobilis@xmpp/Repository ’
to=’mobilis@xmpp/Content ’>

<content -transfer xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentService ’>

<uid>8a808081246fc4e201246fc54f480002 </uid>
<retrieve -from>content@xmpp/Content </retrieve -from>
<send -to>client@xmpp/MXA</send -to>

</content -transfer >
</iq>

Finally, the content broker will initiate a SI file transfer of the actual content to the
requester mentioned by <send-to/>. The file transfer request’s <desc/> element will
contain an XML coded <content-item/> element referencing repository and uid, so the
file transfer can be assigned to the correct request on client side.

<iq type=’set’ id=’mobilis_8 ’
from=’client@xmpp/Repository ’
to=’mobilis@xmpp/Content ’>

<si xmlns=’http: // jabber.org/protocol/si’
id=’68081925 ’ mime -type=’binary/octet -stream ’
profile=’http:// jabber.org/protocol/si/profile/file -transfer ’>

<file xmlns=’http:// jabber.org/protocol/si/profile/file -transfer ’
name=’Image.jpg’ size=’9170’>

<desc>
<content -item xmlns=’http://rn.inf.tu-dresden.de/mobilis#Services/

ContentService ’>
<repository>mobilis@content/Repository</ repository>
<uid>8 a808081246fc4e201246fc54f480002</uid>
<description>the actual description</ description>
</content -item>

</desc>
</file>
<feature xmlns=’http: // jabber.org/protocol/feature -neg’>

<x xmlns=’jabber:x:data ’ type=’form’>
<field var=’stream -method ’ type=’list -single ’>

<option ><value>
http:// jabber.org/protocol/bytestreams

</value></option >
<option ><value>

http:// jabber.org/protocol/ibb
</value></option >

</field>

50

5.4. Service Primitives

</x>
</feature >

</si>
</iq>

In parallel to the initiation of the file transfer, a Result-IQ is sent back to the repository
broker:

<iq type=’result ’ id=’mobilis_7 ’
to=’mobilis@xmpp/Content ’
from=’mobilis@xmpp/Repository ’>

<content -transfer xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentService ’ />

</iq>

... and from there to the mobile client:

<iq type=’result ’ id=’mobilis_6 ’
to=’mobilis@xmpp/Repository ’
from=’client@xmpp/MXA’>

<content -transfer xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentService ’ />

</iq>

If an error occured, Error-IQs are used instead of Result-IQs. An error occurs, if the
content item cannot be found on the content server, if a file transfer cannot be established
or if the request reaching the content broker was not sent by a registered repository broker.
For future implementation, also more enhanced security mechanisms (on the side of the
repository broker) concerning the request of content items are possible (FR-5.2).

5.4.5. Upload/Replacing Service Primitive

Uploading new items into the repository or replacing existing items in the repository are
the most complex service primitives. Uploading/Replacing happens in two stages. First,
the item is created at the repository broker but the actual content stays on the mobile
client. In the second stage, the repository broker may require an assigned content broker
to request handover of the content from the mobile client to the content broker. The
content will finally be transferred by an SI file transfer from the mobile client to the
content broker after which the content broker informs the repository broker, that the
content now is stored at another location. The repository broker will thus update its
repository cube to hold the new reference to the content broker. The whole process is
illustrated in the sequence diagram of figure 5.10.

When uploading an item, the mobile client will first send a <repository-query/>

Set-IQ to the repository broker.

<iq type=’set’ id=’mobilis_9 ’
from=’client@xmpp/MXA’
to=’mobilis@xmpp/Repository ’>

<repository -query xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
RepositoryService ’>

<repository -item>
<slice key=’taken’ value=’1256464800000 ’ />
<slice key=’longitude_e6 ’ value=’12105000 ’ />
<slice key=’latitude_e6 ’ value=’47080000 ’ />

51

5. Conceptual Design

client@xmpp
/MXA

<repository‐query> Set‐IQ
with simple or concrete
<repository‐item> elements

<content‐transfer> Set‐IQ
with item‘s uid and
retrieve‐from = clients JID
and send‐to = item‘s content
providers JID

Update
Repoitory Cube

<content‐query> Result‐IQ
with referencing
<repository‐item> elements

Mobilis
@xmpp
/Content

Mobilis
@xmpp
/Repository

<content‐transfer> Get‐IQ

<content‐transfer> Result‐IQ
(may repeat request payload)

XEP‐0096 SI File Transfer
with <content‐item>
mentioning repository and uid

<content‐transfer> Result‐IQ
(may repeat request payload)

with item‘s uid and
retrieve‐from = clients JID
and send‐to = item‘s content
providers JID

Update
Repository Cube

Figure 5.10.: Upload / Replacing service primitive

<slice key=’title’ value=’Image.jpg’ />
</repository -item>

</repository -query>
</iq>

It contains one or more simple or concrete <repository-item/> elements representing
the items which should be added to or replaced in the repository. A simple item, as shown
in the above example, contains <slice/> elements only and creates a new repository-item
inside the repository. A concrete item has an additional uid attribute which references
an already existing item, which should be replaced.

The repository broker will insert the item with its slices into the repository cube or
update the existing items depending on the request. It will then send back a Result-IQ
to confirm the operation:

<iq type=’set’ id=’mobilis_9 ’
from=’mobilis@xmpp/Repository ’
to=’client@xmpp/MXA’>

<repository -query xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
RepositoryService ’>

<repository -item uid=’8a808081246fc4e201246fc54e480205 ’
content=’mobilis@xmpp/Content ’ />

</repository -query>
</iq>

The Result-IQ will contain a referencing repository-item for every inserted or updated
repository item. The referencing repository-item mentions only the uid of the item and
which content broker may be expected to ask for handover of the content. Instead of a

52

5.4. Service Primitives

Result-IQ, an Error-IQ may be sent, if any error occurs while storing the repository item
into the repository cube. This is the case when an item, which should be replaced, cannot
be found, is not owned by the requester or if a database error occurs.

Note, that the actual content item is still at the mobile client side. That means, that any
other mobile client, that requests the content file, will contact the client (FR-1.4). That
means, the client should implement all capabilities of a content broker. After publishing
an item to the repository broker, the client should be ready to transfer the content to
any third party, which requests it, until the content is finally handed over to a content
broker at some point in the future. The content broker, which will request this handover
is mentioned in the content attribute.

To initiate the handover, the repository broker will at some point in the future notify
a content broker to ask the mobile client to handover the content file. Therefore, a
<content-transfer/> Set-IQ is sent from the repository broker to the content broker:

<iq type=’set’ id=’mobilis_10 ’
from=’mobilis@xmpp/Repository ’
to=’content@xmpp/Repository ’>

<content -transfer xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentTransfer ’>

<uid>8a808081246fc4e201246fc54e480205 </uid>
<retrieve -from>client@xmpp/MXA</retrieve -from>
<send -to>mobilis@xmpp/Repository </send -to>

</content -transfer >
</iq>

The content broker then sends a <content-transfer/> Get-IQ to the mobile client to
request handover of the content item:

<iq type=’get’ id=’mobilis_11 ’
from=’content@xmpp/Repository ’
to=’client@xmpp/MXA’>

<content -transfer xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentTransfer ’>

<uid>8a808081246fc4e201246fc54e480205 </uid>
<retrieve -from>client@xmpp/MXA</retrieve -from>
<send -to>mobilis@xmpp/Repository </send -to>

</content -transfer >
</iq>

The actual handover is then carried out by a SI file transfer similar to that of the
download service primitive (see 5.4.4). Afterwards, the client confirms the request by an
Result-IQ to the content broker:

<iq type=’result ’ id=’mobilis_11 ’
from=’client@xmpp/MXA’
to=’mobilis@xmpp/Content ’>

<content -transfer xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentTransfer ’ />

</iq>

This will trigger another Result-IQ sent back from the content broker to the repository
broker who will upon reception of this IQ know, that the location where the content has
been stored has changed. It will therefore update the repository cube to hold the new
content broker reference.

53

5. Conceptual Design

client@xmpp/MXA

<repository‐delete> Set‐IQ
with referencing
<repository‐item> elements <content‐delete> Set‐IQ

ith it ‘ id

Update
Repository Cube

Mobilis
@xmpp
/Content

Mobilis
@xmpp
/Repository

with item‘s uid

<content‐delete> Result‐IQ
(may repeat request payload)

<repository‐delete> Result‐IQ
(may repeat request payload)

Figure 5.11.: Deletion service primitive

<iq type=’result ’ id=’mobilis_11 ’
from=’mobilis@xmpp/Content ’
to=’mobilis@xmpp/Repository ’>

<content -transfer xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentTransfer ’ />

</iq>

5.4.6. Deletion Service Primitive

Deleting an item from the repository is depicted in figure 5.11. The mobile requests
deletion using a <repository-delete/> Set-IQ referencing all the items it wants to delete
in <repository-item/> elements:

<iq type=’set’ id=’mobilis_12 ’
from=’client@xmpp/MXA’
to=’mobilis@xmpp/Repository ’>

<repository -delete xmlns=’http://rn.inf.tu -dresden.de/mobilis#services
/RepositoryService ’>

<repository -item uid=’8a808081246fc4e201246fc54e480205 ’ />
</repository -delete >

</iq>

If the item exists and if the mobile client owns the item (FR-5.2), the repository broker
will remove the repository item from the repository cube and send a <content-delete/>

Set-IQ to the associated content broker:

<iq type=’set’ id=’mobilis_13 ’
from=’mobilis@xmpp/Repository ’
to=’mobilis@xmpp/Content ’>

<content -delete xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentService ’>

<uid>8a808081246fc4e201246fc54e480205 </uid>
</repository -delete >

</iq>

The content broker will remove the content from its content store and send back
<content-delete/> a Result-IQ to the repository broker:

54

5.5. Conclusion

<iq type=’set’ id=’mobilis_13 ’
from=’mobilis@xmpp/Content ’
to=’mobilis@xmpp/Repository ’>

<content -delete xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
ContentService ’ />

</iq>

... which will confirm the deletion by sending back a <repository-delete/> Result-IQ
to the mobile client:

<iq type=’result ’ id=’mobilis_12 ’
to=’client@xmpp/MXA’
from=’mobilis@xmpp/Repository ’>

<repository -delete xmlns=’http://rn.inf.tu -dresden.de/mobilis#services
/RepositoryTransfer ’ />

</iq>

5.5. Conclusion

This chapter introduced an architecture for a XMPP-based metadata-structured reposi-
tory. The designed repository is general enough to manage all kinds of media (FR-1.2)
which includes image files (FR-1.1) with arbitrary metadata classification (FR-2.5), which
includes the classification location, time, ownership and title (FR-2.1 through FR-2.5).
Using the elaborated architecture, both centralized server scenarios (FR-1.3) as well as
hybrid scenarios (FR-1.4) are possible. Also user-to-user sharing is possible using the
building block of SI File Transfers (FR-1.5).

Service primitives have been introduced to allow interaction with the repository items
(FR-4) and security mechanisms have been considered where applicable (FR-5.1 and FR-
5.2). Encryption (FR-5.3) has not been covered but can be achieved by higher layer
protocols. The architecture has been described to fit into the mobilis platform (FR-6.2).

Hence, most functional requirements can be covered by the current architecture. What
is left is the implementation of a prototype which actually uses the described architecture
and XMPP extension for the presented picture sharing scenario. Also, non-functional
requirements have to be considered during implementation. The next chapter will con-
centrate on this topic.

55

6. Implementation Considerations

Having defined the architecture of a general repository system in the previous, this chapter
concentrates on the implementation of a prototype to proof the concept of the architecture
as well as realize the picture sharing usage scenario introduced in the beginning. First,
we introduce the layered implementation of both Mobilis client and server (6.1) and then
point out, how the same code can be reused on both client and server side (6.2). We
proceed by explaining how the Mobilis Media prototype fills extension points of client
and server (6.3) and finally highlight both system boundaries and internal structure of
the server (6.4) and the client (6.5) prototype. Section 6.6 concludes this chapter.

6.1. The Mobilis Architecture

The general architecture of the Mobilis platform is shown in 6.1. Mobilis media, the mo-
bilis media sharing repository platform, has to be included into this architecture (FR-6.2
and FR-6.3). In the Mobilis environment, multiple (mobile) Mobilis clients communicate
with a Mobilis server using an XMPP server as communication relay. The Mobilis client
and server applications are realized in Java (DC-4.2). The server application runs on a
JDK 1.6.0 10 runtime environment.

On client side, multiple Mobilis applications may be installed independently, each one
using another set of broker services of the Mobilis Server application. Such a set of broker
services used by one client application is referred to as a package. The package on the
server side and the application on the client side together make up a project.

All client applications run on the Android SDK 1.6, that is, as Java applications on
the Android operating system inside a special Dalvik virtual machine optimized for mobile
environments. Client applications make also heavily use of Android SDK framework
classes for the purpose of retrieving content or contextual information or for displaying a
GUI to the user.

Both client and server use the Smack 1.3 library to communicate via XMPP. To
avoid deployment of the (quite heavyweight) Smack library in every client application,
the Smack library is encapsulated into one central application: the MXA application
developed in parallel by István Koren, also a member of the Mobilis team. Overlaying ap-
plications can bind by means of interprocess communication to the MXA and use services
of the MXA to send and receive packets over XMPP using Smack. The MXA consists
of one central XMPPService, used to exchange core XMPP packets, like IQs and mes-
sages, and, on top of that, several extension services, which realize XMPP Extensions
like file transfer, service discovery etc.

The logic representation of the messages exchanged between client and server – the
custom IQs – are incorporated into a lightweight XMPPBean layer which can be used
both on Mobilis server and on Mobilis client side. There is one set of XMPPBeans for
every Mobilis project. Since the interface to the MXA on the server side is different from

57

6. Implementation Considerations

Mobilis Client

Mobilis Server

User

Applications

App logic

Packages

Activities

External Services

XMPP

Android SDK 1.6

MXA Application

Smack 1.3

JDK 1.6.0_10

Smack 1.3

XMPP Beans

Bean MXA Glue

Bean Smack Glue

‐
Extension
Services XMPP Beans

App logic

XMPPService

Mobilis Services

Broker Services

Figure 6.1.: The inner architecture of the Mobilis platform

the interface to Smack on the client side, two glue layers are required (Bean MXA glue
and Bean Smack glue) to serialize and deserialize XMPPBeans to match the MXA or
Smack interface respectively.

On the server side, on top of the XMPPBean layer, broker services reside. A Broker
Service is an entity which manages a single XMPP connection of the Mobilis Server and
has a set of Mobilis services assigned to it. It can receive a set of IQs and knows to
which Mobilis service these IQs should be forwarded to. These overlying Mobilis Services
finally interprete those IQs, test requests on validity and execute respective actions in the
Server’s app logic. The Mobilis Services will also decide upon the requests answer sent
over the broker service back to the requester.

On the client side, on top of the XMPPBean layer, so called external services are
running. External services are services which make use of MXA functionality but realize
high-level non-standard XMPP protocols. They are implemented as Android Service
classes, that means, they run in the background of the Android operating system and
other processes can connect to them by means of interprocess communication to request
certain actions. External services do not have a GUI – this final layer is provided by
activity layer. Activities in sense of Android are a screen where a user tries to accomplish
a certain task. Each activity binds to one or more external services and executes certain
commands of these services upon request by the user.

58

6.2. Reuse of the XMPP layer using XMPPBeans

Application XMPP Beans

ContentItemInfo
uid: String
repository: String
Description: String

*

*

ContentDeleteBean
uid: String

ContentRegister

ContentUnregisterBean

ContentTransferBean
uid: String
retrieveFrom: String
sendTo: String

RepositoryDeleteBean

RepositoryQueryBean

RepositoryItemInfo
uid: String
content: String
owner: String
Slices: Map<String,String>

ConditionInfo
k S i

Generic XMPP Beans
XMPPB

«interface»
XMPPInfo

fromXml(:XmlPullParser)
toXml(): String
getChildElement(): String
getNamespace(): String

key: String
op: String
value: String
toHql(mapping): String

XMPPBean
from: String
to: String
id: String
type: String
toXml(): String
payloadToXml(): String
clone(): XMPPBean

Figure 6.2.: XMPP Beans as a representation for IQ packets and XML snippets

6.2. Reuse of the XMPP layer using XMPPBeans

A special role in the Mobilis architecture is given to the the layer of the so-called XMPP-
Beans, which represent XMPP IQs on class level. This layer is the only one which is
re-used in client and server, which provides both easy maintainablility and on the other
hand assures constraints concerning the syntax of exchanged IQs on both client and and
server. The XMPPBean layer of the Mobilis Media project is shown in figure 6.2.

The XMPPBean layer provides some basic classes, which are used in every Mobilis
project, like the class XMPPBean representing an XMPP IQ or the more general interface
XMPPInfo representing a snippet of XML. XMPPInfo provides methods for unserializing
(fromXml(...)) and serializing (toXml()). It also provides methods to get the root
element of the carried XML (getChildElement()) and the corresponding namespace
(getNamespace()). An XMPPBean object supports additionally information carried by an
XMPP IQ like from, to, id etc.

For every custom IQ, there will be one subclass of XMPPBean. Hence, every Mobilis
project has its own concrete XMPP Bean subclasses and this set of subclasses is linked
into the Android application and into the Server package. In the example of Mobilis
Media, the <content-.../> and <repository-.../> IQs are represented by respective
Content...Bean and Repository...Bean classes. All those classes implement methods
for serialization and deserialization as well as the methods to retrieve the class-specific
namespace and child element. Sub elements may be included into the bean by aggregating
other concrete XMPPInfo classes.

An XMPPBean object can neither be understood by Smack nor by MXA. Therefore, it
has to be converted to the representation used on the respective system. This is done by
a bean glue layers. The pattern of this process is shown in figure 6.3.

59

6. Implementation Considerations

XMPPBean
XMPPInfo

* prototypes«create» «use»

«singleton»
Parceller

registerXMPPBean(protoype)
unregisterXMPPBean(prototype)
convertXMPPBeanToIQ(xmppbean)
convertXMPPIQToBean(xmppiq)

Generic XMPP Beans

Bean MXA Glue

XMPPBean
XMPPInfo

prototype

Generic XMPP Beans

Bean Smack Glue

BeanIQAdapter
BeanIQAdapter

(prototype)
getChild

ElementXml()
getNamespace()

BeanProvider
Adapter

BeanIQAdapter
(prototype)

parseIQ(xp)

«create»

adapted

Mobilis MXA

XMPPIQ
packetId: String
from: String
to: String
type: int
payload: String
namespace. String
element: String

«create»
«use»

«interface»
IXMPPService

«create»
«use»

getNamespace()
getFrom()
getTo()
…

Smack 1.3IQ
getChild

ElementXml()

«interface»
PacketFilter

accept(packet)

«interface»
IQProvider

parseIQ(xp)

BeanFilterAdapter
BeanIQAdapter

(prototype)
accept(packet)

«create»

Figure 6.3.: Translation of XMPP Beans to the Smack or MXA layer

In case of MXA, the concrete XMPPBean must be converted to a XMPPIQ class,
which holds the XML payload of the bean as plaintext. Converting XMPPIQ classes
to XMPPBeans and vice versa is done by an entity called the Parceller. Converting
to XMPPIQ is done straightforward by deserializing the bean. However, converting an
incoming XMPPIQ to a bean is more difficult: the namespace and element pair has to
be resolved to a concrete XMPPBean implementation first. To achieve this, the Parceller

holds a list of prototypes, which it may scan for the correct subclass, then invoke the
clone() method upon this prototype and perform unserialization upon this copy.

On the server side the responsibility is spread to three classes: Since Smack repre-
sents IQs as subclasses of IQ, a BeanIQAdapter simply wraps an XMPPBean and adapts
the IQ interface to the XMPPBean interface. Deserialization in Smack is done by im-
plementations of the IQProvider interface. Here, a prototype pattern is used again to
create a respective BeanIQAdapter for a XMPPBean with characteristic namespace and
child element. The third class, the BeanFilterAdapter, is an implementation of the
Smack interface PacketFilter which may be used to filter incoming packets to match
the namespace / child element combination of a specific XMPPBean.

6.3. Mobilis Media as a Mobilis Project

The Mobilis Media project prototype is included into the Mobilis platform as one package
on server side and one sample Android application on client side. Figure 6.4 shows how
the project fits into the architecture. The server package implements all the functionality
introduced for the repository architecture in chapter“Conceptual Design”(5). The sample

60

6.3. Mobilis Media as a Mobilis Project

Mobilis Client

Mobilis Server

Mobilis Media Package

Hibernate

Mobilis Media Application

Repository
Activity

Map
Transfer
Activity

XMPP Beans

List

Repository
Cube

User

File
System

JDBC

DB
Server

Content
Store

Repository
Service

Transfer
Service

Send
Activity

Reposi
tory
Item

Activity

XMPP

Android SDK 1.6

Smack 1.3

JDK 1.6.0_10

Bean MXA Glue

Bean Smack Glue

XMPP Beans

Repository
BrokerMobilis MXA

Smack 1.3

File
Transfer
Service

Service
Discovery
Service

XMPPService

Content
Broker

Repository
Service

Content
Service

Figure 6.4.: The inner architecture of Mobilis Media as a Mobilis project

Android application provides functionality to browse an image repository using a map
(FR-3.1) and a filtered list (FR-3.2) as well as an user interface to upload new items to
the repository. As a side-effect, this user interface also allows one-to-one file transfer based
on the XMPP extension for SI File Transfer (FR-1.5).

6.3.1. Server Prototype

The server prototype includes a repository broker and a content broker, as introduced
in chapter 5. Connected to those broker services are respective Mobilis services, which
interprete incoming <repository-.../> and <content-.../> IQs, perform security and
other checks and finally manipulate the overlying application logic according to the
requests.

The application logic is more precisely a Repository Cube and a Content Store
respectively. Both entities make use of a database to persist the modeled data. For this
purpose, the Hibernate framework 1 is used. The file contents, however, are stored by
the content store to the file system using JDK core functionality.

6.3.2. Client Prototype

The client prototype introduces two new external services: The transfer service allows
one-to-one file transfers and transfers to a cube repository (upload service primitive, see

1https://www.hibernate.org/

61

https://www.hibernate.org/

6. Implementation Considerations

subsection 5.4.5). To accomplish the first, it makes use of the file transfer service and
the XMPPService, both offered by the MXA. It also adds another layer around the MXA
File Transfer Service by displaying notifications about ongoing transfers in the Android
notification manager. The transfer service will be more detailed in subsection 6.5.2.

The second service, called repository service, provides an interface to communicate
with the repository broker through all other service primitives despite of upload, that is,
repository service discovery, browsing of the repository, download and deletion of reposi-
tory items. The repository service uses the service discovery service and the XMPPService
of the MXA and will be detailed in subsection 6.5.3.

Both services are used by overlying activities, which form the GUI layer. However, it
should be noted that any other Android application may register to the services and use
their interface by means of interprocess communication.

The activities which form the user interface are shown in figure 6.5. The send activ-
ity is used if the user chooses to send a single image either to another XMPP user or to
a repository. In this activity, the user may choose the destination and enter a descrip-
tion for the transfer. The transfer activity shows all ongoing transfers, their origin or
destination, the file and the progress of the transfer. Furthermore, a user can accept or
deny incoming transfers by interacting with this window. Both send activity and transfer
activity make use of the transfer service.

The repository activity shows the contents of a repository selected by the user.
Therefore, it embeds either a repository list activity or a repository map activity.
In those activities, the user may select a repository item, what would invoke the Repos-
itory Item Activity. That activity shows information about the repository item and
commands which may be invoked upon them, like replacing, downloading and deletion.
All repository activities make use of the repository service.

6.4. The Mobilis Media Server Prototype

The Mobilis server prototype has already undergone vast development in previous Mobilis
projects and therefore has reached a high software majurity concerning the integration
of new brokers and services. Currently, it includes broker service for a mobile tourist
guide [Kor08a], a buddy finder [HFV+] and collaborative editing [Her09]. This section
describes, how broker services and mobilis service can be integrated on class level (6.4.1)
and how this is done at Mobilis Media in particular (6.4.2). Finally the realization of the
repository cube data model on database level is introduced (6.4.3).

6.4.1. General Mobilis Server Class Model

Figure 6.6 shows the core classes to implement service brokers (MobilisBroker class)
and Mobilis services (MobilisService class). Instances of both classes are configured
dynamically via a configuration file (MobilisSettings.xml) and managed by the Mo-

bilisManager singleton. The basic task of every MobilisBroker object is to maintain a
XMPP connection (XMPPConnection class) and hold references to concrete MobilisSer-

vice objects.
The MobilisService class is abstract and will be subclassed by every concrete Mo-

bilis service. In the abstract method registerPacketListener(), every concrete service

62

6.4. The Mobilis Media Server Prototype

Repository

Map

Activity

Repository

Map

Activity

RepositoryItemActivity

TransferActivitySendActivity

Figure 6.5.: Activities forming the User Interface of the Mobilis Media Android
Application

63

6. Implementation Considerations

«singleton»
MobilisManager

+ getBroker (ident, classname)
+ getBroker(ident)
+ getService(ident)
+ getSettingString(container, ident, key)

MobilisService
+ getSettingString(jid, name)
+ setSettingString(jid, name, value)
+ getSettingString(name)
+ setSettingString(name, value)
+ getNode()
+ getName()
+ getAgent()
+ getIdent()
+ registerPacketListener()

MobilisBroker

ConcreteService

*

1
*

+ startup()
+ shutdown()

«interface»
PacketListener

+ processPacket(packet)

«interface»
NodeInformationProvider
+ getNodeIdentities()
+ getNodeItems()
+ getNodeFeatures()

MobilisBroker
+ startup()
+ shutdown()
+ registerService(mobilisService)
+ unregisterService(mobilisService)
+ getConnection()
+ getIdent()

XMPPConnection

1

«artifact»
MobilisSettings.xml

«use»

Smack 1.3

*

Figure 6.6.: Mobilis Server Classes for Service Brokers and Mobilis Services

registers its PacketListener interface to receive a certain set of IQ messages arriving
at the XMPP connection held by the assigned MobilisBroker. Both MobilisServices
and MobilisBrokers implement the interface NodeInformationProvider to allow the
client to query the service broker for connected Mobilis services via XMPP Service Dis-
covery [HMESA08].

6.4.2. Mobilis Media Server Class Model

Figure 6.7 shows how Mobilis Media is integrated into the Mobilis Server on class level.
The content broker and the repository broker are represented as instances of the Mobil-

isBroker class. They hold a reference to an instance of the concrete MobilisService

classes ContentService and MobilisService respectively. These classes define various
method which are called upon reception of related IQs (in...(bean)) or if IQs should be
sent out from the service to another XMPP entity (out...()).

The backing application logic consists of the two classes ContentStore and Reposi-

toryCube which provide an interface to arbitrarily manipulate the data structures laying
behind both entities. The backing data model is stored both on the file system (in a folder
store/ContentService) and in a database, managed by the Hibernate framework 2, in
detail, a org::hibernate::Session instance.

64

6.4. The Mobilis Media Server Prototype

:ContentStore
+ ContentStore(storageFolder)
+ isRepositoryRegistered(r)
+ register(repository)
+ unregister(repository)
+ findItem(identifier):

ContentItem
+ deleteItem(identifier)
+ getItemFile(): File
…

MobilisService
:ContentService

org::
hibernate::
Session

:RepositoryCube
+ getItems(conditionInfo)
+ getItem(repositoryItemInfo)
+ getItem(uid)
+ updateItem(repositoryItemInfo)
+ deleteItem(repositoryItemInfo)
+ deleteItem(uid)«folder»

store/
Content
Service/

MobilisService
:RepositoryService

contentBroker:MobilisBroker

:XMPPConnection

Smack 1.3

:ContentService
+ processPacket(packet)
registerPacketListener()
inContentUnregisterSet(bean)
inContentRegisterSet(bean)
…

repositoryBroker:MobilisBroker

:XMPPConnectionmobilis@xmpp/
Content

mobilis@xmpp/
Repository

:RepositoryService
+ processPacket(packet)
registerPacketListener()
outContentRegisterSet()
inRepositoryQuerySet(bean)
…

Figure 6.7.: Mobilis Media Server Core Classes

«table»
repositoryitem

uid: varchar(255)
content: varchar(255)
owner: varchar(255)

«table»
contentitem

repository: varchar(255)
uid: varchar(255)
description: varchar(255)
filename: varchar(255)
mimetype: varchar(255)
source: varchar(255)

«table»
repositoryitem_slice

uid: varchar(255)
slice_key: varchar(255)
Slice_value: varchar(255)

*

1

JDBC

org::
hibernate::
Session«manage»

«map» «map»«map»

«manage»

0..1

ContentItem::Identifier
+ «@Column» repository: String
+ «@Column» uid: String

«@Entity» «@Table»
RepositoryItem

+ «@Id» «@Column» uid: String
+ «@Column» content: String
+ «@Column» owner: String
+ «@CollectionOfElements» «@JoinTable»

slices: Map<String,String>

«@Entity» «@Table»
ContentItem

+ «@EmbeddedId» identifier:
ContentItem::Identifier

+ «@Column» source: String
+ «@Column» description: String
+ «@Column» mimetype: String
+ «@Column» filename: String

Figure 6.8.: Mobilis Media Server Database Model for the Repository Cube Data Model

65

6. Implementation Considerations

6.4.3. Mobilis Media Database Model

The data model described in chapter “Conceptual Design” (section 5.2) is realized using
a relational database. Using the Hibernate framework the relational records are mapped
to instances of classes of the server prototype. Figure 6.8 shows both the relational model
as well as its mapping to the class model using Hibernate. The object-relational mapping
is declared on Java sourcecode level by Java annotations assigned to the respective Java
types and their members. Those annotations specify the related relational entity, that is,
which elements are tables, primary keys etc.

Once an object of such an annotated type is handed over to a the Hibernate session by
calling session.save(object), the object becomes managed by Hibernate – any change
to the object is henceforth written to the database (possibly with a certain buffered
delay). In similar ways, objects may be read out from the database using the session.
Hibernate uses the JDBC (Java Database Connectivity) interface which can connect to a
large amount of different database systems. In our prototype implementation, we connect
to a MySQL 5.1 database 3 using the Java MySQL Connector 5.1.10 4.

In Mobilis Media, there are three tables stored in the database: contentitem which
represents instances of the ContentItem class. Those records/objects represent items in
the ContentStore, which is managable by the ContentService. The other two tables
repositoryitem and repositoryitem_slice represent instances of the RepositoryItem
class and it’s slice assignment. RepositoryItem objects are stored in the RepositoryCube
which can be managed by the RepositoryService. The slice assignment of repository
items is represented as a simple String-to-String-Map on class level. Both reposito-

ryitem and contentitem are completely independend from each other on database and
on class level. The link between both items is built on semantics of the more abstract
service broker layer.

6.5. The Mobilis Media Client Prototype

This section describes some system boundaries and internal structures of the client pro-
totype. We start by introducing some fundamentals of interprocess communication on
Android in subsection 6.5.1 since interprocess communication was extensively used in the
prototype to allow reusability of the prototype (NF-1.6). One manner of interprocess com-
munication is the use of Android services, or, in terms of the Mobilis platform, external
services. The two Mobilis Media external services – TransferService and Repository-

Service – are introduced in subsections 6.5.2 and 6.5.3. Subsection 6.5.4 gives a brief
overview of overlying GUI layer.

6.5.1. Interprocess Communication on Android

A process of the Android framework is always running inside a Context. This context
can be either an Activity or a Service. An activity is a piece of GUI where the user
accomplishes a certain task. An (Android) service may be started independently and

2https://www.hibernate.org/
3http://dev.mysql.com/downloads/mysql/5.1.html
4http://www.mysql.com/products/connector/

66

https://www.hibernate.org/
http://dev.mysql.com/downloads/mysql/5.1.html
http://www.mysql.com/products/connector/

6.5. The Mobilis Media Client Prototype

perform background tasks. It is also possible for a service to offer an interface where
another context can connect to. Services and activities have a lifecycle managed by
the android system, i.e. a service runs until a task is complete and it stops itself or
until a consumer unbinds from its interface. An activity normally runs until it is hidden
by the user. This lifecycle mechanism allows the Android operating system to manage
memory efficiently, that is, to kill processes automatically, where the lifecycle of services
and activities has ended. More information about process management on android can
be found in [weba].

An easy mean of interprocess communication are Intents. An intent is an request to the
system to execute a specific action and it may either start another activity, start a service
or bind to a service interface. An Intent object may be sent from any context object to the
system by calling context.startActivity(intent), context.startService(intent)
or context.bindToService(intent). The system will then find the activity or service
which is responsible for handling that intent, start it and send the intent to the respective
context. This is possible because all Android applications declare in their manifest which
intents they can handle. (There are also more ways to handle intents, for more information,
see [webd]). If more than one applications is found capable, the user is requested to choose
one application.

When a context binds to a service’s interface, it will receive an IBinder object which
represents a remote interface, in this case, the remote interface of the service thread.
Using an Android own interface description language named AIDL (Android Interface
Description Language) this IBinder may be typecasted to the concrete remote interface
and thereafter be be used to issue remote calls to the service. More information about
AIDL can be found at [webc].

AIDL generated interfaces only accept parameters and return types which implement
the Parcelable interface. Framework classes which are “parcelable” are for example
Intent, IBinder, Message (a class containing fields like what, when and a hash map of
arbitrary other Parcelables) or Messanger but the programmer is free to make any class
parcelable that she wishs to.

A Messenger is a target for Messages. In the owning thread, it is coupled to a Handler.
Once sent to another process, this process can invoke messenger.sendMessage(Message)
what will enqueue the message in a message queue at the destination thread and call
handler.handleMessage(Message) when the thread is ready. Such a message queue,
however, must be tied to a Looper. This means, a thread using a Handler must run
in an infinite loop to check for new messages. This loop can be entered by calling
Looper.prepare() before creating the Handler object and finally calling Looper.loop()

to start enter the infinite message loop.

6.5.2. External Service: TransferService

Service Boundaries

There are two ways to interact with the TransferService: The first is by starting it to
execute a file transfer – either to another XMPP entity or to a repository. This is done by
sending an Intent with the action de.tudresden.inf.rn.mobilis.media.intent.SEND_TO_JID

orSEND_TO_REP in the following way:

67

6. Implementation Considerations

Intent i = new Intent("de.tudresden.inf.rn.mobilis.media.intent.
SEND_TO_REP");

// has to be provided always - also if SEND_TO_JID is used.

i.putExtra("STR_TO", "mobilis@xmpp/Repository");
i.putExtra("STR_DESCRIPTION", "Any description");
i.putExtra("STRA_PATHS", new String [] { "path/to/file/1", "path/to/file

/2" });
// the following lines only if the file is send to a Repository

Bundle b = new Bundle [2];
b[0] = new Bundle ();
b[0]. putString("file1_slice1", "value_for_file1_slice1");
b[0]. putString("file1_slice2", "value_for_file1_slice2");
b[1] = new Bundle ();
b[1]. putString("file2_slice1", "value_for_file2_slice1");
b[1]. putString("file2_slice2", "value_for_file2_slice2");
i.putExtra("BDLA_SLICES", b);
// this line only if other items in the repository should be replaced.

i.putExtra("STRA_REPOSITORYITEMS_UIDS", new String [] { "uidforfile1", "
uidforfile2" });

// send the intent

context.startService(i);

The string extras STR_TO and STR_DESCRIPTION name the recieptient and the descrip-
tion used during file transfer. STRA_PATHS is an array of paths where the files can be found
on the mobile device’s file system. BDLA_SLICES contains the desired slice assignment for
every file and STRA_REPOSITORYITEMS_UID the UIDs of the repository items which should
be replaced. If the last extra is not present or any of the string array contents is set to
null, the repository item will be newly created and not replace another.

The second way to interact with the TransferService is to bind to its AIDL inter-
face. Therefore a de.tudresden.inf.rn.mobilis.media.services.ITransferService

intent has to be sent:

Intent i = new Intent("de.tudresden.inf.rn.mobilis.media.services.
ITransferService");

context.bindService(i);

The IBinder which is sent back to the context’s onBind(...) method once the service
is bound provides the following remote interface:

int startTransferToJid(FileTransfer) initiates a file transfer to another XMPP entity.
The properties of the file transfer are described in the given FileTransfer object.
The service will return an unique ID of the transfer.

int startTransferToRep(String, RepositoryItemParcel, FileTransfer) initiates a file trans-
fer to a Cube Repository. The arguments name the repository, the desired properties
of the repository item and the desired properties of the file transfer. An unique ID
for this file transfer will be returned.

void registerMediaTransferMessenger(Messenger, int) registers a Messenger to be in-
formed when the state of file transfers change or a new file transfer arrives. The
second argument indicates the direction about which the Messenger should be in-
formed (incoming / outgoing file transfers).

68

6.5. The Mobilis Media Client Prototype

void unregisterMediaTransferMessenger(Messenger, int) unregisters a Messenger reg-
istered using registerMediaTransferMessenger.

boolean acceptTransferFromJid(String, int) accepts an incoming transfer with a given
id and and stores it to a given file. Returns, wheter the transfer has been accepted
successfully.

boolean denyTransferFromJid(int) denies an incoming file transfer with a given id. Re-
turns, if this action has been executed successfully.

intgetIds(int) gets the ids of all file transfers. The parameter indicates if ids from in-
coming or outgoing transfers should be returned.

TransferParcel getTransferParcel(int) returns information about the state of a specific
file transfer (with its id given as argument) represented in a TransferParcel object.

Internal Structure

The internal structure of the TransferService is shown in figure 6.9. The class Trans-

ferService itself manages the lifecycle of the service. It inherits from XMPPConsumerSer-

vice, a base class which is responsible for binding to the underlying IXMPPService pro-
vided by the MXA. It also initiates the XMPP connection procedure if the MXA didn’t
connect to the XMPP server yet. The TransferService class defines an inner class called
ServiceBinder which inherits from ITransferService::Stub, a stub class automatically
code-generated by AIDL implementing the ITransferService interface and enriched by
code allowing interprocess communication.

The ServiceBinder class aggregates a TransferManager which is responsible of man-
aging all Transfer objects, each one representing one file transfer and having its own
lifecycle. An object can register as TransferObserver at a Transfer object to be in-
formed when the state of the file transfer changes. A class may also register as Transfer-
RequestObserver at the TransferManager to be informed about incoming file transfers.
Per default, the ServiceBinder implements and registers with both interfaces to be in-
formed about every change of state and about every new incoming transfer. It then
notifies all Messengers which have been registered using the registerMediaTransfer-

Messenger(...) method of the remote interface.

A Transfer knows that its state has changed by a call sent to the ServiceHandler.
The ServiceHandler is an inner class of TransferService which is wrapped into a
Messenger and send to the IFileTransferService to be informed about transfer state
updates, i.e. completion of negotiation processes, transfer of a single file block etc. The
XMPPConsumerService provides the base implementation of ServiceHandler from which
the ServiceHandler in TransferService inherits. The base implementation catches
messages concerning XMPP connection and reacts to them.

Another internal class of TransferService is ServiceNotifier. It is responsible for
updating the notification window during a file transfer or in case a new file arrives.

69

6. Implementation Considerations

TransferService

ServiceHandler
+ handleMessage(msg)

TransferService::ServiceBinder

«create»

TransferManager

ServiceHandler
+ handleMessage(msg)

«create»

Transfer

android::app::Service
XMPPConsumerService

«delegate»

TransferParcel android::os::Binder
ITransferService::Stub

«interface»
ITransferService

«use»

*

«use»android::os::Parcelable

TransferService::
ServiceNotifier

«interface»
IXMPPService

android::os:Handler
+ handleMessage(msg)

android::os:Messenger
+ handleMessage(msg)

android::os::Binder
IFileCallback::Stub

«interface»
IFileTransferService

FileTransfer

OutgoingTransfer

IncomingTransfer

RepositoryTransfer

TransferRequestObserver

**

«use»

TransferObserver

android::os::Parcelable

android::os::Parcelable

RepositoryQueryBean ContentTransferBean

Figure 6.9.: Internal Structure of the Transfer Service

6.5.3. External Service: RepositoryService

Service Boundaries

The RepositoryService can be used by connecting to its AIDL interface sending an In-
tent with the action de.tudresden.inf.rn.mobilis.media.services.IRepositoryService:

Intent i = new Intent("de.tudresden.inf.rn.mobilis.media.services.
IRepositoryService");

context.bindService(i);

70

6.5. The Mobilis Media Client Prototype

The IBinder which is sent back to the context’s onBind(...) method once the service
is bound provides the following remote interface. Every method is used for one service
primitive, as it was introduced in the chapter “Conceptual Design” in section 5.4.

void discover(String, Messenger, int) – Discovery Service Primitive: Discovers all
repository brokers from a mobilis server with the given bare JID (first parameter).
The result will be sent to a Messenger.

void query(String, ConditionParcel, Messenger, int) – Browsing Service Primitive
(FR-3): Queries a repository broker with a given JID (first argument) for repository
items. The filtering condition is given by a ConditionParcel object.

void delete(String, String[, Messenger, int)] – Deletion Service Primitive (FR-4.4):
Deletes a list of uids (second parameter) from a repository broker with a given JID
(first parameter).

void transfer[String, String, String, Messenger, int) – Download Service Primitive
(FR-4.3): Requests the initiation of a content transfer from a given repository bro-
ker (first parameter) and given content broker (second parameter) given the item’s
uid (third parameter).

The last two parameters always specify the Messenger where the result has to be sent
to and a result code, which is used to identify the result with the request.

Internal Structure

Like the TransferService, the RepositoryService is responsible for for managing its
own lifecycle and inherits from XMPPConsumerService which maintains the connection to
the IXMPPService offered by the MXA. The RepositoryService also contains a Ser-

viceHandler, an inner class inheriting from Handler. This class is wrapped into a Mes-

senger and sent to the IXMPPService to notify it about the progress of every tasks carried
out in the name of the RepositoryService. Messages issued to the ServiceHandler are
forwarded to the respective Task objects.

The ServiceBinder is another internal class of the RepositoryService which im-
plements IRepositoryService via the abstract AIDL-generated class IRepositorySer-
vice::Stub. An instance of ServiceBinder is returned as an IBinder to any context
which binds to the service. For every call to the interface, a new Task is created – there
is a concrete implementation of the abstract Task class for every of the four methods of
the IRepositoryService interface.

6.5.4. User Interface

System Boundaries

The User Interface of the client prototype is represented by a set of Activity classes. The
following Intent actions can be used to start an activity of the Mobilis Media application
from any other Android application:

71

6. Implementation Considerations

RepositoryService RepositoryService
::ServiceBinder

«create»

ServiceHandler
+ handleMessage(msg)

«create»

Task

android::app::Service
XMPPConsumerService

«delegate»

ConditionParcel

*

android::os::Binder
IRepositoryService::Stub

«interface»
IRepositoryService

«use» android::os::Parcelable

RepositoryItemParcel

android::os::Parcelable

ServiceHandler
+ handleMessage(msg)

android::os:Handler
+ handleMessage(msg)

Task

android::os::Binder
IXMPPIQCallback::Stub

XMPPIQ«use»

android::os::Parcelable

android::os:Messenger
+ handleMessage(msg)

android::os::Parcelable

«interface»
IXMPPService

DiscoverItem

android::os::Parcelable

«interface»
IServiceDiscoveryService

DiscoverTaskDeleteTask

ContentTransferBean RepositoryDeleteBean

TransferTask

Repository
QueryBean

QueryTask

Figure 6.10.: Internal Structure of the Repository Service

de.tudresden.inf.rn.mobilis.media.intent.SEND Opens the SendActivity which will
first let the user choose an image from a picture chooser.

android.intent.action.SEND Has the same effect despite of the fact that the image is
determined by image.getData(). This intent is called by the system image gallery
application which is pre-installed on Android OS when a user selects an image and
clicks the “Share” button.

de.tudresden.inf.rn.mobilis.media.intent.CHECK TRANSFER Opens the Transfer-

Activity with the list of ongoing incoming and outgoing transfers.

de.tudresden.inf.rn.mobilis.media.intent.DISPLAY REPOSITORYITEM Opens the Repos-
itoryItemActivity to show metadata and commands of a single repository item.
The intent has to have two extras: STR_REPOSITORY, a String holding the repository
JID and PAR_REPOSITORYITEM, an instance of the parcelable RepositoryItemPar-

cel which holds the contents of the repository item.

Internal Structure

Given the use of the underlying services, despite of some subtleties handling with frame-
work UI classes, the implementation of the GUI layer is straightforward. An interesting

72

6.5. The Mobilis Media Client Prototype

android::app::Activity
RepositoryActivity

registerSubActivities()
onSubActivitiesRegistered()
+ discoverRepositories()
onRepositoriesDiscovered(repositories[])
+ selectRepository()

ConcreteRepositoryActivity
registerSubActivities()

‐ subActivities *

com::google::android::
maps::MapActivity

RepositoryMapActivity

com::google::android::
maps::Activity

RepositoryListActivity

com::google::android::
maps::Overlay

RepositoryMapOverlay

«register»

«register»

GUI Level

«delegate»

RepositoryActivity::SubActivity
+ activity: Class
+ trySendMessage(:Message)

android::os::Handler
RepositoryActivity::ActivityHandler
+ handleMessage(:Message)

android::os::Handler
RepositorySubActivityHandler

+ trySendToParent(:Message)
+ handleMessage(:Message)

android::os::Messenger
+ sendMessage (:Message)

RepositorySubActivityHandler
::SubActivityListener

«delegate»

+ outMessenger + toParentMessenger

«message»

«message»

GUI Level

Messenging

Figure 6.11.: Architecture for exchanging messages between a RepositoryActivity and its
subactivities

issue is the implementation of the RepositoryActivity since it calls and communicates
with multiple subactivities. The corresponding class structure is shown in figure 6.11.

RepositoryActivity is a subclass of TabActivity and therefore able to host a set of
tabs, each one displaying another Activity. While the RepositoryActivity is respon-
sible for querying the repository items using the RepositoryService, the sole task of the
Activity classes hosted inside the RepositoryService is to let the user choose a filtering
and to display the filtered items.

To allow communication between RepositoryActivity and subactivities, both activi-
ties posess a Messenger which is used for bidirectional communication to notify the coun-
terpart upon change of the filterin condition, need to refresh the view etc. The messenger
of the RepositoryActivity is given to the subactivity as an Intent extra when the sub-
activity is started by the RepositoryActivity. The subactivity then immediately sends
a Message to this messenger to give its own messenger to the RepositoryActivity. This
functionality is encapsulated by the class RepositorySubActivityHandler, which is ag-
gregated by every subactivity. It inherits from Handler and delegates incoming messages
to a SubActivityListener which can be registered using repositorySubAcrtivityHan-

dler.setSubActivityListener(...). In the current implementation, the subactivities
act as SubActivityListener themselves.

73

6. Implementation Considerations

6.6. Conclusion

In this chapter, an prototype implementation of the Mobilis media sharing platform de-
signed in chapter 5 was presented and served as a proof of concept for the design. The
prototype implementation was related to the Mobilis architecture and integrated into it.

The Mobilis server has been enhanced by two broker services realizing a media repository
open for different usage scenarios. Relational databases administered by Hibernate serve
as realization of the data model for the repository. As stated in the design and requested
by the requirements (FR-3.5 and FR-2.5), the repository is highly generic concerning
storaged data and therefore allows various usage scenarios.

One scenario, the scenario of picture sharing was realized by a the implementation of
an Android client with a UI suitable for this task. But also this client implementation
provides code which can be reused in future client prototypes which make use of the
repository functionality. Android services have been realized which implement file transfer
and transfer to repositories. The remote interface of the service was described as well as
the internal structure of them.

74

7. Evaluation

While the preceeding chapters to large parts delt with the formulation of the problem
and the elaboration of a possible solution, this chapter evaluates the solution in terms of
practicability, performance, efficiency and energy consumption in a mobile environment.
In doing so, non functional requirements which have been set in chapter 4 are revisited and
performance tests are carried out. [Kor08a] already analyzed applicability of XMPP and
Android in a mobile development. This chapter will concentrate on evaluating the design
decision for SI File Transfer (7.1) and then continue by architecture of the cube repository
(7.2). Afterwards the implementation will be evaluated (7.3) – to large parts concerning
the introduction of a multiprocess client prototype with interprocess communication and
concerning the use of relational databases managed by Hibernate on server side. The
chapter will be concluded summarizing known issues and challenges (7.4).

7.1. Applicability of SI File Transfer

In section of the chapter “Conceptual Design” Stream Initiation File Transfers where
introduced as a file transfer protocol. Indeed this protocol has proven to be very reliable for
wireless networks: since both entities that transfer a file can connect to a SOCKS5 proxy
server after the transfer is negotiated, no incoming TCP stream has to be accepted by the
mobile client, especially not when a file arrives at the client. This is especially important
because incoming TCP streams are still blocked by most mobile network providers.

Another argument for SI File transfer is the fact, that it is a technology which can
send binary data unencoded over the wire. The only stage with unneccessary redundancy
is the the negotiation of the file transfer. The redundancy, however is due to the XML
character of the XMPP stanzas what is rather a general XMPP problem. Other problems
concerning XMPP also apply: for example, it is not possible to restart the file transfer
from a specific offset when one entity disconnects, e.g., due to mobile handover or weak
signal reception.

To quantitatively evaluate the SI File Transfer protocol, several performance measure-
ments have been executed.

7.1.1. Test Environment and Methodology

The test was carried out by sending images from the mobile client prototype to the
repository broker with different file sizes and different block sizes. Two file sizes where
used: 95833 Bytes and 1020249 Bytes. The block size indicates how many bytes are
transferred in one row before sending Message objects to the above layers and proceeding
with the next block. The small image of 95833 Bytes was transferred at block sizes of
1024, 2048 and 4096 Bytes. The bigger file was transferred with block sizes of 2048 Bytes
and 4096 Bytes.

75

7. Evaluation

The used mobile phone was a HTC G1 connected to a 54kbps WLAN access point.
The mobile phone was rebooted before every measurement to provide the same starting
conditions. The mobilis server ran on an ASUS F3JM laptop with 1.83 GHz and 2.0 GB
RAM. Both devices were connected to a WLAN access point with 54Mbps.

The system time in milliseconds was measured at the initiation of the SI File Transfer,
after negotiation and after the transfer of every block. The measurement took place on
MXA level and was written to the console, which was read out by USB debugging.

7.1.2. Measurement of Transfer Time

Figures 7.3 and show the progress of the transfer for the filesize of 95833 Bytes and
1020249 Bytes respectively. The diagrams show at which time (y axis) a specific amount
of bytes is transferred (x axis). In figure 7.3 some kinks are visible every 10 blocks where
the transfer seems to stop for about 500ms.

In the case of a small filesize (95833 Bytes), the speed of the transfer with a smaller
block size seems faster than with larger block size. However, in case of bigger files (1020249
Bytes) this effect is reversed. Figure 7.4 shows this effect: starting from ca. 200kB, the
speed suddenly grows for the bigger block size. It is assumed that this effect is due to the
change of quality of service parameters for bigger files, e.g. the TCP slow start mechanism.

Figures 7.3 and 7.4 show the speed of the file transfer (y axis) for the amount of bytes
transferred (x axis). The speed is calculated by taking the derivate of the original graph

vi =
∆TransferredBytesi

∆ti
=

TransferredBytesi − TransferredBytesi−1

ti − ti−1

Another measurement of interest is the time needed to negotiate the file transfer. In
the current collected data, this time varies between 300ms and 900ms.

Table 7.1 summarizes our findings by tnego, tend as well as the average and standard
derivate values for transfer speed (v̄ and ṽ) are and illustrate our findings:

Scenario tnego/ms tend/ms v̄/kBs−1 ṽ/kBs−1

Filesize 97833kB, Blocksize 1024B 392 9031 17.869 10.409
Filesize 97833kB, Blocksize 2048B 918 6841 24.747 14.771
Filesize 97833kB, Blocksize 4096B 325 5559 20.908 6.177
Filesize 1020249kB, Blocksize 2048B 345 68775 32.073 32.505
Filesize 1020249kB, Blocksize 4096B 508 373426 12.726 16.358

Table 7.1.: Maximum Transfer Time and Speed of the test transfers.

7.2. Evaluation of the Repository Architecture

The custom XMPP extension protocol defined in chapter 5 provide all necessary func-
tionality to realize to realize the cube repository architecture are flexible enough to allow
extension of the service primitives to allow more complex query mechanisms. This is
necessary to let the mobile client specify its request more precisely to allow unnecessarily
transmitted data. Imagine a user querying the database with a <condition> matching

76

7.2. Evaluation of the Repository Architecture

Transfer Time
Test Case 95833 Byte Image

at Service (ms) @
Blocksize 1024 Byte

8000

9000

10000

at Service (ms) @ Blocksize 1024 Byte

at Service (ms) @ Blocksize 2048 Byte

at Service (ms) @ Blocksize 4096 Byte

Test Case 95833 Byte Image

Blocksize 1024 Byte

at Service (ms) @
Blocksize 2048 Byte6000

7000

n
 m

s

at Service (ms) @
Blocksize 4096 Byte

3000

4000

5000

Ti
m
e
 in

0

1000

2000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Transfered Progress in Byte

Figure 7.1.: Transfer time of a 95833 bytes image

77

7. Evaluation

Transfer Time
T t C 1020249 B t I

250000

300000

350000

400000

at Service (ms) @ Blocksize 2048 Byte

at Service (ms) @ Blocksize 4096 Byte

Test Case 1020249 Byte Image

at Service (ms) @

at Service (ms) @
Blocksize 4096 Byte

100000

150000

200000

250000

Ti
m
e
in
 m

s

Blocksize 2048 Byte

0

50000

0 200000 400000 600000 800000 1000000

Transfered Progress in Byte

Figure 7.2.: Transfer time of a 1020249 bytes image

78

7.2. Evaluation of the Repository Architecture

Speed (kb/s) @ Blocksize
1024 Byte

Speed (kb/s) @ Blocksize
2048 Byte

60.00

70.00

80.00

90.00

Transfer Speed

Speed (kb/s) @ Blocksize 1024 Byte

Speed (kb/s) @ Blocksize 2048 Byte

Speed (kb/s) @ Blocksize 4096 Byte

Test Case 95833 Byte Image

Speed (kb/s)
@ Blocksize
4096 Byte

0.00

10.00

20.00

30.00

40.00

50.00

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Sp
e
e
d
 in

 k
b
/s

Transfered Progress in Byte

Figure 7.3.: Transfer time of a 95833 bytes image

79

7. Evaluation

Sp
ee
d
 (
kb

/s
)
@
 B
lo
ck
si
ze
 2
04
8
 B
yt
e

Sp
ee
d
 (
kb

/s
)
@

B
lo
ck
si
ze
 4
0
96

 B
yt
e

7
0
.0
0

8
0
.0
0

9
0
.0
0

10
0
.0
0

Tr
an

sf
er
 S
p
ee
d

Sp
ee
d
 (
kb
/s
)
@
 B
lo
ck
si
ze
 2
04
8

B
yt
e

Sp
ee
d
 (
kb
/s
)
@
 B
lo
ck
si
ze
 4
09
6

B
yt
e

Te
st
C
as
e
1
0
20
2
4
9
B
yt
e
 Im

ag
e

0
.0
0

1
0
.0
0

2
0
.0
0

3
0
.0
0

4
0
.0
0

5
0
.0
0

6
0
.0
0

0
2
0
00
0
0

40
0
00
0

6
00
0
00

8
00
0
00

10
0
00
0
0

Speed in kb/s

Tr
an

sf
er
e
d
 P
ro
gr
e
ss
 in

 B
yt
e

Figure 7.4.: Transfer time of a 1020249 bytes image
80

7.3. Evaluation of the Implementation

an enormous high number of repository items. In the current architecture they will all be
returned - moreover - with all slice assignments what may also be a high number. Taking
into account the redundancy overhead of XMPP the size of the returned package might
be enormous and slow down both mobile client and server.

A solution to this problem is to allow fine tuning of the <repository-query> package.
Compared to an SQL statement, the <condition> corresponds to the where clause. Fu-
ture implementation should also add the possibility to restrict the returned information
in number (SQL limit clause), granularity (SQL select clause) and sorting (SQL order

by clause).
The same applies to the replacement of repository items. Currently, a repository item

has to be replaced completely, that means, its slices are completely overwritten and even
the content has to be stored newly. This is an enormous overhead which can be avoided,
if the update logic would be fixedly implemented in the custom cube repository protocol.

More ideas concerning the custom cube extension protocol can be found in the prospect
of chapter 8.

7.3. Evaluation of the Implementation

7.3.1. Server Side

One core problem on the server side is the database connection. The implementation of
the repository slicing with a simple HashMap is far from optimal. Assume the mobile
client issues a simple request like the following:

<iq type=’get’ id=’mobilis_5 ’
from=’client@xmpp/MXA’
to=’mobilis@xmpp/Repository ’>

<repository -query xmlns=’http://rn.inf.tu-dresden.de/mobilis#services/
RepositoryService ’>

<condition op=’and’ xmlns=’http://rn.inf.tu-dresden.de/mobilis ’>
<condition key=’taken ’ op=’lt’ value=’1256468400000 ’ />
<condition key=’taken ’ op=’gt’ value=’1256461200000 ’ />

</condition >
</repository -query>

</iq>

The request will be translated by the RepositoryCube to the following so-called HQL
statement:

from de.tudresden.inf.rn.mobilis.server.services.media.RepositoryItem it
where (it.slices[’taken’]<=’1256468400000 ’) and (it.slices[’taken’]>=’

1256461200000 ’)

This HQL statement will be translated by Hibernate to an equivalent SQL statement:

select
repository0_.uid as uid1_ ,
repository0_.content as content1_ ,
repository0_.owner as owner1_

from
mobilis_repositoryitem repository0_ ,
mobilis_repositoryitem_slice slices1_ ,
mobilis_repositoryitem_slice slices2_

81

7. Evaluation

where
repository0_.uid=slices1_.uid
and repository0_.uid=slices2_.uid
and slices1_.slice_key = ’taken’
and slices2_.slice_key = ’taken’
and slices1_.slice_value <=’1256468400000 ’
and slices2_.slice_value >=’1256461200000 ’

The example shows that for every <condition> one cross join with two where-conditions
are introduced. However the statement could be optimized into into three independent
nested statements:

select
repository0_.uid as uid1_ ,
repository0_.content as content1_ ,
repository0_.owner as owner1_

from
mobilis_repositoryitem repository0_

where
(select slices1_.slice_value

from mobilis_repositoryitem_slice slices1_
where slices1_.slice_key = ’taken’
and slices1_.uid = repository0_.uid)

<=’1256468400000 ’
and (select slices2_.slice_value

from mobilis_repositoryitem_slice slices2_
where slices2_.slice_key = ’taken’
and slices2_.uid = repository0_.uid)

>=’1256461200000 ’

The time needed to process both requestes ws analyzed using the MySQL console. The
second, optimized statement executed in 50ms while the Hibernate-generated statement
executed in about 300ms.

The result of the two inner statements depend on the currently visited record of the outer
statement so they cannot be precalculated before the outer statement is run. However,
they should be executable quite fastly since they are dependent on the uid and slice_key

field of the mobilis_repositoryitem_slice table which are primary keys and therefore
stored in a search-efficient datatype. The outer statement, however, has to traverse all
repository items.

Having a <repository-query> with c conditions and a repository with N repository
items each having n slide assignments, the database hence has to perform c hash accesses
on N repository items. Since a hash access is of order O(n log n) the complexity of a
single request is described by

O(N · c · n log n)

.

7.3.2. Client Side

One key experience we made when using the client prototype was the finding, that the
User Interface sometimes felt “sluggish” when the file transfer was ongoing. That means,
the progress bar notifying the user about the transfer progress was updated delayedly.

82

7.4. Conclusion

The reason to this fact has been researched: In parallel to the actual file transfer mea-
surements (as introduced in section 7.1), the time was measured, when the user interface
was notified about the progress. Figure 7.5 and 7.6 show this effect: the dashed lines
represent the transfer as shown to the user while the solid lines show the transfer as it is
in fact happening.

It turns out, that this effect is percieved less for bigger block sizes. The smaller the
block size the much more significant this lag is, especially for very large files, since the lag
accumulates over time. In our example the accumulated lag at the end of the file transfer
is in the following order (table 7.2):

Scenario Lagmax/ms

Filesize 97833kB, Blocksize 1024B 52227
Filesize 97833kB, Blocksize 2048B 12959
Filesize 97833kB, Blocksize 4096B 2471
Filesize 1020249kB, Blocksize 2048B 1759111
Filesize 1020249kB, Blocksize 4096B 53621

Table 7.2.: Lag between Transfer Time and UI Response.

1759111ms – that is almost 30 minutes! This is a totally unacceptable value for produc-
tive use. During this time, the mobile phone seems unusable because the GUI thread takes
up very much resources and even heats up the phones processor, what can be literally
felt. This is a clear violation to the non functional requirements NF-3.3 and NF-3.5.

The reason of this defect lies probably in a design failure concerning the interpro-
cess communication between MXA, external services and GUI layer. For synchronizing
threads, we make use of the Android framework classes Message, Handler and Messen-

ger. However, these classes use Message queues, so if receiptient threads are currently
busy, e.g. drawing an UI element, incoming messages are added to a queue. If handling
one Message takes longer then transferring a block over the wire, a bottleneck is created
which slows down the UI, creating waiting Messages, taking up ressources, eventually
slowing the thread down even more etc. pp.

A possible solution would be the use of other means of content sharing, e.g., a pulling
mechanism. However, the time of this work was limited so broader research on this issue
could not be accomplished more intensively.

7.4. Conclusion

In this chapter, both the architecture of the custom XMPP extension for cube media
repositories as well as its implementation on client and server side have been examined
qualitiativedly and in measure. Three potential issues where identified: The first was
the inflexibility of the repository query and upload mechanism, which is solvable by ex-
tending the related protocol by further elaborations. The second is the question if the
current relational database model is efficient and scalable enough. To answer this ques-
tion, further measurements and calculations should be carried out. And the final issue,
the sluggishness of the GUI layer, is a clear defect on implementation level. It represents

83

7. Evaluation

at GUI (ms) @ Blocksize
1024 Byte

30000

40000

50000

60000

70000

Ti
m
e
 in

 m
s

Transfer Time & Time to GUI

at Service (ms) @ Blocksize 1024 Byte

at GUI (ms) @ Blocksize 1024 Byte

at Service (ms) @ Blocksize 2048 Byte

at GUI (ms) @ Blocksize 2048 Byte

at Service (ms) @ Blocksize 4096 Byte

at GUI (ms) @ Blocksize 4096 Byte

Test Case 95833 Byte Image

at Service (ms) @
Blocksize 1024 Byte

at Service (ms) @
Blocksize 2048 Byte

at GUI (ms) @ Blocksize
2048 Byte

at Service (ms) @
Blocksize 4096 Byte

at GUI (ms) @ Blocksize
4096 Byte

0

10000

20000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Transfered Progress in Byte

Figure 7.5.: Speed of the transfer of a 95833 bytes image

84

7.4. Conclusion

1200000

1400000

1600000

1800000

2000000

Transfer Time & Time to GUI

at Service (ms) @ Blocksize 2048 Byte

at GUI (ms) @ Blocksize 2048 Byte

at Service (ms) @ Blocksize 4096 Byte

at GUI (ms) @ Blocksize 4096 Byte

Test Case 1020249 Byte Image

at Service (ms) @
Blocksize 2048 Byte

at GUI (ms) @ Blocksize
2048 Byte

at Service (ms) @
Blocksize 4096 Byte

at GUI (ms) @ Blocksize
4096 Byte

0

200000

400000

600000

800000

1000000

0 200000 400000 600000 800000 1000000

Ti
m
e
 in

 m
s

Transfered Progress in Byte

Figure 7.6.: Speed of the transfer of a 1020249 bytes image

85

7. Evaluation

a lesson-learned which should be considered when dealing with other real-time updated
GUIs. The following chapter presents a prospect with ideas for future work which have
not been considered in requirements and design.

86

8. Prospect

From the introductory user scenario indicating a problem, this thesis has developed a long
bend over the whys, whats, hows to a solution of that problem. The presented solution was
evaluated and lessons learned where shared. During the whole process, further problems
were identified and new ideas came to life. This chapter presents problems, which where
not in the scope of this thesis and therefore also have not been solved by the current
prototype. They provide a starting point for future work.

Section 8.1 introduces the idea for new prototypes based on the current architecture
and suggests possible enhancements to the current prototype which would improve the
user experience. Section 8.2 shows how the underlying architecture can be modified to be
more flexible and adapted to the mobile environment.

8.1. Possible Enhancements of the Prototype

While the repository is general enough to provide a framework for realization of other user
stories, especially the client prototype user interface is constructed to strictly implement
the settled requirements of an image sharing tool. A simple task would be to implement
prototypes which use the repository architecture for other means of media sharing, like
music or video sharing. Another possible task could be to implement a client prototype
running in another environment, e.g., on a desktop system. Together with a mobile
prototype, the architecture may then be used to ubiquitously manage a users personal
image library.

Finally, some functionality is not implemented, which would be nice-to-have when using
the prototype in daily life: this concerns handy features like uploading or downloading
multiple files at once, seeing a thumbnail view of online content or filtering the items by
user-defined conditions. Also an overview over downloaded content allowing synchroniza-
tion of it with uploaded content would be an enhancement to the user experience.

8.2. Possible Enhancements of the Repository
Architecture

We already analyzed the repository architecture in the previous chapter (see section 7.2)
and expressed the need for more sophisticated query and update mechanisms. In particu-
lar, updates and requests should be possible on a more fine-granular level than repository
items. Also the query condition language (syntax and semantics of the <condition/>

tag) could be enriched by more complex terms, functions and operators than it currently
supports. Sorting the result, limiting it to a specific amount of items or specifying the
granularity of the returned items could be implemented. Partly this is already introduced

87

8. Prospect

in the current design by the distinction between concrete, complete, referencing, or simple
<repository-item/>s (see subsection 5.4.1).

Moreover, security mechanisms could be dramatically improved by implementing proper
authentication mechanisms or access control lists. This might include the possibility to
split up a repository into sub-repositories, which is currently only supported by introduc-
ing multiple repository brokers.

8.2.1. Practical Comparison with other File Transfer Technologies

We use SI File Transfer as a building block of our repository architecture to transfer bi-
nary data between XMPP entities. The reason for this design decision has been broadly
discussed (see 7.1). However, the architecture of the repository allows replacing this mean
of transfer by another, probably more advanced technologies, like Jingle [LBSA+09], if
practical reasons like the availability library support would make the effort to integrate the
technology reasonable. Future work may modify the introduced media sharing by replac-
ing SI File Transfers by another one-to-one binary transfer and evaluate those methods
practically.

8.2.2. Practical Comparison with other Repository Models

The presented repository architecture is backed by a data model which has a cube shape.
This shape was chosen based on the introductory user scenario. In other file sharing
scenarios, hierarchical storage might be beneficial. However, hierarchical information can
only be mapped difficultly to the repository.

Future work could develop a hierarchical repository architecture and compare the intro-
duced cube structure to the hierarchical structure. During the development of this thesis,
a Pub-Sub library 1 from Ignite Realitime was announced. This library could be used to
develop a hierarchical repository based on Published Stream Initiation Requests and, if
possible, suggest a hybrid solution which combines the multi-dimensional and hierarchical
model.

Also one core strength of XMPP has not been taken into account yet: the possibility
to use it as a push service. Using a publish-subscribe mechanism, a user could be auto-
matically informed about newly available content. This would save bandwidth, which is
a core issue in mobile environments.

8.2.3. Thinking Big: Replication and Partitioning

A media sharing platform can grow quite big with the amount of participating users and
files. Good scalability is therefore an important property. The presented architecture in-
troduced some means of load balancing by allowing multiple content stores and repository
cubes on different physical entities. However, in todays media sharing platforms far more
professional technologies exist: Files are partitioned and spread among different entities
or they are held in multiple replicas on different storages which creates the need for a
proper synchronization algorithms.

1http://nixbit.com/cat/programming/libraries/smack-pubsub-extensions/

88

http://nixbit.com/cat/programming/libraries/smack-pubsub-extensions/

8.3. Coupling with other Media Repositories

File
System

JDBC

DB
Server

HTTP HTTP HTTP

Mobilis Server

Mobilis Media Package

JDBC

Mobilis Media Package

Simple Media Bridge

Hibernate
Flickr Media Bridge

Facebook API
Ovi Media Bridge

Ovi API
FB Media Bridge

Facebook API

Repository
Cube

Content
Store

Repository
Cube

Content
Store

Repository
Cube

Content
Store

Repository
Cube

Content
Store

Repository Broker Content Broker

Repository Service Content Service

Abstract Repository Cube Abstract Content Store

XMPP Beans

Repository Broker Content Broker

Sma k 1 3

Bean Smack Glue

Smack 1.3

JDK 1.6.0_10

Figure 8.1.: Media Bridges as a mean for a genaralized social cube based media repository.
Icons are registered trademarks of Yahoo Inc., Nokia Oy and Facebook respectively.

8.3. Coupling with other Media Repositories

The introduced user scenario of travel picture sharing provides a fairly well-known prac-
tical background to be extended to many other use cases. One possible extension lies in
the weakness of the social aspect of the presented solution: our platform introduces just
another social network to a possible new user and the user probably already has other
social network accounts where she shares and publishes pictures. An idea would therefore
be to integrate an interface to other social networks into the presented architecture.

Indeed, this is easily possible due to the flexible data model of content with assigned
arbitrary metadata. The implemented content store and repository cube, by design, store
images into the file system and into a relational database currently. This has been a
simple design decision, but of course, they may also store images into any other media
repository, like Flickr 2, Nokia Ovi 3 or Facebook 4. The advantage of this is, that a user
already has a community of friends there waiting to see her pictures.

On implementation level, the presented idea would result in an abstraction of Repos-

itoryCube and ContentBroker and a set of replacable media bridges, which provide
their own implementation of the two entities. This concept is shown in figure 8.1. The

2http://www.flickr.com
3http://www.ovi.com
4http://www.facebook.com

89

http://www.flickr.com
http://www.ovi.com
http://www.facebook.com

8. Prospect

DB

Repositor Broker
Mobilis
Media
Cloud Client

(t il bil)

Repository Broker

DB

(not necessarily mobile)

Content Upload
and Download

Figure 8.2.: The Mobilis Media Cloud
Icons are registered trademarks of Yahoo Inc., Nokia Oy and Facebook respectively.

idea can be realized in a similar way to the generalized handling of friend lists using a
BuddyBroker, which has been described in [DS09].

8.4. Conclusion

To conclude, the Mobilis Media repository can be extended to build up a central Media
Sharing Cloud which allows media exchange between different content creation devices
like Mobile phones and arbitrary content storage entities being either tied to the Media
Sharing Cloud or located remotedly. That way, platforms like Facebook, Flickr etc. can
be connected to. Imposing that repository brokers can also play the role of clients in
the sense of the Media Sharing Cloud, they may also be used as adapters or aggregators
to link several repositories together. The overall idea of the Mobilis Media Cloud is
depicted in figure 8.2.

Given the possible size of such a media cloud, future work should beyond the extension
of the IQ interface also focus on the design of content distribution, replication and syn-
chronization algorithms. And supposing the variety of user stories, various user prototypes
addressed to different tasks could be developed. The introduced Mobilis Media picture
sharing solution can in fact be seen as the part of a generalized content sharing platform,
which to build up provides of room for quite a high number of research challenges and
economical innovations.

90

A. Appendix

A.1. XSD Schema of used custom IQs

The following listings show the XSD (XML schema definition) of the IQ namespaces
defined for the media repository in section 5.4.1.

The Mobilis Namespace

<?xml version="1.0" encoding="UTF -8" ?>
<xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema"

targetNamespace="http://www.rn.inf.tu-dresden.de/mobilis">

<xs:simpleType name="mobilis:opLogicalClause">
<xs:restriction base="xs:string">

<xs:enumeration value="or"/><xs:enumeration value="and"/>
</xs:restriction >

</xs:simpleType >

<xs:simpleType name="mobilis:opLogicalUnary">
<xs:restriction base="xs:string">

<xs:enumeration value="not"/>
</xs:restriction >

</xs:simpleType >

<xs:simpleType name="mobilis:opComparison">
<xs:restriction base="xs:string">

<xs:enumeration value="lt"/><xs:enumeration value="gt"/>
<xs:enumeration value="le"/><xs:enumeration value="ge"/>
<xs:enumeration value="ne"/><xs:enumeration value="eq"/>

</xs:restriction >
</xs:simpleType >

<xs:simpleType name="mobilis:uid">
<xs:restriction base="xs:string" />

</xs:simpleType >

<xs:simpleType name="mobilis:jidFull">
<xs:restriction base="xs:string">

<xs:pattern value="^[\w.-]+@[\w.-]+$" />
</xs:restriction >

</xs:simpleType >

<xs:element name="condition" targetNamespace="http://www.rn.inf.tu-
dresden.de/mobilis">

<xs:complexType >
<xs:choice minOccurs="1" maxOccurs="1">

<xs:all >

91

A. Appendix

<xs:attribute name="op" type="mobilis:opLogicalUnary" use="
required" />

<xs:element name="condition">
</xs:all >
<xs:all >

<xs:attribute name="op" type="mobilis:opLogicalClause" use="
required" />

<xsd:sequence >
<xs:element name="condition">

</xsd:sequence >
</xs:all >
<xs:all >

<xs:attribute name="op" type="mobilis:opComparison" use="
required" />

<xs:attribute name="key" type="xs:NMTOKEN" use="required" />
<xs:attribute name="value" type="xs:NMTOKEN" use="required" />

</xs:all >
</xs:complexType >

</xs:element >

</xs:schema >

The RepositoryService Subnamespace

<?xml version="1.0" encoding="UTF -8" ?>
<xs:schema xmlns:xs="http: //www.w3.org /2001/ XMLSchema"

targetNamespace="http://www.rn.inf.tu-dresden.de/mobilis#services/
RepositoryService">

<xs:import namespace="http://www.rn.inf.tu -dresden.de/mobilis#services"
/>

<xs:complexType name="mobilis:repository:item:referencing">
<xs:attribute name="uid" type="mobilis:uid" use="required" />

</xs:complexType >

<xs:complexType name="mobilis:repository:item:simple">
<xs:sequence >

<xs:element name="slice">
<xs:attribute name="key" type="xs:NMTOKEN" use="required" />
<xs:attribute name="value" type="xs:NMTOKEN" use="required" />

</xs:element >
</xs:sequence >

</xs:complexType >

<xs:complexType name="mobilis:repository:item:concrete">
<xs:extension base="mobilis:repository:item:simple">

<xs:attribute name="uid" type="mobilis:uid" use="required" />
</xs:extension >

</xs:complexType >

<xs:complexType name="mobilis:repository:item:complete">
<xs:extension base="mobilis:repository:item:simple">

<xs:attribute name="content" type="mobilis:jidFull" use="required" /
>

<xs:attribute name="owner" type="mobilis:jidFull" use="required" />
</xs:extension >

92

A.1. XSD Schema of used custom IQs

</xs:complexType >

<xs:element name="repository -delete">
<xs:complexType >

<xs:sequence minOccurs="1">
<xs:element name="repository -item" type="

mobilis:repository:item:referencing" />
</xs:sequence >

</xs:complexType >
</xs:element >

<xs:element name="repository -query">
<xs:complexType >

<xs:choice minOccurs="1" maxOccurs="1">
<xs:sequence minOccurs="1">

<xs:choice >
<xs:element name="repository -item" type="

mobilis:repository:item:concrete" />
<xs:element name="repository -item" type="

mobilis:repository:item:simple" />
</xs:choice >

</xs:sequence >
<xs:sequence minOccurs="1">

<xs:element name="repository -item" type="
mobilis:repository:item:complete" />

</xs:sequence >
<xs:element name="condition" />

</xs:choice >
</xs:complexType >

</xs:element >

</xs:schema >

The ContentService Subnamespace

<?xml version="1.0" encoding="UTF -8" ?>
<xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema"

targetNamespace="http://www.rn.inf.tu-dresden.de/mobilis#services/
ContentService">

<xs:import namespace="http://www.rn.inf.tu -dresden.de/mobilis#services"
/>

<xs:element name="content -delete">
<xs:complexType >

<xs:element name="uid" type="mobilis:uid" />
</xs:complexType >

</xs:element >

<xs:element name="content -register" />

<xs:element name="content -unregister" />

<xs:element name="content -transfer">
<xs:complexType >

<xs:choice minOccurs="1">
<xs:element name="retrieveFrom" type="mobilis:jidFull" />

93

A. Appendix

<xs:element name="sendTo" type="mobilis:jidFull" />
</xs:choice >
<xs:element name="uid" type="mobilis:uid" />

</xs:complexType >
</xs:element >

<xs:element name="content -item">
<xs:complexType >

<xs:choice minOccurs="1">
<xs:element name="retrieveFrom" type="mobilis:jidFull" />
<xs:element name="sendTo" type="mobilis:jidFull" />

</xs:choice >
<xs:element name="uid" type="mobilis:uid" />

</xs:complexType >
</xs:element >

</xs:schema >

A.2. Data Source of the Performance Evaluation

The following attached pages contain the raw data measured during evaluation of the
prototype. They are used for the respective conclusions in sections 7.1 and 7.3.2. See
subsection 7.1.1 for a description of the test methodology. The attachment consists of
two parts: the first part contains measurements of the 9583 bytes image and includes
pages A.2-1 through A.2-4. The second part contains measurements of the 1020249 bytes
image and takes up pages A.2-5 through A.2-10. Horizontally, the tables are split up into
the measurement of the different block sizes and vertically the measured data for each
transferred block is listed. The data includes:

kb transferred – the accumulated number of kilobytes which has been transferred with
this block.

at Service the number of milliseconds which has passed when the block is read out from
the MXA, measured since the transfer has been initiated

at GUI – the number of milliseconds which has passed when the user is informed about
the transferred block, measured since the transfer has been initiated.

Delta – the number of milliseconds which has passed since the last measurement of “at
Speed” or “at GUI” respectively..

Speed the first derivate, that is, how fast the last block has been transferred in kb/s.

Lag – the number of milliseconds which passes between arrival of the block at the MXA
and notification of the end user that the block has been transferred.

94

A
.2

D
at
a
So
ur
ce
 o
f t
he

 P
er
fo
rm

an
ce
 E
va
lu
at
io
n

Te
st
 C
as
e
95

83
 B
yt
es
 Im

ag
e
Fi
le

Te
ch
ni
sc
he

 U
ni
ve
rs
itä

t D
re
sd
en

Bl
oc
k
Si
ze

Bl
oc
k
#

kb

tr
an
sf
er
re
d

D
el
ta

(m
s)

Sp
ee
d

(k
b/
s)

D
el
ta

(m
s)

La
g
(m

s)
kb

tr
an
sf
er
re
d

D
el
ta

(m
s)

Sp
ee
d

(k
b/
s)

D
el
ta

(m
s)

La
g
(m

s)
kb

tr
an
sf
er
re
d

D
el
ta

(m
s)

Sp
ee
d

(k
b/
s)

D
el
ta

(m
s)

La
g
(m

s)

in
iti
at
ed

0
0

0
0

0
0

0
0

0

0
0

34
2

34
2

41
4

41
4

72
0

91
8

91
8

93
0

93
0

12
0

32
5

32
5

33
7

33
7

12

1
10

24
82

6
48

4
2.
12

82
9

41
5

3
20

48
12

39
32

1
6.
38

12
55

32
5

16
40

96
68

2
35

7
11

.4
7

69
3

35
6

11

2
20

48
91

4
88

11
.6
4

11
04

27
5

19
0

40
96

13
42

10
3

19
.8
8

14
89

23
4

14
7

81
92

85
9

17
7

23
.1
4

87
6

18
3

17

3
30

72
99

8
84

12
.1
9

12
07

10
3

20
9

61
44

14
55

11
3

18
.1
2

15
76

87
12

1
12

28
8

10
25

16
6

24
.6
7

11
46

27
0

12
1

4
40

96
10

13
15

68
.2
7

13
28

12
1

31
5

81
92

15
01

46
44

.5
2

16
75

99
17

4
16

38
4

11
87

16
2

25
.2
8

12
43

97
56

5
51

20
12

33
22

0
4.
65

16
12

28
4

37
9

10
24

0
16

70
16

9
12

.1
2

19
95

32
0

32
5

20
48

0
14

14
22

7
18

.0
4

15
42

29
9

12
8

6
61

44
13

37
10

4
9.
85

17
02

90
36

5
12

28
8

17
69

99
20

.6
9

21
14

11
9

34
5

24
57

6
16

14
20

0
20

.4
8

17
98

25
6

18
4

7
71

68
13

78
41

24
.9
8

18
15

11
3

43
7

14
33

6
19

68
19

9
10

.2
9

24
09

29
5

44
1

28
67

2
18

25
21

1
19

.4
1

20
30

23
2

20
5

8
81

92
14

88
11

0
9.
31

20
46

23
1

55
8

16
38

4
20

24
56

36
.5
7

25
20

11
1

49
6

32
76

8
24

19
59

4
6.
90

24
16

38
6

‐3

9
92

16
16

36
14

8
6.
92

22
76

23
0

64
0

18
43

2
21

73
14

9
13

.7
4

26
92

17
2

51
9

36
86

4
26

46
22

7
18

.0
4

27
28

31
2

82

10
10

24
0

17
18

82
12

.4
9

26
24

34
8

90
6

20
48

0
22

98
12

5
16

.3
8

29
39

24
7

64
1

40
96

0
28

76
23

0
17

.8
1

30
94

36
6

21
8

11
11

26
4

17
90

72
14

.2
2

27
91

16
7

10
01

22
52

8
28

53
55

5
3.
69

45
61

16
22

17
08

45
05

6
30

95
21

9
18

.7
0

31
91

97
96

12
12

28
8

18
79

89
11

.5
1

31
02

31
1

12
23

24
57

6
29

01
48

42
.6
7

48
34

27
3

19
33

49
15

2
33

11
21

6
18

.9
6

36
83

49
2

37
2

13
13

31
2

20
02

12
3

8.
33

34
69

36
7

14
67

26
62

4
30

36
13

5
15

.1
7

51
99

36
5

21
63

53
24

8
34

42
13

1
31

.2
7

39
20

23
7

47
8

14
14

33
6

20
49

47
21

.7
9

38
51

38
2

18
02

28
67

2
31

12
76

26
.9
5

55
92

39
3

24
80

57
34

4
36

36
19

4
21

.1
1

43
57

43
7

72
1

15
15

36
0

21
47

98
10

.4
5

41
87

33
6

20
40

30
72

0
32

44
13

2
15

.5
2

59
80

38
8

27
36

61
44

0
38

07
17

1
23

.9
5

54
24

10
67

16
17

16
16

38
4

26
68

52
1

1.
97

45
95

40
8

19
27

32
76

8
32

86
42

48
.7
6

62
75

29
5

29
89

65
53

6
40

29
22

2
18

.4
5

57
68

34
4

17
39

17
17

40
8

28
09

14
1

7.
26

52
57

66
2

24
48

34
81

6
34

06
12

0
17

.0
7

66
53

37
8

32
47

69
63

2
45

28
49

9
8.
21

59
89

22
1

14
61

18
18

43
2

28
94

85
12

.0
5

55
51

29
4

26
57

36
86

4
34

57
51

40
.1
6

69
72

31
9

35
15

73
72

8
46

91
16

3
25

.1
3

62
07

21
8

15
16

19
19

45
6

29
40

46
22

.2
6

60
39

48
8

30
99

38
91

2
35

77
12

0
17

.0
7

71
88

21
6

36
11

77
82

4
48

28
13

7
29

.9
0

64
65

25
8

16
37

20
20

48
0

30
09

69
14

.8
4

65
54

51
5

35
45

40
96

0
36

63
86

23
.8
1

74
14

22
6

37
51

81
92

0
49

68
14

0
29

.2
6

67
25

26
0

17
57

21
21

50
4

31
63

15
4

6.
65

69
55

40
1

37
92

43
00

8
37

66
10

3
19

.8
8

76
58

24
4

38
92

86
01

6
51

36
16

8
24

.3
8

70
05

28
0

18
69

22
22

52
8

32
26

63
16

.2
5

81
46

11
91

49
20

45
05

6
38

43
77

26
.6
0

82
58

60
0

44
15

90
11

2
52

91
15

5
26

.4
3

73
17

31
2

20
26

23
23

55
2

33
03

77
13

.3
0

85
84

43
8

52
81

47
10

4
39

89
14

6
14

.0
3

85
91

33
3

46
02

94
20

8
54

64
17

3
23

.6
8

77
75

45
8

23
11

24
24

57
6

33
48

45
22

.7
6

90
30

44
6

56
82

49
15

2
40

55
66

31
.0
3

88
69

27
8

48
14

95
83

3
55

59
95

17
.1
1

80
30

25
5

24
71

25
25

60
0

34
43

95
10

.7
8

93
38

30
8

58
95

51
20

0
42

23
16

8
12

.1
9

91
53

28
4

49
30

26
26

62
4

35
59

11
6

8.
83

96
60

32
2

61
01

53
24

8
46

70
44

7
4.
58

96
24

47
1

49
54

27
27

64
8

36
41

82
12

.4
9

99
74

31
4

63
33

55
29

6
47

73
10

3
19

.8
8

98
78

25
4

51
05

28
28

67
2

36
97

56
18

.2
9

10
30

4
33

0
66

07
57

34
4

48
21

48
42

.6
7

10
20

4
32

6
53

83

29
29

69
6

37
82

85
12

.0
5

10
65

9
35

5
68

77
59

39
2

49
71

15
0

13
.6
5

10
56

5
36

1
55

94

30
30

72
0

38
80

98
10

.4
5

11
11

7
45

8
72

37
61

44
0

50
31

60
34

.1
3

10
93

2
36

7
59

01

31
31

74
4

39
59

79
12

.9
6

11
42

6
30

9
74

67
63

48
8

51
15

84
24

.3
8

12
15

1
12

19
70

36

32
32

76
8

40
12

53
19

.3
2

12
26

7
84

1
82

55
65

53
6

51
84

69
29

.6
8

12
30

1
15

0
71

17

33
33

79
2

44
74

46
2

2.
22

12
64

6
37

9
81

72
67

58
4

53
49

16
5

12
.4
1

12
68

3
38

2
73

34

34
34

81
6

45
11

37
27

.6
8

13
05

8
41

2
85

47
69

63
2

53
95

46
44

.5
2

13
07

4
39

1
76

79

35
35

84
0

45
86

75
13

.6
5

13
45

5
39

7
88

69
71

68
0

55
09

11
4

17
.9
6

13
46

9
39

5
79

60

36
36

86
4

46
53

67
15

.2
8

13
87

5
42

0
92

22
73

72
8

55
53

44
46

.5
5

13
87

8
40

9
83

25

37
37

88
8

48
06

15
3

6.
69

14
28

7
41

2
94

81
75

77
6

57
03

15
0

13
.6
5

14
32

5
44

7
86

22

38
38

91
2

48
59

53
19

.3
2

15
16

7
88

0
10

30
8

77
82

4
57

55
52

39
.3
8

14
71

8
39

3
89

63

10
24

20
48

at
 S
er
vi
ce

(m
s)

at
 G
U
I

(m
s)

40
96

at
 G
U
I

(m
s)

at
 S
er
vi
ce

(m
s)

at
 S
er
vi
ce

(m
s)

at
 G
U
I

(m
s)

A
.2
‐1

A
.2

D
at
a
So
ur
ce
 o
f t
he

 P
er
fo
rm

an
ce
 E
va
lu
at
io
n

Te
st
 C
as
e
95

83
 B
yt
es
 Im

ag
e
Fi
le

Te
ch
ni
sc
he

 U
ni
ve
rs
itä

t D
re
sd
en

Bl
oc
k
Si
ze

Bl
oc
k
#

kb

tr
an
sf
er
re
d

D
el
ta

(m
s)

Sp
ee
d

(k
b/
s)

D
el
ta

(m
s)

La
g
(m

s)
kb

tr
an
sf
er
re
d

D
el
ta

(m
s)

Sp
ee
d

(k
b/
s)

D
el
ta

(m
s)

La
g
(m

s)
kb

tr
an
sf
er
re
d

D
el
ta

(m
s)

Sp
ee
d

(k
b/
s)

D
el
ta

(m
s)

La
g
(m

s)

10
24

20
48

at
 S
er
vi
ce

(m
s)

at
 G
U
I

(m
s)

40
96

at
 G
U
I

(m
s)

at
 S
er
vi
ce

(m
s)

at
 S
er
vi
ce

(m
s)

at
 G
U
I

(m
s)

39
39

93
6

49
11

52
19

.6
9

15
60

4
43

7
10

69
3

79
87

2
58

56
10

1
20

.2
8

15
49

7
77

9
96

41

40
40

96
0

49
80

69
14

.8
4

16
41

7
81

3
11

43
7

81
92

0
59

24
68

30
.1
2

15
95

0
45

3
10

02
6

41
41

98
4

51
18

13
8

7.
42

16
65

3
23

6
11

53
5

83
96

8
64

14
49

0
4.
18

16
42

0
47

0
10

00
6

42
43

00
8

52
26

10
8

9.
48

17
21

3
56

0
11

98
7

86
01

6
64

73
59

34
.7
1

16
91

5
49

5
10

44
2

43
44

03
2

53
14

88
11

.6
4

17
61

1
39

8
12

29
7

88
06

4
65

81
10

8
18

.9
6

17
41

5
50

0
10

83
4

44
45

05
6

53
69

55
18

.6
2

18
45

3
84

2
13

08
4

90
11

2
66

06
25

81
.9
2

17
89

8
48

3
11

29
2

45
46

08
0

54
72

10
3

9.
94

18
92

0
46

7
13

44
8

92
16

0
67

05
99

20
.6
9

18
76

5
86

7
12

06
0

46
47

10
4

60
20

54
8

1.
87

19
42

1
50

1
13

40
1

94
20

8
67

85
80

25
.6
0

19
26

0
49

5
12

47
5

47
48

12
8

61
13

93
11

.0
1

19
95

4
53

3
13

84
1

95
88

3
68

41
56

29
.9
1

19
79

7
53

7
12

95
6

48
49

15
2

61
62

49
20

.9
0

20
45

8
50

4
14

29
6

49
50

17
6

63
27

16
5

6.
21

21
10

7
64

9
14

78
0

50
51

20
0

63
63

36
28

.4
4

22
00

5
89

8
15

64
2

51
52

22
4

64
30

67
15

.2
8

22
55

7
55

2
16

12
7

52
53

24
8

64
81

51
20

.0
8

23
13

9
58

2
16

65
8

53
54

27
2

65
83

10
2

10
.0
4

23
73

3
59

4
17

15
0

54
55

29
6

66
53

70
14

.6
3

24
31

2
57

9
17

65
9

55
56

32
0

67
01

48
21

.3
3

25
27

1
95

9
18

57
0

56
57

34
4

67
39

38
26

.9
5

25
89

8
62

7
19

15
9

57
58

36
8

68
17

78
13

.1
3

26
58

7
68

9
19

77
0

58
59

39
2

68
53

36
28

.4
4

27
22

1
63

4
20

36
8

59
60

41
6

69
06

53
19

.3
2

27
87

3
65

2
20

96
7

60
61

44
0

69
33

27
37

.9
3

28
86

1
98

8
21

92
8

61
62

46
4

70
41

10
8

9.
48

29
55

7
69

6
22

51
6

62
63

48
8

70
87

46
22

.2
6

30
20

7
65

0
23

12
0

63
64

51
2

71
13

26
39

.3
8

30
94

6
73

9
23

83
3

64
65

53
6

71
50

37
27

.6
8

32
07

6
11

30
24

92
6

65
66

56
0

73
20

17
0

6.
02

32
79

6
72

0
25

47
6

66
67

58
4

73
50

30
34

.1
3

33
52

1
72

5
26

17
1

67
68

60
8

73
80

30
34

.1
3

34
25

3
73

2
26

87
3

68
69

63
2

74
20

40
25

.6
0

36
13

3
18

80
28

71
3

69
70

65
6

74
80

60
17

.0
7

36
22

7
94

28
74

7

70
71

68
0

75
11

31
33

.0
3

36
96

2
73

5
29

45
1

71
72

70
4

75
47

36
28

.4
4

37
73

5
77

3
30

18
8

72
73

72
8

75
85

38
26

.9
5

38
88

9
11

54
31

30
4

73
74

75
2

79
61

37
6

2.
72

39
70

0
81

1
31

73
9

74
75

77
6

80
09

48
21

.3
3

40
49

2
79

2
32

48
3

75
76

80
0

80
57

48
21

.3
3

41
36

4
87

2
33

30
7

76
77

82
4

80
91

34
30

.1
2

42
55

2
11

88
34

46
1

77
78

84
8

81
80

89
11

.5
1

43
37

7
82

5
35

19
7

78
79

87
2

82
42

62
16

.5
2

44
22

8
85

1
35

98
6

A
.2
‐2

A
.2

D
at
a
So
ur
ce
 o
f t
he

 P
er
fo
rm

an
ce
 E
va
lu
at
io
n

Te
st
 C
as
e
95

83
 B
yt
es
 Im

ag
e
Fi
le

Te
ch
ni
sc
he

 U
ni
ve
rs
itä

t D
re
sd
en

Bl
oc
k
Si
ze

Bl
oc
k
#

kb

tr
an
sf
er
re
d

D
el
ta

(m
s)

Sp
ee
d

(k
b/
s)

D
el
ta

(m
s)

La
g
(m

s)
kb

tr
an
sf
er
re
d

D
el
ta

(m
s)

Sp
ee
d

(k
b/
s)

D
el
ta

(m
s)

La
g
(m

s)
kb

tr
an
sf
er
re
d

D
el
ta

(m
s)

Sp
ee
d

(k
b/
s)

D
el
ta

(m
s)

La
g
(m

s)

10
24

20
48

at
 S
er
vi
ce

(m
s)

at
 G
U
I

(m
s)

40
96

at
 G
U
I

(m
s)

at
 S
er
vi
ce

(m
s)

at
 S
er
vi
ce

(m
s)

at
 G
U
I

(m
s)

79
80

89
6

82
90

48
21

.3
3

45
44

8
12

20
37

15
8

80
81

92
0

83
26

36
28

.4
4

47
18

6
17

38
38

86
0

81
82

94
4

84
18

92
11

.1
3

47
42

0
23

4
39

00
2

82
83

96
8

84
59

41
24

.9
8

48
30

2
88

2
39

84
3

83
84

99
2

84
92

33
31

.0
3

49
88

3
15

81
41

39
1

84
86

01
6

85
29

37
27

.6
8

50
54

7
66

4
42

01
8

85
87

04
0

86
38

10
9

9.
39

51
53

9
99

2
42

90
1

86
88

06
4

86
83

45
22

.7
6

52
76

0
12

21
44

07
7

87
89

08
8

87
29

46
22

.2
6

53
73

2
97

2
45

00
3

88
90

11
2

87
74

45
22

.7
6

54
64

7
91

5
45

87
3

89
91

13
6

88
43

69
14

.8
4

55
92

2
12

75
47

07
9

90
92

16
0

88
90

47
21

.7
9

56
92

0
99

8
48

03
0

91
93

18
4

89
29

39
26

.2
6

57
86

9
94

9
48

94
0

92
94

20
8

89
84

55
18

.6
2

59
17

5
13

06
50

19
1

93
95

23
2

90
10

26
39

.3
8

60
15

1
97

6
51

14
1

94
95

83
3

90
31

21
28

.6
2

61
30

8
11

57
52

27
7

A
ve
ra
ge

95
.0
63

17
.8
96

64
5.
34

7
18

28
8.
43

2
14

2.
52

1
24

.7
47

41
2.
43

8
50

77
.6
67

22
2.
36

0
20

.9
08

32
1.
20

0
84

4.
08

0

St
d
D
er
iv

10
3.
01

5
10

.4
09

36
4.
88

3
15

52
9.
14

9
15

8.
99

3
14

.7
71

27
8.
07

6
38

96
.0
84

11
3.
37

6
6.
17

7
18

2.
85

0
86

9.
19

0 A
.2
‐3

A.2 Data Source of the Performance Evaluation
Test Case 1020249 Bytes Image File

Technische Universität Dresden

Block Size

Block #
kb
transferred

Delta
(ms)

Speed
(kb/s) Delta (ms) Lag (ms)

kb
transferred Delta (ms)

Speed
(kb/s) Delta (ms) Lag (ms)

initiated 0 0 0 0 0 0

0 0 345 345 349 349 4 0 508 508 540 540 32

1 2048 739 394 5.20 2075 1726 1336 4096 1230 722 5.67 1243 703 13

2 4096 774 35 58.51 3280 1205 2506 8192 1414 184 22.26 1515 272 101

3 6144 908 134 15.28 5723 2443 4815 12288 1568 154 26.60 1702 187 134

4 8192 961 53 38.64 7103 1380 6142 16384 1771 203 20.18 1915 213 144

5 10240 1070 109 18.79 8447 1344 7377 20480 2175 404 10.14 2197 282 22

6 12288 1121 51 40.16 11005 2558 9884 24576 2349 174 23.54 2456 259 107

7 14336 1619 498 4.11 12496 1491 10877 28672 2518 169 24.24 2610 154 92

8 16384 1693 74 27.68 13940 1444 12247 32768 2739 221 18.53 3253 643 514

9 18432 1804 111 18.45 15344 1404 13540 36864 3015 276 14.84 3548 295 533

10 20480 1861 57 35.93 17868 2524 16007 40960 3552 537 7.63 3685 137 133

11 22528 1980 119 17.21 19496 1628 17516 45056 3704 152 26.95 4115 430 411

12 24576 2032 52 39.38 21158 1662 19126 49152 3843 139 29.47 4282 167 439

13 26624 2183 151 13.56 22711 1553 20528 53248 4046 203 20.18 4702 420 656

14 28672 2288 105 19.50 25104 2393 22816 57344 4208 162 25.28 5085 383 877

15 30720 2374 86 23.81 26709 1605 24335 61440 4810 602 6.80 5580 495 770

16 32768 2441 67 30.57 28310 1601 25869 65536 5030 220 18.62 6103 523 1073

17 34816 2578 137 14.95 30139 1829 27561 69632 5180 150 27.31 6501 398 1321

18 36864 2627 49 41.80 32665 2526 30038 73728 5351 171 23.95 7236 735 1885

19 38912 2712 85 24.09 34413 1748 31701 77824 5621 270 15.17 7537 301 1916

20 40960 2783 71 28.85 36114 1701 33331 81920 7283 1662 2.46 7832 295 549

21 43008 3189 406 5.04 38675 2561 35486 86016 7690 407 10.06 9052 1220 1362

22 45056 3244 55 37.24 41000 2325 37756 90112 7917 227 18.04 10840 1788 2923

23 47104 3431 187 10.95 42773 1773 39342 94208 8089 172 23.81 11275 435 3186

24 49152 3515 84 24.38 44644 1871 41129 98304 8282 193 21.22 11604 329 3322

25 51200 3651 136 15.06 46621 1977 42970 102400 8640 358 11.44 11994 390 3354

26 53248 3712 61 33.57 50975 4354 47263 106496 8716 76 53.89 12343 349 3627

27 55296 3795 83 24.67 52089 1114 48294 110592 8796 80 51.20 12680 337 3884

28 57344 3897 102 20.08 54746 2657 50849 114688 8888 92 44.52 13094 414 4206

29 59392 3976 79 25.92 57067 2321 53091 118784 8989 101 40.55 14012 918 5023

30 61440 4052 76 26.95 59564 2497 55512 122880 9206 217 18.88 14384 372 5178

31 63488 4188 136 15.06 60127 563 55939 126976 9284 78 52.51 14877 493 5593

32 65536 4241 53 38.64 61442 1315 57201 131072 9381 97 42.23 15282 405 5901

33 67584 4326 85 24.09 62778 1336 58452 135168 9458 77 53.19 16125 843 6667

34 69632 4402 76 26.95 63359 581 58957 139264 9684 226 18.12 16573 448 6889

35 71680 4525 123 16.65 64505 1146 59980 143360 10082 398 10.29 16863 290 6781

36 73728 4790 265 7.73 65955 1450 61165 147456 10128 46 89.04 17437 574 7309

37 75776 4855 65 31.51 66648 693 61793 151552 10210 82 49.95 17869 432 7659

38 77824 4892 37 55.35 67815 1167 62923 155648 10292 82 49.95 18306 437 8014

39 79872 4965 73 28.05 68635 820 63670 159744 10337 45 91.02 18753 447 8416

40 81920 5001 36 56.89 69875 1240 64874 163840 10545 208 19.69 19570 817 9025

41 83968 5078 77 26.60 70894 1019 65816 167936 10610 65 63.02 20089 519 9479

42 86016 5139 61 33.57 71807 913 66668 172032 10698 88 46.55 20619 530 9921

43 88064 5256 117 17.50 73146 1339 67890 176128 10780 82 49.95 21167 548 10387

44 90112 5336 80 25.60 74206 1060 68870 180224 10876 96 42.67 21735 568 10859

45 92160 5441 105 19.50 75130 924 69689 184320 13098 2222 1.84 22280 545 9182

46 94208 5474 33 62.06 76555 1425 71081 188416 14037 939 4.36 23268 988 9231

47 96256 5558 84 24.38 77461 906 71903 192512 14865 828 4.95 23844 576 8979

48 98304 5575 17 120.47 79282 1821 73707 196608 15316 451 9.08 24400 556 9084

49 100352 5644 69 29.68 80983 1701 75339 200704 16604 1288 3.18 24966 566 8362

50 102400 5706 62 33.03 82243 1260 76537 204800 19604 3000 1.37 26038 1072 6434

51 104448 6238 532 3.85 82617 374 76379 208896 20129 525 7.80 26683 645 6554

52 106496 6308 70 29.26 84086 1469 77778 212992 20694 565 7.25 27716 1033 7022

53 108544 6422 114 17.96 85234 1148 78812 217088 21738 1044 3.92 28361 645 6623

54 110592 6474 52 39.38 86676 1442 80202 221184 23246 1508 2.72 29003 642 5757

55 112640 6600 126 16.25 87721 1045 81121 225280 25648 2402 1.71 29658 655 4010

56 114688 6651 51 40.16 89002 1281 82351 229376 25747 99 41.37 30683 1025 4936

57 116736 6772 121 16.93 90366 1364 83594 233472 25848 101 40.55 31396 713 5548

58 118784 6830 58 35.31 91612 1246 84782 237568 25977 129 31.75 32107 711 6130

59 120832 6939 109 18.79 92776 1164 85837 241664 26999 1022 4.01 32867 760 5868

60 122880 7058 119 17.21 94445 1669 87387 245760 29680 2681 1.53 33905 1038 4225

61 124928 7220 162 12.64 95769 1324 88549 249856 30713 1033 3.97 34618 713 3905

62 126976 7292 72 28.44 98172 2403 90880 253952 31442 729 5.62 35324 706 3882

63 129024 7413 121 16.93 99681 1509 92268 258048 32869 1427 2.87 36025 701 3156

64 131072 7480 67 30.57 100068 387 92588 262144 33932 1063 3.85 37373 1348 3441

65 133120 7831 351 5.83 102615 2547 94784 266240 37561 3629 1.13 38356 983 795

66 135168 7893 62 33.03 103905 1290 96012 270336 38386 825 4.96 38901 545 515

67 137216 8028 135 15.17 105035 1130 97007 274432 39160 774 5.29 39877 976 717

68 139264 8075 47 43.57 107144 2109 99069 278528 39948 788 5.20 40968 1091 1020

69 141312 8217 142 14.42 108010 866 99793 282624 41883 1935 2.12 42232 1264 349

70 143360 8236 19 107.79 110473 2463 102237 286720 42935 1052 3.89 43136 904 201

71 145408 8385 149 13.74 110916 443 102531 290816 43219 284 14.42 43861 725 642

2048 4096

at Service
(ms) at GUI (ms)

at Service
(ms)

at GUI
(ms)

A.2‐4

A.2 Data Source of the Performance Evaluation
Test Case 1020249 Bytes Image File

Technische Universität Dresden

Block Size

Block #
kb
transferred

Delta
(ms)

Speed
(kb/s) Delta (ms) Lag (ms)

kb
transferred Delta (ms)

Speed
(kb/s) Delta (ms) Lag (ms)

2048 4096

at Service
(ms) at GUI (ms)

at Service
(ms)

at GUI
(ms)

72 147456 8541 156 13.13 112787 1871 104246 294912 44029 810 5.06 44769 908 740

73 149504 8711 170 12.05 114822 2035 106111 299008 45632 1603 2.56 46002 1233 370

74 151552 8761 50 40.96 117039 2217 108278 303104 46737 1105 3.71 46919 917 182

75 153600 8908 147 13.93 117995 956 109087 307200 48289 1552 2.64 48320 1401 31

76 155648 8934 26 78.77 120426 2431 111492 311296 48414 125 32.77 49158 838 744

77 157696 9045 111 18.45 121967 1541 112922 315392 49293 879 4.66 49989 831 696

78 159744 9129 84 24.38 123865 1898 114736 319488 50341 1048 3.91 50987 998 646

79 161792 9556 427 4.80 125422 1557 115866 323584 52250 1909 2.15 52261 1274 11

80 163840 9638 82 24.98 126745 1323 117107 327680 53374 1124 3.64 53399 1138 25

81 165888 9747 109 18.79 129044 2299 119297 331776 53476 102 40.16 53712 313 236

82 167936 9801 54 37.93 129786 742 119985 335872 54401 925 4.43 55002 1290 601

83 169984 9915 114 17.96 131526 1740 121611 339968 55649 1248 3.28 56299 1297 650

84 172032 9973 58 35.31 133906 2380 123933 344064 56622 973 4.21 57298 999 676

85 174080 10098 125 16.38 135445 1539 125347 348160 58986 2364 1.73 58997 1699 11

86 176128 10151 53 38.64 136705 1260 126554 352256 59085 99 41.37 59720 723 635

87 178176 10260 109 18.79 137916 1211 127656 356352 60093 1008 4.06 60591 871 498

88 180224 10305 45 45.51 140713 2797 130408 360448 61079 986 4.15 62047 1456 968

89 182272 10435 130 15.75 142625 1912 132190 364544 62441 1362 3.01 63326 1279 885

90 184320 10485 50 40.96 143166 541 132681 368640 64479 2038 2.01 64508 1182 29

91 186368 10629 144 14.22 144666 1500 134037 372736 64589 110 37.24 65220 712 631

92 188416 10684 55 37.24 146466 1800 135782 376832 66538 1949 2.10 67327 2107 789

93 190464 10784 100 20.48 148075 1609 137291 380928 67537 999 4.10 68545 1218 1008

94 192512 10832 48 42.67 149925 1850 139093 385024 68630 1093 3.75 69926 1381 1296

95 194560 11283 451 4.54 151220 1295 139937 389120 71259 2629 1.56 71299 1373 40

96 196608 11354 71 28.85 153178 1958 141824 393216 71368 109 37.58 72382 1083 1014

97 198656 11492 138 14.84 154965 1787 143473 397312 72424 1056 3.88 74058 1676 1634

98 200704 11538 46 44.52 156726 1761 145188 401408 74136 1712 2.39 75253 1195 1117

99 202752 11662 124 16.52 158423 1697 146761 405504 75589 1453 2.82 76498 1245 909

100 204800 11722 60 34.13 160206 1783 148484 409600 78236 2647 1.55 78257 1759 21

101 206848 11848 126 16.25 161736 1530 149888 413696 78337 101 40.55 79157 900 820

102 208896 11884 36 56.89 163629 1893 151745 417792 79915 1578 2.60 80547 1390 632

103 210944 12016 132 15.52 165373 1744 153357 421888 81126 1211 3.38 82617 2070 1491

104 212992 12064 48 42.67 167405 2032 155341 425984 82706 1580 2.59 83818 1201 1112

105 215040 12198 134 15.28 170285 2880 158087 430080 85281 2575 1.59 85291 1473 10

106 217088 12260 62 33.03 171585 1300 159325 434176 85364 83 49.35 86357 1066 993

107 219136 12371 111 18.45 172668 1083 160297 438272 86948 1584 2.59 87908 1551 960

108 221184 12444 73 28.05 174567 1899 162123 442368 88289 1341 3.05 89718 1810 1429

109 223232 12908 464 4.41 176486 1919 163578 446464 89894 1605 2.55 91026 1308 1132

110 225280 12962 54 37.93 178996 2510 166034 450560 92530 2636 1.55 92567 1541 37

111 227328 13073 111 18.45 180704 1708 167631 454656 92687 157 26.09 93678 1111 991

112 229376 13142 69 29.68 182215 1511 169073 458752 94360 1673 2.45 95669 1991 1309

113 231424 13240 98 20.90 184244 2029 171004 462848 95697 1337 3.06 97347 1678 1650

114 233472 13328 88 23.27 186024 1780 172696 466944 97377 1680 2.44 98438 1091 1061

115 235520 13494 166 12.34 188052 2028 174558 471040 100517 3140 1.30 101130 2692 613

116 237568 13531 37 55.35 189765 1713 176234 475136 100613 96 42.67 102532 1402 1919

117 239616 13654 123 16.65 191687 1922 178033 479232 100742 129 31.75 104018 1486 3276

118 241664 13722 68 30.12 193625 1938 179903 483328 100869 127 32.25 105257 1239 4388

119 243712 13848 126 16.25 195654 2029 181806 487424 101115 246 16.65 107270 2013 6155

120 245760 13892 44 46.55 197664 2010 183772 491520 104338 3223 1.27 108438 1168 4100

121 247808 14044 152 13.47 200230 2566 186186 495616 105869 1531 2.68 110408 1970 4539

122 249856 14141 97 21.11 202522 2292 188381 499712 107308 1439 2.85 111268 860 3960

123 251904 14271 130 15.75 204543 2021 190272 503808 107429 121 33.85 113358 2090 5929

124 253952 14619 348 5.89 206025 1482 191406 507904 109884 2455 1.67 115067 1709 5183

125 256000 14739 120 17.07 207816 1791 193077 512000 115175 5291 0.77 116268 1201 1093

126 258048 14792 53 38.64 209887 2071 195095 516096 115649 474 8.64 118589 2321 2940

127 260096 14917 125 16.38 212209 2322 197292 520192 117108 1459 2.81 120352 1763 3244

128 262144 14971 54 37.93 214216 2007 199245 524288 118996 1888 2.17 121667 1315 2671

129 264192 15099 128 16.00 216247 2031 201148 528384 120476 1480 2.77 123406 1739 2930

130 266240 15133 34 60.24 218323 2076 203190 532480 124325 3849 1.06 125087 1681 762

131 268288 15252 119 17.21 220675 2352 205423 536576 125767 1442 2.84 127273 2186 1506

132 270336 15301 49 41.80 224443 3768 209142 540672 127314 1547 2.65 128633 1360 1319

133 272384 15454 153 13.39 224797 354 209343 544768 129249 1935 2.12 130097 1464 848

134 274432 15511 57 35.93 227010 2213 211499 548864 129376 127 32.25 132928 2831 3552

135 276480 15648 137 14.95 230827 3817 215179 552960 134681 5305 0.77 134693 1765 12

136 278528 15693 45 45.51 231678 851 215985 557056 134832 151 27.13 136925 2232 2093

137 280576 15811 118 17.36 234107 2429 218296 561152 136952 2120 1.93 138166 1241 1214

138 282624 15851 40 51.20 236132 2025 220281 565248 137114 162 25.28 139427 1261 2313

139 284672 16194 343 5.97 238306 2174 222112 569344 138748 1634 2.51 141297 1870 2549

140 286720 16246 52 39.38 240524 2218 224278 573440 144338 5590 0.73 144375 3078 37

141 288768 16346 100 20.48 242445 1921 226099 577536 144463 125 32.77 145278 903 815

142 290816 16418 72 28.44 244649 2204 228231 581632 146100 1637 2.50 146807 1529 707

143 292864 16486 68 30.12 247006 2357 230520 585728 146229 129 31.75 148918 2111 2689

144 294912 16572 86 23.81 249176 2170 232604 589824 148242 2013 2.03 150877 1959 2635

A.2‐5

A.2 Data Source of the Performance Evaluation
Test Case 1020249 Bytes Image File

Technische Universität Dresden

Block Size

Block #
kb
transferred

Delta
(ms)

Speed
(kb/s) Delta (ms) Lag (ms)

kb
transferred Delta (ms)

Speed
(kb/s) Delta (ms) Lag (ms)

2048 4096

at Service
(ms) at GUI (ms)

at Service
(ms)

at GUI
(ms)

145 296960 16682 110 18.62 251553 2377 234871 593920 153642 5400 0.76 153652 2775 10

146 299008 16761 79 25.92 253766 2213 237005 598016 153747 105 39.01 154682 1030 935

147 301056 16869 108 18.96 255956 2190 239087 602112 155615 1868 2.19 156798 2116 1183

148 303104 16916 47 43.57 258787 2831 241871 606208 155848 233 17.58 159123 2325 3275

149 305152 17049 133 15.40 261363 2576 244314 610304 158646 2798 1.46 160202 1079 1556

150 307200 17095 46 44.52 263237 1874 246142 614400 163624 4978 0.82 163676 3474 52

151 309248 17206 111 18.45 266085 2848 248879 618496 163770 146 28.05 165911 2235 2141

152 311296 17256 50 40.96 268485 2400 251229 622592 165618 1848 2.22 167871 1960 2253

153 313344 17699 443 4.62 270535 2050 252836 626688 166061 443 9.25 168763 892 2702

154 315392 17725 26 78.77 273307 2772 255582 630784 167943 1882 2.18 171038 2275 3095

155 317440 17880 155 13.21 275588 2281 257708 634880 172052 4109 1.00 172897 1859 845

156 319488 17972 92 22.26 278594 3006 260622 638976 174093 2041 2.01 175127 2230 1034

157 321536 18142 170 12.05 280545 1951 262403 643072 174830 737 5.56 177918 2791 3088

158 323584 18192 50 40.96 283245 2700 265053 647168 176296 1466 2.79 178817 899 2521

159 325632 18430 238 8.61 285605 2360 267175 651264 178189 1893 2.16 180997 2180 2808

160 327680 18501 71 28.85 287745 2140 269244 655360 182513 4324 0.95 183287 2290 774

161 329728 18592 91 22.51 291062 3317 272470 659456 184449 1936 2.12 185438 2151 989

162 331776 18671 79 25.92 293214 2152 274543 663552 185763 1314 3.12 188006 2568 2243

163 333824 18798 127 16.13 295956 2742 277158 667648 186738 975 4.20 190078 2072 3340

164 335872 18858 60 34.13 298198 2242 279340 671744 186888 150 27.31 193328 3250 6440

165 337920 18979 121 16.93 300865 2667 281886 675840 189047 2159 1.90 195714 2386 6667

166 339968 18995 16 128.00 303495 2630 284500 679936 191292 2245 1.82 198065 2351 6773

167 342016 19414 419 4.89 305515 2020 286101 684032 193312 2020 2.03 200207 2142 6895

168 344064 19450 36 56.89 307928 2413 288478 688128 193468 156 26.26 201239 1032 7771

169 346112 19607 157 13.04 310580 2652 290973 692224 195927 2459 1.67 203785 2546 7858

170 348160 19700 93 22.02 313205 2625 293505 696320 200383 4456 0.92 206281 2496 5898

171 350208 19827 127 16.13 315725 2520 295898 700416 201085 702 5.83 207780 1499 6695

172 352256 19883 56 36.57 318228 2503 298345 704512 202809 1724 2.38 210119 2339 7310

173 354304 20001 118 17.36 321484 3256 301483 708608 205065 2256 1.82 212628 2509 7563

174 356352 20059 58 35.31 323805 2321 303746 712704 207017 1952 2.10 214382 1754 7365

175 358400 20169 110 18.62 326544 2739 306375 716800 211733 4716 0.87 217630 3248 5897

176 360448 20222 53 38.64 328976 2432 308754 720896 213703 1970 2.08 219347 1717 5644

177 362496 20340 118 17.36 332755 3779 312415 724992 213854 151 27.13 222864 3517 9010

178 364544 20401 61 33.57 335388 2633 314987 729088 216195 2341 1.75 225269 2405 9074

179 366592 20529 128 16.00 337995 2607 317466 733184 217888 1693 2.42 227900 2631 10012

180 368640 20565 36 56.89 341128 3133 320563 737280 223173 5285 0.78 228983 1083 5810

181 370688 20698 133 15.40 343684 2556 322986 741376 225279 2106 1.94 232691 3708 7412

182 372736 20733 35 58.51 346150 2466 325417 745472 225454 175 23.41 235249 2558 9795

183 374784 21240 507 4.04 351436 5286 330196 749568 227954 2500 1.64 236437 1188 8483

184 376832 21303 63 32.51 352094 658 330791 753664 228158 204 20.08 239966 3529 11808

185 378880 21450 147 13.93 354985 2891 333535 757760 235313 7155 0.57 241090 1124 5777

186 380928 21525 75 27.31 357706 2721 336181 761856 235407 94 43.57 243224 2134 7817

187 382976 21634 109 18.79 360586 2880 338952 765952 237878 2471 1.66 245959 2735 8081

188 385024 21703 69 29.68 363201 2615 341498 770048 239986 2108 1.94 248627 2668 8641

189 387072 21823 120 17.07 366158 2957 344335 774144 240134 148 27.68 251077 2450 10943

190 389120 21885 62 33.03 369077 2919 347192 778240 245107 4973 0.82 255265 4188 10158

191 391168 22009 124 16.52 371945 2868 349936 782336 247531 2424 1.69 258267 3002 10736

192 393216 22075 66 31.03 374496 2551 352421 786432 247769 238 17.21 261335 3068 13566

193 395264 22189 114 17.96 377525 3029 355336 790528 249810 2041 2.01 264281 2946 14471

194 397312 22225 36 56.89 381772 4247 359547 794624 252477 2667 1.54 266378 2097 13901

195 399360 22358 133 15.40 383865 2093 361507 798720 258468 5991 0.68 269899 3521 11431

196 401408 22418 60 34.13 386211 2346 363793 802816 259202 734 5.58 271704 1805 12502

197 403456 22919 501 4.09 390772 4561 367853 806912 261669 2467 1.66 275580 3876 13911

198 405504 22997 78 26.26 392128 1356 369131 811008 262237 568 7.21 278078 2498 15841

199 407552 23095 98 20.90 395355 3227 372260 815104 265044 2807 1.46 279428 1350 14384

200 409600 23155 60 34.13 398584 3229 375429 819200 270145 5101 0.80 283774 4346 13629

201 411648 23255 100 20.48 401195 2611 377940 823296 271535 1390 2.95 286640 2866 15105

202 413696 23323 68 30.12 404652 3457 381329 827392 272950 1415 2.89 289316 2676 16366

203 415744 23502 179 11.44 406875 2223 383373 831488 275642 2692 1.52 292872 3556 17230

204 417792 23570 68 30.12 410472 3597 386902 835584 275770 128 32.00 294269 1397 18499

205 419840 23665 95 21.56 413742 3270 390077 839680 281083 5313 0.77 297118 2849 16035

206 421888 23735 70 29.26 416275 2533 392540 843776 283810 2727 1.50 299558 2440 15748

207 423936 23861 126 16.25 419713 3438 395852 847872 283962 152 26.95 302268 2710 18306

208 425984 23924 63 32.51 422355 2642 398431 851968 285768 1806 2.27 307082 4814 21314

209 428032 24015 91 22.51 425495 3140 401480 856064 286861 1093 3.75 308246 1164 21385

210 430080 24091 76 26.95 427997 2502 403906 860160 293319 6458 0.63 311350 3104 18031

211 432128 24202 111 18.45 430971 2974 406769 864256 293471 152 26.95 313738 2388 20267

212 434176 24579 377 5.43 434933 3962 410354 868352 296041 2570 1.59 316408 2670 20367

213 436224 24687 108 18.96 437475 2542 412788 872448 296607 566 7.24 319081 2673 22474

214 438272 24759 72 28.44 440895 3420 416136 876544 298912 2305 1.78 321847 2766 22935

215 440320 24854 95 21.56 444035 3140 419181 880640 304029 5117 0.80 326898 5051 22869

216 442368 24918 64 32.00 447325 3290 422407 884736 304888 859 4.77 327721 823 22833

217 444416 25050 132 15.52 450095 2770 425045 888832 306770 1882 2.18 330243 2522 23473

A.2‐6

A.2 Data Source of the Performance Evaluation
Test Case 1020249 Bytes Image File

Technische Universität Dresden

Block Size

Block #
kb
transferred

Delta
(ms)

Speed
(kb/s) Delta (ms) Lag (ms)

kb
transferred Delta (ms)

Speed
(kb/s) Delta (ms) Lag (ms)

2048 4096

at Service
(ms) at GUI (ms)

at Service
(ms)

at GUI
(ms)

218 446464 25092 42 48.76 453205 3110 428113 892928 306903 133 30.80 332989 2746 26086

219 448512 25243 151 13.56 456816 3611 431573 897024 307019 116 35.31 337637 4648 30618

220 450560 25351 108 18.96 460045 3229 434694 901120 309967 2948 1.39 338840 1203 28873

221 452608 25455 104 19.69 462689 2644 437234 905216 312817 2850 1.44 341984 3144 29167

222 454656 25513 58 35.31 465885 3196 440372 909312 313019 202 20.28 345157 3173 32138

223 456704 25643 130 15.75 469571 3686 443928 913408 315398 2379 1.72 347785 2628 32387

224 458752 25700 57 35.93 473372 3801 447672 917504 315537 139 29.47 350837 3052 35300

225 460800 25812 112 18.29 476346 2974 450534 921600 321227 5690 0.72 353617 2780 32390

226 462848 25879 67 30.57 479515 3169 453636 925696 322073 846 4.84 356685 3068 34612

227 464896 26318 439 4.67 482865 3350 456547 929792 324133 2060 1.99 359987 3302 35854

228 466944 26363 45 45.51 486269 3404 459906 933888 326924 2791 1.47 362358 2371 35434

229 468992 26488 125 16.38 489435 3166 462947 937984 327074 150 27.31 364782 2424 37708

230 471040 26540 52 39.38 492435 3000 465895 942080 332426 5352 0.77 367967 3185 35541

231 473088 26669 129 15.88 495955 3520 469286 946176 333575 1149 3.56 371077 3110 37502

232 475136 26738 69 29.68 499924 3969 473186 950272 335379 1804 2.27 374397 3320 39018

233 477184 26917 179 11.44 502816 2892 475899 954368 338211 2832 1.45 376818 2421 38607

234 479232 26990 73 28.05 506205 3389 479215 958464 338329 118 34.71 379605 2787 41276

235 481280 27098 108 18.96 509945 3740 482847 962560 343916 5587 0.73 382101 2496 38185

236 483328 27168 70 29.26 513255 3310 486087 966656 344332 416 9.85 385072 2971 40740

237 485376 27255 87 23.54 519505 6250 492250 970752 346838 2506 1.63 388069 2997 41231

238 487424 27341 86 23.81 520146 641 492805 974848 347541 703 5.83 390981 2912 43440

239 489472 27442 101 20.28 523428 3282 495986 978944 349869 2328 1.76 393922 2941 44053

240 491520 27502 60 34.13 528689 5261 501187 983040 355645 5776 0.71 396863 2941 41218

241 493568 27935 433 4.73 532482 3793 504547 987136 355772 127 32.25 399892 3029 44120

242 495616 28002 67 30.57 535775 3293 507773 991232 358316 2544 1.61 403727 3835 45411

243 497664 28120 118 17.36 539056 3281 510936 995328 358632 316 12.96 406916 3189 48284

244 499712 28182 62 33.03 542506 3450 514324 999424 361272 2640 1.55 409197 2281 47925

245 501760 28280 98 20.90 546665 4159 518385 1003520 367195 5923 0.69 411886 2689 44691

246 503808 28355 75 27.31 550436 3771 522081 1007616 367286 91 45.01 414920 3034 47634

247 505856 28609 254 8.06 553806 3370 525197 1011712 369998 2712 1.51 418025 3105 48027

248 507904 28677 68 30.12 557796 3990 529119 1015808 370358 360 11.38 420944 2919 50586

249 509952 28778 101 20.28 561902 4106 533124 1019904 373382 3024 1.35 424020 3076 50638

250 512000 28848 70 29.26 564989 3087 536141 1020249 373426 44 7.84 427047 3027 53621

251 514048 28952 104 19.69 568546 3557 539594

252 516096 29000 48 42.67 572286 3740 543286

253 518144 29137 137 14.95 575935 3649 546798

254 520192 29173 36 56.89 579745 3810 550572

255 522240 29593 420 4.88 583395 3650 553802

256 524288 29640 47 43.57 587076 3681 557436

257 526336 29730 90 22.76 591738 4662 562008

258 528384 29809 79 25.92 595202 3464 565393

259 530432 29923 114 17.96 598825 3623 568902

260 532480 29965 42 48.76 602375 3550 572410

261 534528 30100 135 15.17 606215 3840 576115

262 536576 30169 69 29.68 609876 3661 579707

263 538624 30358 189 10.84 613525 3649 583167

264 540672 30394 36 56.89 617605 4080 587211

265 542720 30542 148 13.84 621295 3690 590753

266 544768 30591 49 41.80 624875 3580 594284

267 546816 30727 136 15.06 628556 3681 597829

268 548864 30764 37 55.35 632455 3899 601691

269 550912 30882 118 17.36 636068 3613 605186

270 552960 30965 83 24.67 640395 4327 609430

271 555008 31391 426 4.81 643975 3580 612584

272 557056 31571 180 11.38 647596 3621 616025

273 559104 31663 92 22.26 651547 3951 619884

274 561152 31696 33 62.06 655438 3891 623742

275 563200 31822 126 16.25 659975 4537 628153

276 565248 31891 69 29.68 663648 3673 631757

277 567296 31999 108 18.96 667815 4167 635816

278 569344 32088 89 23.01 671525 3710 639437

279 571392 32207 119 17.21 675464 3939 643257

280 573440 32243 36 56.89 679902 4438 647659

281 575488 32353 110 18.62 684002 4100 651649

282 577536 32427 74 27.68 687922 3920 655495

283 579584 32537 110 18.62 691295 3373 658758

284 581632 32611 74 27.68 695495 4200 662884

285 583680 33094 483 4.24 699336 3841 666242

286 585728 33171 77 26.60 703535 4199 670364

287 587776 33289 118 17.36 707177 3642 673888

288 589824 33316 27 75.85 711895 4718 678579

289 591872 33494 178 11.51 716399 4504 682905

290 593920 33550 56 36.57 723404 7005 689854

A.2‐7

A.2 Data Source of the Performance Evaluation
Test Case 1020249 Bytes Image File

Technische Universität Dresden

Block Size

Block #
kb
transferred

Delta
(ms)

Speed
(kb/s) Delta (ms) Lag (ms)

kb
transferred Delta (ms)

Speed
(kb/s) Delta (ms) Lag (ms)

2048 4096

at Service
(ms) at GUI (ms)

at Service
(ms)

at GUI
(ms)

291 595968 33674 124 16.52 724086 682 690412

292 598016 33732 58 35.31 729234 5148 695502

293 600064 33851 119 17.21 732396 3162 698545

294 602112 33895 44 46.55 736126 3730 702231

295 604160 34026 131 15.63 741012 4886 706986

296 606208 34083 57 35.93 744616 3604 710533

297 608256 34218 135 15.17 749336 4720 715118

298 610304 34255 37 55.35 753752 4416 719497

299 612352 34752 497 4.12 757277 3525 722525

300 614400 34823 71 28.85 761376 4099 726553

301 616448 34905 82 24.98 765885 4509 730980

302 618496 34992 87 23.54 770436 4551 735444

303 620544 35089 97 21.11 773956 3520 738867

304 622592 35172 83 24.67 778506 4550 743334

305 624640 35280 108 18.96 783190 4684 747910

306 626688 35345 65 31.51 786935 3745 751590

307 628736 35477 132 15.52 791067 4132 755590

308 630784 35496 19 107.79 795255 4188 759759

309 632832 35643 147 13.93 799862 4607 764219

310 634880 35719 76 26.95 804142 4280 768423

311 636928 35814 95 21.56 808666 4524 772852

312 638976 35883 69 29.68 813274 4608 777391

313 641024 35999 116 17.66 817235 3961 781236

314 643072 36413 414 4.95 821536 4301 785123

315 645120 36547 134 15.28 825655 4119 789108

316 647168 36596 49 41.80 830754 5099 794158

317 649216 36716 120 17.07 835444 4690 798728

318 651264 36772 56 36.57 839605 4161 802833

319 653312 36896 124 16.52 843656 4051 806760

320 655360 36959 63 32.51 847875 4219 810916

321 657408 37068 109 18.79 852475 4600 815407

322 659456 37123 55 37.24 856885 4410 819762

323 661504 37238 115 17.81 861582 4697 824344

324 663552 37285 47 43.57 865715 4133 828430

325 665600 37427 142 14.42 870485 4770 833058

326 667648 37443 16 128.00 875362 4877 837919

327 669696 37586 143 14.32 880008 4646 842422

328 671744 37641 55 37.24 883891 3883 846250

329 673792 37844 203 10.09 888753 4862 850909

330 675840 37881 37 55.35 893575 4822 855694

331 677888 38002 121 16.93 897535 3960 859533

332 679936 38064 62 33.03 901955 4420 863891

333 681984 38164 100 20.48 906695 4740 868531

334 684032 38231 67 30.57 911335 4640 873104

335 686080 38296 65 31.51 916004 4669 877708

336 688128 38333 37 55.35 920625 4621 882292

337 690176 38459 126 16.25 924768 4143 886309

338 692224 38475 16 128.00 930485 5717 892010

339 694272 38587 112 18.29 934385 3900 895798

340 696320 38621 34 60.24 939245 4860 900624

341 698368 38782 161 12.72 943832 4587 905050

342 700416 38864 82 24.98 948356 4524 909492

343 702464 39300 436 4.70 952965 4609 913665

344 704512 39379 79 25.92 957377 4412 917998

345 706560 39475 96 21.33 962475 5098 923000

346 708608 39532 57 35.93 970984 8509 931452

347 710656 39634 102 20.08 971510 526 931876

348 712704 39698 64 32.00 977425 5915 937727

349 714752 39795 97 21.11 982102 4677 942307

350 716800 39888 93 22.02 986823 4721 946935

351 718848 39974 86 23.81 991372 4549 951398

352 720896 40032 58 35.31 996116 4744 956084

353 722944 40155 123 16.65 1000356 4240 960201

354 724992 40220 65 31.51 1005288 4932 965068

355 727040 40326 106 19.32 1011442 6154 971116

356 729088 40382 56 36.57 1015439 3997 975057

357 731136 40494 112 18.29 1020746 5307 980252

358 733184 40556 62 33.03 1025095 4349 984539

359 735232 41013 457 4.48 1029793 4698 988780

360 737280 41128 115 17.81 1034415 4622 993287

361 739328 41254 126 16.25 1039400 4985 998146

362 741376 41319 65 31.51 1045328 5928 1004009

363 743424 41441 122 16.79 1050552 5224 1009111

A.2‐8

A.2 Data Source of the Performance Evaluation
Test Case 1020249 Bytes Image File

Technische Universität Dresden

Block Size

Block #
kb
transferred

Delta
(ms)

Speed
(kb/s) Delta (ms) Lag (ms)

kb
transferred Delta (ms)

Speed
(kb/s) Delta (ms) Lag (ms)

2048 4096

at Service
(ms) at GUI (ms)

at Service
(ms)

at GUI
(ms)

364 745472 41492 51 40.16 1054876 4324 1013384

365 747520 41610 118 17.36 1059556 4680 1017946

366 749568 41676 66 31.03 1064346 4790 1022670

367 751616 41774 98 20.90 1069575 5229 1027801

368 753664 41853 79 25.92 1074506 4931 1032653

369 755712 41970 117 17.50 1079383 4877 1037413

370 757760 42031 61 33.57 1084125 4742 1042094

371 759808 42106 75 27.31 1089319 5194 1047213

372 761856 42199 93 22.02 1094291 4972 1052092

373 763904 42609 410 5.00 1100116 5825 1057507

374 765952 42681 72 28.44 1105046 4930 1062365

375 768000 42821 140 14.63 1110027 4981 1067206

376 770048 42885 64 32.00 1115146 5119 1072261

377 772096 43044 159 12.88 1119900 4754 1076856

378 774144 43113 69 29.68 1125269 5369 1082156

379 776192 43222 109 18.79 1131149 5880 1087927

380 778240 43297 75 27.31 1136496 5347 1093199

381 780288 43416 119 17.21 1141160 4664 1097744

382 782336 43511 95 21.56 1146282 5122 1102771

383 784384 43605 94 21.79 1151566 5284 1107961

384 786432 43671 66 31.03 1156737 5171 1113066

385 788480 43784 113 18.12 1162647 5910 1118863

386 790528 43851 67 30.57 1167936 5289 1124085

387 792576 44251 400 5.12 1172631 4695 1128380

388 794624 44313 62 33.03 1178706 6075 1134393

389 796672 44448 135 15.17 1183377 4671 1138929

390 798720 44485 37 55.35 1189287 5910 1144802

391 800768 44662 177 11.57 1194822 5535 1150160

392 802816 44722 60 34.13 1199946 5124 1155224

393 804864 44917 195 10.50 1205486 5540 1160569

394 806912 44977 60 34.13 1210250 4764 1165273

395 808960 45063 86 23.81 1215883 5633 1170820

396 811008 45150 87 23.54 1221489 5606 1176339

397 813056 45257 107 19.14 1227056 5567 1181799

398 815104 45321 64 32.00 1232239 5183 1186918

399 817152 45414 93 22.02 1237490 5251 1192076

400 819200 45482 68 30.12 1243312 5822 1197830

401 821248 45607 125 16.38 1248917 5605 1203310

402 823296 45645 38 53.89 1254739 5822 1209094

403 825344 46014 369 5.55 1259884 5145 1213870

404 827392 46070 56 36.57 1265559 5675 1219489

405 829440 46221 151 13.56 1270804 5245 1224583

406 831488 46282 61 33.57 1276473 5669 1230191

407 833536 46372 90 22.76 1282095 5622 1235723

408 835584 46442 70 29.26 1287884 5789 1241442

409 837632 46566 124 16.52 1293026 5142 1246460

410 839680 46638 72 28.44 1298445 5419 1251807

411 841728 46768 130 15.75 1303666 5221 1256898

412 843776 46824 56 36.57 1309884 6218 1263060

413 845824 46973 149 13.74 1314886 5002 1267913

414 847872 47039 66 31.03 1325526 10640 1278487

415 849920 47155 116 17.66 1326306 780 1279151

416 851968 47203 48 42.67 1331806 5500 1284603

417 854016 47649 446 4.59 1336707 4901 1289058

418 856064 47676 27 75.85 1343122 6415 1295446

419 858112 47827 151 13.56 1347875 4753 1300048

420 860160 47889 62 33.03 1353150 5275 1305261

421 862208 48002 113 18.12 1358965 5815 1310963

422 864256 48054 52 39.38 1364362 5397 1316308

423 866304 48192 138 14.84 1370546 6184 1322354

424 868352 48250 58 35.31 1376406 5860 1328156

425 870400 48383 133 15.40 1381239 4833 1332856

426 872448 48442 59 34.71 1386974 5735 1338532

427 874496 48562 120 17.07 1392231 5257 1343669

428 876544 48638 76 26.95 1397599 5368 1348961

429 878592 48730 92 22.26 1403596 5997 1354866

430 880640 48818 88 23.27 1409346 5750 1360528

431 882688 49816 998 2.05 1414743 5397 1364927

432 884736 51007 1191 1.72 1420914 6171 1369907

433 886784 51245 238 8.61 1425946 5032 1374701

434 888832 51354 109 18.79 1432066 6120 1380712

435 890880 51510 156 13.13 1437278 5212 1385768

436 892928 51606 96 21.33 1443301 6023 1391695

A.2‐9

A.2 Data Source of the Performance Evaluation
Test Case 1020249 Bytes Image File

Technische Universität Dresden

Block Size

Block #
kb
transferred

Delta
(ms)

Speed
(kb/s) Delta (ms) Lag (ms)

kb
transferred Delta (ms)

Speed
(kb/s) Delta (ms) Lag (ms)

2048 4096

at Service
(ms) at GUI (ms)

at Service
(ms)

at GUI
(ms)

437 894976 51760 154 13.30 1449396 6095 1397636

438 897024 51824 64 32.00 1454476 5080 1402652

439 899072 51982 158 12.96 1460908 6432 1408926

440 901120 52765 783 2.62 1466066 5158 1413301

441 903168 53127 362 5.66 1471911 5845 1418784

442 905216 53212 85 24.09 1477560 5649 1424348

443 907264 53447 235 8.71 1483521 5961 1430074

444 909312 53503 56 36.57 1489460 5939 1435957

445 911360 53624 121 16.93 1495516 6056 1441892

446 913408 53672 48 42.67 1501515 5999 1447843

447 915456 53792 120 17.07 1506616 5101 1452824

448 917504 54123 331 6.19 1512553 5937 1458430

449 919552 54232 109 18.79 1518894 6341 1464662

450 921600 54291 59 34.71 1524190 5296 1469899

451 923648 54400 109 18.79 1530091 5901 1475691

452 925696 54463 63 32.51 1535728 5637 1481265

453 927744 54580 117 17.50 1541882 6154 1487302

454 929792 54623 43 47.63 1547926 6044 1493303

455 931840 54741 118 17.36 1554289 6363 1499548

456 933888 55873 1132 1.81 1560275 5986 1504402

457 935936 55954 81 25.28 1565812 5537 1509858

458 937984 55992 38 53.89 1571830 6018 1515838

459 940032 56080 88 23.27 1577888 6058 1521808

460 942080 56096 16 128.00 1584222 6334 1528126

461 944128 56186 90 22.76 1589698 5476 1533512

462 946176 56232 46 44.52 1595346 5648 1539114

463 948224 56541 309 6.63 1600718 5372 1544177

464 950272 56618 77 26.60 1606724 6006 1550106

465 952320 57190 572 3.58 1612908 6184 1555718

466 954368 57238 48 42.67 1618486 5578 1561248

467 956416 57307 69 29.68 1623860 5374 1566553

468 958464 57334 27 75.85 1629638 5778 1572304

469 960512 57414 80 25.60 1635450 5812 1578036

470 962560 57493 79 25.92 1641930 6480 1584437

471 964608 57525 32 64.00 1653900 11970 1596375

472 966656 57541 16 128.00 1654736 836 1597195

473 968704 57658 117 17.50 1660577 5841 1602919

474 970752 57674 16 128.00 1666768 6191 1609094

475 972800 57722 48 42.67 1673626 6858 1615904

476 974848 57739 17 120.47 1679366 5740 1621627

477 976896 57768 29 70.62 1685675 6309 1627907

478 978944 57784 16 128.00 1691657 5982 1633873

479 980992 57818 34 60.24 1698140 6483 1640322

480 983040 57834 16 128.00 1705246 7106 1647412

481 985088 60572 2738 0.75 1711449 6203 1650877

482 987136 60594 22 93.09 1717447 5998 1656853

483 989184 61341 747 2.74 1723931 6484 1662590

484 991232 61872 531 3.86 1730284 6353 1668412

485 993280 62803 931 2.20 1736977 6693 1674174

486 995328 62839 36 56.89 1743514 6537 1680675

487 997376 63692 853 2.40 1749744 6230 1686052

488 999424 63860 168 12.19 1756596 6852 1692736

489 1001472 64660 800 2.56 1762894 6298 1698234

490 1003520 64795 135 15.17 1769076 6182 1704281

491 1005568 64893 98 20.90 1775649 6573 1710756

492 1007616 66121 1228 1.67 1782131 6482 1716010

493 1009664 66186 65 31.51 1789137 7006 1722951

494 1011712 67118 932 2.20 1795787 6650 1728669

495 1013760 67179 61 33.57 1802206 6419 1735027

496 1015808 68113 934 2.19 1808039 5833 1739926

497 1017856 68188 75 27.31 1814793 6754 1746605

498 1019904 68204 16 128.00 1821710 6917 1753506

499 1021952 68775 571 3.59 1827886 6176 1759111

Average 233.579 32.073 5913.958 1479842.726 1487.753 12.726 1701.382 9642.753

Std Deriv 392.935 32.505 1204.687 156221.401 1526.210 16.352 1706.028 9681.196

A.2‐10

Bibliography

[art03] Strategy analytics: Camera phones outsell digital still cameras worldwide;
nec, panasonic and nokia lead 25 million unit market. Business Wire,
September 2003.

[BLB07] Petros Belimpasakis, Juha-Pekka Luoma, and Mihaly Börzsei. Content shar-
ing middleware for mobile devices. In MOBILWARE ’08: Proceedings of the
1st international conference on MOBILe Wireless MiddleWARE, Operating
Systems, and Applications, pages 1–8, ICST, Brussels, Belgium, Belgium,
2007. Nokia Research Center, Tampere, ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering).

[Clo] Johan Cloetens. Cyrket - onair (wifi disk). Online. Cited: Jul 13 2009, URL:
http://www.cyrket.com/package/com.bw.onair.

[CSA09] Diana Cionoiu and Peter Saint-Andre. Jingle Early Media. XEP-0269 (Ex-
perimental Standard), May 2009. Version 0.1, URL: http://xmpp.org/

extensions/xep-0269.html.

[DDD07] C. Daboo, B. Desruisseaux, and L. Dusseault. Calendaring Extensions to
WebDAV (CalDAV). RFC 4791 (Proposed Standard), March 2007. URL:
http://www.ietf.org/rfc/rfc4791.txt.

[DS09] Benjamin Söllner Dirk Hering Alexander Schill Daniel Schuster,
Thomas Springer. Mobilisbuddy - integration sozialer netzwerke in
umgebungs-basierte dienste auf mobilen endgeräten. In Proceedings of
GeNeMe 2009. Gemeinschaft für Neue Medien, TUD Print, 2009.

[Dus07] L. Dusseault. HTTP Extensions for Web Distributed Authoring and Ver-
sioning (WebDAV). RFC 4918 (Proposed Standard), June 2007. URL:
http://www.ietf.org/rfc/rfc4918.txt.

[EHM+07] Ryan Eatmon, Joe Hildebrand, Jeremie Miller, Thomas Muldowney, and
Peter Saint-Andre. Data Forms. XEP-0004 (Final Standard), September
2007. Version 2.9, URL: http://xmpp.org/extensions/xep-0004.html.

[Gdh07] J. Gregorio and B. de hOra. The Atom Publishing Protocol. RFC 5023
(Proposed Standard), October 2007. URL: http://www.ietf.org/rfc/

rfc5023.txt.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign patterns: elements of reusable object-oriented software. Addison-Wesley
Reading, 1995.

105

http://www.cyrket.com/package/com.bw.onair
http://xmpp.org/extensions/xep-0269.html
http://xmpp.org/extensions/xep-0269.html
http://www.ietf.org/rfc/rfc4791.txt
http://www.ietf.org/rfc/rfc4918.txt
http://xmpp.org/extensions/xep-0004.html
http://www.ietf.org/rfc/rfc5023.txt
http://www.ietf.org/rfc/rfc5023.txt

Bibliography

[Gooa] Google Inc. Developer Guide – Protocol Buffers. Cited: Jul 13 2009, URL:
http://code.google.com/intl/de-DE/apis/protocolbuffers/docs/

overview.html.

[Goob] Google Inc. Google Calendar CalDAV support. Cited: Jul 12
2009, URL: http://www.google.com/support/calendar/bin/answer.py?
hl=en&answer=99355.

[Her09] Dirk Hering. Entwicklung eines Dienstes für Real-time Collaborative Editing
für die Mobilis-Plattform. PhD thesis, September 2009.

[HFV+] Dirk Hering, Christopher Friedrich, Lukas Vierhaus, Martin Werner, and
Benjamin Söllner. Androidbuddy - Komplexpraktikum.

[HMESA08] Joe Hildebrand, Peter Millard, Ryan Eatmon, and Peter Saint-Andre. Ser-
vice Discovery. XEP-0030 (Final Standard), June 2008. Version 2.4, URL:
http://xmpp.org/extensions/xep-0030.html.

[Joh05] Leif Johansson. XMPP as MOM. Online (Presentation), April 2005. Cited:
Jul 11 2009, URL: http://www.gnomis.org/presentasjoner/oso2005/

xmpp.pdf.

[Kor08a] István Koren. Conceptual Design of a mobile collaborative Platform based
on Android and XMPP. PhD thesis, September 2008.

[Kor08b] István Koren. Conceptual Design of a mobile collaborative Platform based
on Android and XMPP. PhD thesis, September 2008.

[KSA09] Justin Karneges and Peter Saint-Andre. In-Band Bytestreams. XEP-
0047 (Draft Standard), March 2009. Version 1.2, URL: http://xmpp.org/
extensions/xep-0047.html.

[Lau] Eric Laurier. Why people say where they are during mobile phone calls.

[LBSA+09] Scott Ludwig, Joe Beda, Peter Saint-Andre, Robert McQueen, Sean Egan,
and Joe Hildebrand. Jingle. XEP-0166 (Draft Standard), June 2009. Version
1.0, URL: http://xmpp.org/extensions/xep-0166.html.

[LSAE+06] Scott Ludwig, Peter Saint-Andre, Sean Egan, Robert McQueen, and Diana
Cionoiu. Jingle RTP Sessions. XEP-0167 (Draft Standard), June 2006.
Version 1.0, URL: http://xmpp.org/extensions/xep-0167.html.

[LT09] Soren Lassen and Sam Thorogood. Google wave federation architecture.
Google Inc., Google Inc., 2009. Cited: Jul 12 2009, URL: http://www.

waveprotocol.org/whitepapers/google-wave-architecture.

[Mac07] Henrik Machela. Entwicklung einer Infrastruktur für synchrone Groupware
auf Basis von Jabber Instant Messaging und Presence. PhD thesis, 5 2007.

106

http://code.google.com/intl/de-DE/apis/protocolbuffers/docs/overview.html
http://code.google.com/intl/de-DE/apis/protocolbuffers/docs/overview.html
http://www.google.com/support/calendar/bin/answer.py?hl=en&answer=99355
http://www.google.com/support/calendar/bin/answer.py?hl=en&answer=99355
http://xmpp.org/extensions/xep-0030.html
http://www.gnomis.org/presentasjoner/oso2005/xmpp.pdf
http://www.gnomis.org/presentasjoner/oso2005/xmpp.pdf
http://xmpp.org/extensions/xep-0047.html
http://xmpp.org/extensions/xep-0047.html
http://xmpp.org/extensions/xep-0166.html
http://xmpp.org/extensions/xep-0167.html
http://www.waveprotocol.org/whitepapers/google-wave-architecture
http://www.waveprotocol.org/whitepapers/google-wave-architecture

Bibliography

[MBLH06] Marcin Matuszewski, Nicklas Beijar, Juuso Lehtinen, and Tuomo Hyyryläi-
nen. Mobile peer-to-peer content sharing application. In 3rd IEEE Consumer
Communications and Networking Conference, 2006. CCNC 2006., number 2,
pages 1324–1325. Nokia Research Center, Tampere and Helsinki University
of Technology, IEEE (Institute of Electrical and Electronics Engineers), 2006.

[MM05] Matthew Miller and Thomas Muldowney. Publishing Stream Initiation Re-
quests. XEP-0137 (Draft Standard), September 2005. Version 1.0, URL:
http://xmpp.org/extensions/xep-0137.html.

[MME04a] Thomas Muldowney, Matthew Miller, and Ryan Eatmon. SI File Transfer.
XEP-0096 (Draft Standard), April 2004. Version 1.1, URL: http://xmpp.
org/extensions/xep-0096.html.

[MME04b] Thomas Muldowney, Matthew Miller, and Ryan Eatmon. Stream Initiation.
XEP-0095 (Draft Standard), April 2004. Version 1.1, URL: http://xmpp.
org/extensions/xep-0095.html.

[MSAM08] Peter Millard, Peter Saint-Andre, and Ralph Meijer. Publish-Subscribe.
XEP-0060 (Draft Standard), September 2008. Version 1.12, URL: http:

//xmpp.org/extensions/xep-0060.html.

[PSA08] Sean Egan Peter Saint-Andre. Jingle DTMF. XEP-0181 (Experimental Stan-
dard), September 2008. Version 0.11, URL: http://xmpp.org/extensions/
xep-0181.html.

[Ros07] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for
Network Address Translator (NAT) Traversal for Offer/Answer Protocols.
RFC Draft, October 2007. Version 19, Expired on May 1, 2008, URL: http:
//tools.ietf.org/html/draft-ietf-mmusic-ice-19.

[RSC+02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.
RFC 3261 (Proposed Standard), June 2002. Updated by RFCs 3265, 3853,
4320, 4916, 5393, URL: http://www.ietf.org/rfc/rfc3261.txt.

[SA04a] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core.
RFC 3920 (Proposed Standard), October 2004. URL: http://www.ietf.
org/rfc/rfc3920.txt.

[SA04b] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): In-
stant Messaging and Presence. RFC 3921 (Proposed Standard), October
2004. URL: http://www.ietf.org/rfc/rfc3921.txt.

[SA06] Peter Saint-Andre. Out of Band Data. XEP-0066 (Draft Standard), August
2006. Version 1.5, URL: http://xmpp.org/extensions/xep-0066.html.

[SA09a] Peter Saint-Andre. Codecs for Jingle RTP Sessions. XEP-0266 (Ex-
perimental Standard), April 2009. Version 0.2, URL: http://xmpp.org/

extensions/xep-0266.html.

107

http://xmpp.org/extensions/xep-0137.html
http://xmpp.org/extensions/xep-0096.html
http://xmpp.org/extensions/xep-0096.html
http://xmpp.org/extensions/xep-0095.html
http://xmpp.org/extensions/xep-0095.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0181.html
http://xmpp.org/extensions/xep-0181.html
http://tools.ietf.org/html/draft-ietf-mmusic-ice-19
http://tools.ietf.org/html/draft-ietf-mmusic-ice-19
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3920.txt
http://www.ietf.org/rfc/rfc3920.txt
http://www.ietf.org/rfc/rfc3921.txt
http://xmpp.org/extensions/xep-0066.html
http://xmpp.org/extensions/xep-0266.html
http://xmpp.org/extensions/xep-0266.html

Bibliography

[SA09b] Peter Saint-Andre. Jingle File Transfer. XEP-0234 (Experimental Stan-
dard), February 2009. Version 0.9, URL: http://xmpp.org/extensions/
xep-0234.html.

[SA09c] Peter Saint-Andre. Jingle In-Band Bytestreams Transport. XEP-0261 (Ex-
perimental Standard), March 2009. Version 0.2, URL: http://xmpp.org/
extensions/xep-0261.html.

[SAM09] Peter Saint-Andre and Dirk Meyer. Jingle SOCKS5 Bytestreams Transport
Method. XEP-0260 (Experimental Standard), March 2009. Version 0.2,
URL: http://xmpp.org/extensions/xep-0260.html.

[SMSA07] Dave Smith, Matthew Miller, and Peter Saint-Andre. SOCKS5 Bytestreams.
XEP-0065 (Draft Standard), May 2007. Version 1.7, URL: http://xmpp.
org/extensions/xep-0065.html.

[Ste02] Greg Stein. Use Of WebDAV in Subversion. Online, January 2002. Cited:
Jul 12 2009, URL: http://subversion.tigris.org/webdav-usage.html.

[SVPN04] Risto Sarvas, Mikko Viikari, Juha Pesonen, and Hanno Nevanlinna. Mob-
share: controlled and immediate sharing of mobile images. In MULTI-
MEDIA ’04: Proceedings of the 12th annual ACM international conference
on Multimedia, pages 724–731, New York, NY, USA, 2004. ACM. URL:
http://doi.acm.org/10.1145/1027527.1027690, ISBN: 1-58113-893-8.

[TSLA06] Jarkko Tolvanen, Tapio Suihko, Jaakko Lipasti, and N. Asokan. Remote
storage for mobile devices. In First International Conference on Communi-
cation System Software and Middleware, 2006. Comsware 2006., pages 1–9.
Nokia Research Center, Helsinki, IEEE (Institute of Electrical and Electron-
ics Engineers), August 2006.

[weba] Application fundamentals / android developers. Online. Cited:
Oct 27 2009, URL: http://developer.android.com/guide/topics/

fundamentals.html.

[webb] Cyrket - estrongs file explorer. Online. Cited: Jul 13 2009, URL: http:
//www.cyrket.com/package/com.estrongs.android.pop.

[webc] Designing a remote interface using aidl / android developers. Online. Cited:
Oct 27 2009, URL: http://developer.android.com/guide/developing/
tools/aidl.html.

[webd] Intents and intent filters / android developers. Online. Cited: Oct
27 2009, URL: http://developer.android.com/guide/topics/intents/
intents-filters.html.

[webe] Rss 2.0 specification. Online. Cited: Jul 12 2009, URL: http://www.

rssboard.org/rss-specification.

[web08] Caldav resources – about the protocol and more... Online, 2008. Cited: Jul
12 2009, URL: http://caldav.calconnect.org/.

108

http://xmpp.org/extensions/xep-0234.html
http://xmpp.org/extensions/xep-0234.html
http://xmpp.org/extensions/xep-0261.html
http://xmpp.org/extensions/xep-0261.html
http://xmpp.org/extensions/xep-0260.html
http://xmpp.org/extensions/xep-0065.html
http://xmpp.org/extensions/xep-0065.html
http://subversion.tigris.org/webdav-usage.html
http://doi.acm.org/10.1145/1027527.1027690
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://www.cyrket.com/package/com.estrongs.android.pop
http://www.cyrket.com/package/com.estrongs.android.pop
http://developer.android.com/guide/developing/tools/aidl.html
http://developer.android.com/guide/developing/tools/aidl.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://caldav.calconnect.org/

Bibliography

[web09] Google wave federation protocol. Online, 2009. Cited: Jul 12 2009, URL:
http://www.waveprotocol.org/.

109

http://www.waveprotocol.org/

List of Figures

2.1. A basic XMPP architecture scenario . 4
2.2. Selected XEPs for media transport and their interdepencies. 7
2.3. SOCKS5 Bytestreams negotiation . 10
2.4. The Jingle protocol states. 14

3.1. Sharing Middleware Simplified Design . 22
3.2. Concept UI for uploading & downloading content [BLB07] 23
3.3. Prototype Architecture . 24
3.4. The posting process . 25
3.5. The Horizontal Timeline View . 25
3.6. The Google Wave Attachment Server Architecture 27

5.1. Multidimensional metadata classification system “cube” 39
5.2. Decomposition approaches of architecture in repository service and content

broker . 40
5.3. Decomposition with regard to the Mobilis archtiecture 41
5.4. Service primitives of content service and repository service 42
5.5. Service primitives of content service and repository service detailed by IQ . 43
5.6. Mobilis Namespaces and their Custom IQs 44
5.7. Service registration and unregistration service primitive 47
5.8. Browsing service primitive . 48
5.9. Download service primitive . 49
5.10. Upload / Replacing service primitive . 52
5.11. Deletion service primitive . 54

6.1. The inner architecture of the Mobilis platform 58
6.2. XMPP Beans as a representation for IQ packets and XML snippets 59
6.3. Translation of XMPP Beans to the Smack or MXA layer 60
6.4. The inner architecture of Mobilis Media as a Mobilis project 61
6.5. Activities forming the User Interface of the Mobilis Media Android Appli-

cation . 63
6.6. Mobilis Server Classes for Service Brokers and Mobilis Services 64
6.7. Mobilis Media Server Core Classes . 65
6.8. Mobilis Media Server Database Model for the Repository Cube Data Model 65
6.9. Internal Structure of the Transfer Service 70
6.10. Internal Structure of the Repository Service 72
6.11. Architecture for exchanging messages between a RepositoryActivity and its

subactivities . 73

7.1. Transfer time of a 95833 bytes image . 77

111

List of Figures

7.2. Transfer time of a 1020249 bytes image . 78
7.3. Transfer time of a 95833 bytes image . 79
7.4. Transfer time of a 1020249 bytes image . 80
7.5. Speed of the transfer of a 95833 bytes image 84
7.6. Speed of the transfer of a 1020249 bytes image 85

8.1. Media Bridges as a mean for a genaralized social cube based media repository 89
8.2. The Mobilis Media Cloud . 90

112

List of Tables

2.1. Overview of presented technologies . 19

4.1. Summary of Functional Requirements . 33
4.2. Summary of Device Capabilities . 34
4.3. Summary of Device Capabilities . 35
4.4. Summary of Human Factors . 36

7.1. Maximum Transfer Time and Speed of the test transfers. 76
7.2. Lag between Transfer Time and UI Response. 83

113

	1 Introduction
	1.1 The Mobilis Project
	1.2 User Scenario: Travel Picture Sharing
	1.3 Structure of this Thesis

	2 Foundations
	2.1 The XMPP Protocol
	2.1.1 Message
	2.1.2 Presence
	2.1.3 Info/Query

	2.2 The XMPP Extension Protocols
	2.2.1 SI File Transfers with Published Stream Initiation Requests
	2.2.2 Jingle – An XMPP Signalling Protocol
	2.2.3 Jingle Transport Method Specifications
	2.2.4 Jingle Application Format Specifications
	2.2.5 File transfers and XML Streams using Jingle
	2.2.6 Further XEPs concerning Jingle

	2.3 Second-Stack Technologies
	2.3.1 WebDAV
	2.3.2 Atom Publishing Protocol

	2.4 Conclusion

	3 Related Work
	3.1 Belimpasakis et al.
	3.2 Tolvanen et al.
	3.3 Matuszewski et al.
	3.4 Risto Sarvas et al.
	3.5 Android Applications
	3.6 Google Wave Attachments (Google Wave Federation Protocol)
	3.7 Conclusion

	4 Requirements Analysis
	4.1 Functional Requirements
	4.2 Device Capabilities
	4.3 Non Functional Requirements
	4.4 Human Factors
	4.5 Conclusion

	5 Conceptual Design
	5.1 Finding an XMPP-based File Transfer Protocol
	5.1.1 SI File Transfers
	5.1.2 One-to-one File Transfers
	5.1.3 One-to-many File Transfers

	5.2 The Cube Media Repository
	5.3 Breaking down the Architecture
	5.3.1 Decomposition into Entities
	5.3.2 Decomposition regarding the Mobilis Architecture

	5.4 Service Primitives
	5.4.1 Custom IQs
	5.4.2 Service Discovery & Register / Unregister Service Pimitive
	5.4.3 Browsing Service Pimitive
	5.4.4 Download Service Pimitive
	5.4.5 Upload/Replacing Service Primitive
	5.4.6 Deletion Service Primitive

	5.5 Conclusion

	6 Implementation Considerations
	6.1 The Mobilis Architecture
	6.2 Reuse of the XMPP layer using XMPPBeans
	6.3 Mobilis Media as a Mobilis Project
	6.3.1 Server Prototype
	6.3.2 Client Prototype

	6.4 The Mobilis Media Server Prototype
	6.4.1 General Mobilis Server Class Model
	6.4.2 Mobilis Media Server Class Model
	6.4.3 Mobilis Media Database Model

	6.5 The Mobilis Media Client Prototype
	6.5.1 Interprocess Communication on Android
	6.5.2 External Service: TransferService
	6.5.3 External Service: RepositoryService
	6.5.4 User Interface

	6.6 Conclusion

	7 Evaluation
	7.1 Applicability of SI File Transfer
	7.1.1 Test Environment and Methodology
	7.1.2 Measurement of Transfer Time

	7.2 Evaluation of the Repository Architecture
	7.3 Evaluation of the Implementation
	7.3.1 Server Side
	7.3.2 Client Side

	7.4 Conclusion

	8 Prospect
	8.1 Possible Enhancements of the Prototype
	8.2 Possible Enhancements of the Repository Architecture
	8.2.1 Practical Comparison with other File Transfer Technologies
	8.2.2 Practical Comparison with other Repository Models
	8.2.3 Thinking Big: Replication and Partitioning

	8.3 Coupling with other Media Repositories
	8.4 Conclusion

	A Appendix
	A.1 XSD Schema of used custom IQs
	A.2 Data Source of the Performance Evaluation

	Bibliography
	List of Figures
	List of Tables

