Technische Universität Dresden Fakultät Informatik Institut für Systemarchitektur Prof. Dr. rer. net. habil. Dr. h. c. Alexander Schill



Großer Beleg

# XMPP-based Media Sharing for Mobile Collaboration with Android Phones

Benjamin Söllner born November 2, 1986 in Plauen, Germany benjamin.soellner@mail.inf.tu-dresden.de

October 29, 2009

Advisor: Dr.-Ing. Daniel Schuster daniel.schuster@tu-dresden.de



## Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Studienarbeit zum Thema

XMPP-based Media Sharing for Mobile Collaboration with Android Phones

selbstständig und ausschließlich unter Verwendung der im Quellenverzeichnis aufgeführten Literatur- und sonstigen Informationsquellen verfasst zu haben.

Dresden, den 30. Oktober 2009

Unterschrift



#### Acknowledgements

I would like to thank the staff members of the Mobilis team for their valuable guidance and helpful input concerning both the theoretical as well as the practical part of this work. This includes Maximilian Walther, Thomas Springer and in particular my thesis supervisor Daniel Schuster, who motivated me by showing great interest into my ideas and always provided valuable feedback, especially concerning the practice of academic writing which I was fairly new to.

Thanks go also to the my student collegues who worked on other aspects of the Mobilis project in parallel to or before this thesis: István Koren, Dirk Hering, Christopher Friedrich, Jacobo Eduardo Miranda and Lukas Vierhaus. I am thankful for the passionate atmosphere in which we shared knowledge, feedback and hints about each others area and I enjoyed the illuminating conversations and inspirations we had. I also thank my student collegues from student lab INF/3074 for the creative and social working environment.

I finally owe my family a big debt of gratitude. Ich danke euch vielmals für die allzeitliche Unterstützung meiner Studienpläne, speziell aber für Hilfe und Ruhe in den letzten hektischen Tagen, in denen ich diese Arbeit fertiggestellt habe.



#### Abstract

With the recent tremendous innovation on the mobile handset, network and operating system market, the use of mobile phones as content creation and content sharing device have become commonplace. Although bluetooth, MMS and email obviously seem outdated in the social cloud the "Web 2.0" creates, neither the academic nor the economic world has developed an open media sharing protocol committed to collaborative work and adapted to a mobile environment.

This thesis has been created within the Mobilis project as a subproject called "Mobilis Media". Mobilis is a project developing a service platform for collaborative work with Android phones. Mobilis chose XMPP, the Extensible Messaging and Presence Protocol, as a collaborative protocol. Besides this document, a client and a server prototype was developed which fits into the Mobilis architecture.

The thesis starts by motivating the need of a mobile media sharing platform and by introducing a user scenario of travel picture sharing. It then examines several file transfer technologies, both media sharing technologies used within XMPP itself (SI File Transfer and Jingle) and second-stack technologies (WebDAV, Atom Publishing Protocol, Google Wave Federation Protocol). Afterwards, related work is evaluated and requirements to the media sharing platform as well as the mobile client are settled. Moving on, a concrete file sharing technology is chosen and the XMPP interface of the media sharing platform using it is described as a custom extension to the XMPP protocol. Subsequently, the structure of the Mobilis platform is presented and how Mobilis Media fits into it. System boundaries and extension points for later projects are outlined. Some aspects of the internal structure and some implementational considerations of the Mobilis Media prototype are highlighted. Finally, the presented implementation is evaluated qualitatively and quantitatively and a prospect for future work is given.

**Keywords** mobile collaboration, services, mobile framework, media sharing, content sharing, metadata, repository, multidimensional, cube, hypercube, database, social networks, Hibernate, Android, XMPP, Jingle, SI File Transfer, Publishing Stream Initiation Requests, WebDAV, APP, Google Wave

# Contents

| 1. | Intro | Introduction 1                                                       |  |  |  |  |  |  |
|----|-------|----------------------------------------------------------------------|--|--|--|--|--|--|
|    | 1.1.  | The Mobilis Project                                                  |  |  |  |  |  |  |
|    | 1.2.  | User Scenario: Travel Picture Sharing                                |  |  |  |  |  |  |
|    | 1.3.  | Structure of this Thesis                                             |  |  |  |  |  |  |
| 2. | Fou   | Foundations 3                                                        |  |  |  |  |  |  |
|    | 2.1.  | The XMPP Protocol                                                    |  |  |  |  |  |  |
|    |       | 2.1.1. Message                                                       |  |  |  |  |  |  |
|    |       | 2.1.2. Presence                                                      |  |  |  |  |  |  |
|    |       | 2.1.3. Info/Query                                                    |  |  |  |  |  |  |
|    | 2.2.  | The XMPP Extension Protocols                                         |  |  |  |  |  |  |
|    |       | 2.2.1. SI File Transfers with Published Stream Initiation Requests 8 |  |  |  |  |  |  |
|    |       | 2.2.2. Jingle – An XMPP Signalling Protocol                          |  |  |  |  |  |  |
|    |       | 2.2.3. Jingle Transport Method Specifications                        |  |  |  |  |  |  |
|    |       | 2.2.4. Jingle Application Format Specifications                      |  |  |  |  |  |  |
|    |       | 2.2.5. File transfers and XML Streams using Jingle                   |  |  |  |  |  |  |
|    |       | 2.2.6. Further XEPs concerning Jingle                                |  |  |  |  |  |  |
|    | 2.3.  | Second-Stack Technologies                                            |  |  |  |  |  |  |
|    |       | 2.3.1. WebDAV                                                        |  |  |  |  |  |  |
|    |       | 2.3.2. Atom Publishing Protocol                                      |  |  |  |  |  |  |
|    | 2.4.  | Conclusion                                                           |  |  |  |  |  |  |
| 3  | Rela  | ited Work 21                                                         |  |  |  |  |  |  |
| 0. | 3.1.  | Belimpasakis et al                                                   |  |  |  |  |  |  |
|    | 3.2.  | Tolvanen et al                                                       |  |  |  |  |  |  |
|    | 3.3.  | Matuszewski et al                                                    |  |  |  |  |  |  |
|    | 3.4.  | Risto Sarvas et al                                                   |  |  |  |  |  |  |
|    | 3.5.  | Android Applications                                                 |  |  |  |  |  |  |
|    | 3.6.  | Google Wave Attachments (Google Wave Federation Protocol)            |  |  |  |  |  |  |
|    | 3.7.  | Conclusion                                                           |  |  |  |  |  |  |
| 4. | Rea   | uirements Analysis 31                                                |  |  |  |  |  |  |
|    | 4.1.  | Functional Requirements                                              |  |  |  |  |  |  |
|    | 4.2   | Device Capabilities                                                  |  |  |  |  |  |  |
|    | 4.3.  | Non Functional Requirements                                          |  |  |  |  |  |  |
|    | 4.4.  | Human Factors                                                        |  |  |  |  |  |  |
|    | 4.5.  | Conclusion                                                           |  |  |  |  |  |  |



| 5. | Con                                 | ceptual Design                                                                                              | 37 |  |  |  |  |  |
|----|-------------------------------------|-------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
|    | 5.1.                                | 5.1. Finding an XMPP-based File Transfer Protocol                                                           |    |  |  |  |  |  |
|    |                                     | 5.1.1. SI File Transfers                                                                                    | 37 |  |  |  |  |  |
|    |                                     | 5.1.2. One-to-one File Transfers                                                                            | 38 |  |  |  |  |  |
|    |                                     | 5.1.3. One-to-many File Transfers                                                                           | 38 |  |  |  |  |  |
|    | 5.2.                                | The Cube Media Repository                                                                                   | 38 |  |  |  |  |  |
|    | 5.3. Breaking down the Architecture |                                                                                                             |    |  |  |  |  |  |
|    |                                     | 5.3.1. Decomposition into Entities                                                                          | 39 |  |  |  |  |  |
|    |                                     | 5.3.2. Decomposition regarding the Mobilis Architecture                                                     | 40 |  |  |  |  |  |
|    | 5.4.                                | Service Primitives                                                                                          | 42 |  |  |  |  |  |
|    |                                     | 5.4.1. Custom IQs $\ldots$ | 43 |  |  |  |  |  |
|    |                                     | 5.4.2. Service Discovery & Register / Unregister Service Pimitive                                           | 45 |  |  |  |  |  |
|    |                                     | 5.4.3. Browsing Service Pimitive                                                                            | 48 |  |  |  |  |  |
|    |                                     | 5.4.4. Download Service Pimitive                                                                            | 49 |  |  |  |  |  |
|    |                                     | 5.4.5. Upload/Replacing Service Primitive                                                                   | 51 |  |  |  |  |  |
|    |                                     | 5.4.6. Deletion Service Primitive                                                                           | 54 |  |  |  |  |  |
|    | 5.5.                                | Conclusion                                                                                                  | 55 |  |  |  |  |  |
| -  | _                                   |                                                                                                             |    |  |  |  |  |  |
| 6. |                                     | lementation Considerations                                                                                  | 57 |  |  |  |  |  |
|    | 6.1.                                | The Mobilis Architecture                                                                                    | 57 |  |  |  |  |  |
|    | 6.2.                                | Reuse of the XMPP layer using XMPPBeans                                                                     | 59 |  |  |  |  |  |
|    | 6.3.                                | Mobilis Media as a Mobilis Project                                                                          | 60 |  |  |  |  |  |
|    |                                     | 6.3.1. Server Prototype                                                                                     | 61 |  |  |  |  |  |
|    | ~ (                                 | 6.3.2. Client Prototype                                                                                     | 61 |  |  |  |  |  |
|    | 6.4.                                | The Mobilis Media Server Prototype                                                                          | 62 |  |  |  |  |  |
|    |                                     | 6.4.1. General Mobilis Server Class Model                                                                   | 62 |  |  |  |  |  |
|    |                                     | 6.4.2. Mobilis Media Server Class Model                                                                     | 64 |  |  |  |  |  |
|    |                                     | 6.4.3. Mobilis Media Database Model                                                                         | 66 |  |  |  |  |  |
|    | 6.5.                                | The Mobilis Media Client Prototype                                                                          | 66 |  |  |  |  |  |
|    |                                     | 6.5.1. Interprocess Communication on Android                                                                | 66 |  |  |  |  |  |
|    |                                     | 6.5.2. External Service: TransferService                                                                    | 67 |  |  |  |  |  |
|    |                                     | 6.5.3. External Service: RepositoryService                                                                  | 70 |  |  |  |  |  |
|    |                                     | 6.5.4. User Interface                                                                                       | 71 |  |  |  |  |  |
|    | 6.6.                                | Conclusion                                                                                                  | 74 |  |  |  |  |  |
| 7  | Eval                                | luation                                                                                                     | 75 |  |  |  |  |  |
| •• | 7 1                                 | Applicability of SI File Transfer                                                                           | 75 |  |  |  |  |  |
|    |                                     | 7.1.1 Test Environment and Methodology                                                                      | 75 |  |  |  |  |  |
|    |                                     | 7.1.2 Measurement of Transfer Time                                                                          | 76 |  |  |  |  |  |
|    | 7.2                                 | Evaluation of the Repository Architecture                                                                   | 76 |  |  |  |  |  |
|    | 7.2.                                | Evaluation of the Implementation                                                                            | 81 |  |  |  |  |  |
|    | 1.0.                                | 7 3 1 Server Side                                                                                           | 81 |  |  |  |  |  |
|    |                                     | 732 Client Side                                                                                             | 80 |  |  |  |  |  |
|    | 7 /                                 | Conclusion                                                                                                  | 83 |  |  |  |  |  |
|    | 1.4.                                |                                                                                                             | 00 |  |  |  |  |  |
| 8. | Pros                                | spect                                                                                                       | 87 |  |  |  |  |  |
|    | 8.1.                                | Possible Enhancements of the Prototype                                                                      | 87 |  |  |  |  |  |

|                  | 8.2. Possible Enhancements of the Repository Architecture |                                                                   |  |    |  |  |  |  |
|------------------|-----------------------------------------------------------|-------------------------------------------------------------------|--|----|--|--|--|--|
|                  |                                                           | 8.2.1. Practical Comparison with other File Transfer Technologies |  | 88 |  |  |  |  |
|                  |                                                           | 8.2.2. Practical Comparison with other Repository Models          |  | 88 |  |  |  |  |
|                  |                                                           | 8.2.3. Thinking Big: Replication and Partitioning                 |  | 88 |  |  |  |  |
|                  | 8.3.                                                      | Coupling with other Media Repositories                            |  | 89 |  |  |  |  |
|                  | 8.4.                                                      | Conclusion                                                        |  | 90 |  |  |  |  |
| Α.               | Арр                                                       | ndix                                                              |  | 91 |  |  |  |  |
|                  | A.1.                                                      | XSD Schema of used custom IQs                                     |  | 91 |  |  |  |  |
|                  | A.2.                                                      | Data Source of the Performance Evaluation                         |  | 94 |  |  |  |  |
| Bibliography 109 |                                                           |                                                                   |  |    |  |  |  |  |
| List of Figures  |                                                           |                                                                   |  |    |  |  |  |  |
| Lis              | List of Tables 1                                          |                                                                   |  |    |  |  |  |  |
|                  |                                                           |                                                                   |  |    |  |  |  |  |

# 1. Introduction

The capabilities of mobile networks and handset devices has dramatically in the last few years. Broadband mobile network technologies like UMTS, HSDPA or HSUPA allowing high speed data connections are finally available for reasonable prices to end users. Additionally, global players like Apple or Google joined the competition in the smart phone market recently with the Android Operating System or the iPhone, intensivating competition, supporting innovation and lowering prices for those ubiquitous gadgets. On the other hand, the so-called "Web 2.0" phenomena has achieved a social change in developing for and using the web. The user is not longer solely involved as the consumer of contents but rather of the creator.

Current development of mobile handset and network technologies suggests that the "Web 2.0" will reach the mobile phone for a bigger amount of consumers in the near future. That is mostly to the fact, that the mobile phone is permanent companion of the owner. That way, the mobile phone is used as a content creation tool based on the built-in camera. It's use is huge and still growing. Compared to still cameras, mobile cameras have been sold 4 times as much in 2008 and are estimated to reach a ratio of 7:1 in 2010 [art03]. The desire of the user to share this created content in social platforms can be percieved when observing the Web 2.0 phenomena.

The conventional technologies to share mobile phone images are bluetooth, MMS or email. Bluetooth relies on proximity and user-initiated device pairing and therefore is fairly inflexible for a big or spacially distributed group formed by a social network. MMS is to restricted in terms of file size, annotations and number of recieptients, and to cost intensive. Even email is not vivid enough concerning the dynamics of mobile networks it does not allow any repository-like browsing or pull functionality.

Economy has percieved this need and social network providers offer the possibility of content submission in their APIs. Of course, the submission will happen to the specific social network only. Successing bluetooth and MMS, there is no current open standard for ubiquitous media sharing. Instant messaging protocols, like Skype, ICQ or XMPP define how to send files between single users and are partially already ported to mobile operating systems but there is no method to share content using a central repository with browsing, pulling and management functionality.

## 1.1. The Mobilis Project

The development of a mobile media sharing repository suggest integrating a media repository service into the architecture of the Mobilis platform. The Mobilis platform is a server-client system using XMPP, the open Extensible Messaging and Presence Protocol, as a communication protocol. The platform is developed within the Mobilis project, a brasilian-german research project of TU Dresden's chair of computer networks coorporating cooperating with the Pontifícia Universidade Católica do Rio de Janeiro and the Universidade Federal de Minas Gerais in Belo Horizonte.

The goal of the Mobilis project is to develop a generalized and open framework for mobile collaboration with a set of central services offered to the mobile clients via the XMPP interface. In earlier work already a number of such services was developed: a mobile tourist guide [Kor08a] (MobilisGuide), a geolocation service [DS09] (MobilisBuddy) and a collaborative drawing application [Kor08b] (MobilisMapDraw) to mention a few. Along with the development of the respective services matching sample mobile client applications were created. These clients are usually developed on top of the Google Android Operating System and make use of the services based on a concrete user scenario.

The prototype developed within this thesis will uses the name **Mobilis Media** and consists of the named media sharing service a sample client allowing picture sharing based on a tourism scenario.

## 1.2. User Scenario: Travel Picture Sharing

Travel is only glamorous in retrospect.

– Paul Theroux, born 1941, US novelist, in The Washington Post

Reviewing and reminiscencing a past tourist trip is an activity highly enjoyed by travelers and tourists. Pictures, which are taken during the journey are exchanged with travel mates. They are shown to friends at home, shared with the world to give an impression for future travelers or simply kept in a private library for personal memories.

During a voyage, it is desirable to have a tool at hand which can accomplish the exchanging and sharing task automatically. Given the advancements of mobile networks and mobile phone cameras, the mobile phone camera might finally be used instead of still image camera during a journey. Images taken with the mobile phone camera are also tagged with a timestamp and are geotagged, if the mobile phone possesses a GPS sensor. Hence, management of the metadata of the images should be taken into account.

The goal of this thesis is to develop such a tool as a prototype additional to theoretical elaborations concerning a mobile media sharing repository. The tool should be able to store taken pictures into the repository adding a user defined title and taken into account metadata stored with the image. It should be possible to upload new pictures or replace current ones as well as delete them. On the other hand, it should be possible to browse existing pictures in an intuitive GUI. Remembering the geotagging feature, a map is a possible artifact where images could be visualized.

## 1.3. Structure of this Thesis

Starting with chapter 2, this work lays the foundations of this work by introducing the XMPP protocol and a set of possible protocols to allow file transfer or transfer of binary data between entities. In the following chapter 3 related work is introduced which copes with the task of mobile media repositories. Chapter 4 presents the requirements set to the media repository and the client prototype. The actual media system is then designed in chapter 5 and implementation specific issues are adressed in chapter 6. Chapter 7 evaluates the presented solution and chapter 8 finally concludes the accomplishments of this work and gives a prospect for future work.

# 2. Foundations

Mobile media sharing can be split up into two general problems: file transfer, content repository management and mobile collaboration. Earlier work in the Mobilis Project (see section 1.1) has shown, that XMPP, a protocol for messaging and presence, suits exeptionally well for the purpose of mobile collaboration, enabling cloud computing with both the users and the services being equally participating entities of a XMPP session. In this chapter, we will provide a brief introduction into XMPP in section 2.1.

Moreover, the basic task of this work is to find a proper file transfer and content repository management technologies. That is why in section 2.2 we will present how the XMPP comunity developed extensions to XMPP and which extensions would suit well for our purpose of media sharing. We will contrast two general approaches: SI File Transfer with Published Stream Initiation Request (2.2.1) and on the other side an XMPP signalling protocol called "Jingle" (2.2.2). In section 2.3, we will introduce two other technologies, Atom and WebDAV, which are commonly used for media sharing. Finally, section 2.4 will compare introduced technologies side-by-side, especially examine library support facilitating future development.

## 2.1. The XMPP Protocol

The Extensible Messenging and Presence Protocol (XMPP) is an implementation of the Internet Engineering Task Force (IETF) model for near real-time instant messaging and presence (e.g., buddy lists). Beyond, XMPP recently evolved into a protocol used in the realm of message oriented middleware [Joh05]. Thus, it can be used in much broader domains, e.g. shared editing or collaborative drawing - and file transfer. XMPP is an open standard and many free and open source client and server implementations exist. The origins of XMPP lie in the Jabber project, which was formed in 1998. IETF formed an XMPP Working Group in 2002 and produced four specifications, which were approved by the IESG as Proposed Standards in 2004. RFC 3920 [SA04a] and RFC 3921 [SA04b] are currently undergoing revisions to promote them to a Draft Standard.

One of the key strengths of XMPP are built-in security mechanisms. Since XMPP is an open standard, everybody can run their own XMPP server. XMPP servers can be isolated from the public, so they can also be installed inside of a company network. The XMPP core furthermore specifies robust security mechanisms like SASL or TSL to encrypt the transport stream. The XMPP Standards Foundation also runs an own certification authority at xmpp.net to encourage the use of channel encryption. Moreover, certain security threats are defeated by automated identity check of connected users using a dialback protocol.

Additionally, no multi-hop routing is possible. In email, if a server A needs to deliver a message to server B the message might be routed via a number of itermediate servers  $C_i$ . In XMPP, server A would perform an appropriate DNS lookup and then open a direct



Figure 2.1.: A basic XMPP architecture scenario

connection to the server B. This prevents changes of the messages along the way, so that addresses cannot be modified. On the other hand, it means that XMPP servers have to maintain "always-on" connections to the network, i.e. more reliable uptime than email servers.

XMPP users communicate via an XMPP-address similar to an email-address. The XMPP-address is formed out of an username and the XMPP server's domain, both separated by an "at" sign ("@"). Multiple server logins are allowed by definition. The distinction between multiple clients connected to the same XMPP-address is made by appending a ressource identifier immediately following the address after a slash ("/").

After connection establishment and possible encryption and authorization initialization, information is exchanged on top of the TCP/IP protocol as two XML streams, one transmitting client-to-server and one server-to-client. A transmission unit exchanged from client to server or vice versa is called stanza: each stanza is a well-formed piece of XML, carrying at least the information about sender, receiver and identifier. Further on, stanzas are devided into three classes: Message, Presence and Info/Query. The meaning of every stanza type is illustrated in figure 2.1 showing a scenario with one server three clients by bidirectional XML streams. We will detail each stanza type in the following sections.

## 2.1.1. Message

A Message can be seen as pushed data from one entity of the XMPP network to another. In Instant Messanging scenarios, this usually corresponds to a chat message sent to another user with a body part similar to an email. But messages can be used also in other scenarios, for example when notifying XMPP entities about an event, for which the entity has subscribed.

A basic message stanza would be looking like this:

```
<message from='juliet@shakespeare.lit/balcony'
to='romeo@shakespeare.lit/yard'
id='m940AE74'>
O romeo...
```



#### </message>

Notice, how a random unique number is assigned to the message and the sender and recieptient of the message are defined as attributes of the <message/> tag. The actual payload of the <message/> tag is not restricted to plain text but can rather be any well-formed XML content – possibly qualified by an xmlns attribute. For example, in case of event notification in the publish/subscribe extension [MSAM08], the message body would consist of an <event/> tag containing the event information.

### 2.1.2. Presence

Presence Information can generally be regarded as multicast information of the user to the XMPP network. In particular, multicast would mean delivery to all addresses which have subscribed to a user's presence updates by having the specific user on their buddy list, in XMPP terms called "roster". The roster – and also the delivery of presence multicasts – is managed by the server. In instant messaging scenarios, a Presence stanza would contain all information about the users current context, like availability (online/offline/away/...), status message, location or any other relevant data.

The <presence/> tag contains a type attribute describing the overal presence state of the sender, which is mentioned in the from attribute. A corresponding example of a presence tag is:

```
<presence from='juliet@shakespeare.lit/balcony' type='
unavailable'/>
```

## 2.1.3. Info/Query

Info/Query (IQ) stanzas are a mean to realize a request-response mechanism between any two XMPP entities. IQ stanzas can be on either of the type get, set, result or error. Therefore, each get- or set-IQ (request) has to be answered by a result- or error-IQ (response). The IQ stanza contains usually custom XML as child element describing the information which is to be obtained (get) or changed (set) and the answer in a positive (result) or negative case (error).

A well-known application of IQ-stanzas is the service discovery used to identify the capabilities offered by an XMPP entity, that is, a list of feature sets explaining which particular stanzas a XMPP entity can understand. [HMESA08] An XMPP entity would request information from another entity about which XMPP extension this entity supports. This is done using a get-IQ, containing a <query/> tag qualified by an appropriate xmlns attribute showing that the query is about service discovery:

```
<iq from='romeo@shakespeare.lit/yard'
to='juliet@shakespeare.lit/balcony'
id='m940AE76' type='get'>
<query xmlns='http://jabber.org/protocol/disco#info'/>
</iq>
```

The receiver would normally reply sending back a corresponding result-IQ (with the same id attribute):



```
<iq from='juliet@shakespeare.lit/balcony'
    to='romeo@shakespeare.lit/yard'
    id='m940AE76' type='result'>
    <query xmlns='http://jabber.org/protocol/disco#info'>
        <feature var='urn:xmpp:jingle:1'/>
        <feature var='urn:xmpp:jingle:apps:rtp:1'/>
        <feature var='urn:xmpp:jingle:apps:rtp:audio'/>
        <feature var='urn:xmpp:jingle:apps:rtp:video'/>
        <feature var='urn:xmpp:jingle:apps:rtp:video'/>
        </query>
</iq>
```

The answer contains a list of "features" the entity supports. Features are qualified by the identifier of an XML namespace mentioned in the **var** attribute. This namespace concept is inherent to all XMPP extensions. Every XMPP extension belongs to a namespace. If the entity supports an extension, it should mention its namespace upon service discovery. There is a number of extensions standardized by the XMPP community and we will introduce some of them in section 2.2. However, defining your own proprietary namespaces is also possible.

When using an extension, i.e. sending a stanza which is characteristic to the extension, the extension-specific tags are qualified by the respective namespace using an xmlns attribute. This is a well-known concept in every extension. In chapter 2.2 we will oftenly mention "qualified elements", which means elements (tags) with a xmlns="..." according to the namespace of the Extension. In our example above, Juliet supports the Jingle protocol (which we will describe in section 2.2.2). Here is a Jingle-related IQ – notice, how the Jingle payload is qualified with the correct namespace ("urn:xmpp:jingle:1"):

```
<iq from='juliet@shakespeare.lit/balcony'
to='romeo@shakespeare.lit/yard'
id='m940AE77' type='set'>
<jingle xmlns='urn:xmpp:jingle:1'
action='session-initiate'
initiator='juliet@shakespeare.lit/balcony'
sid='a7840fe940ece580'>
<!-- ... -->
</jingle>
</iq>
```

## 2.2. The XMPP Extension Protocols

On top of the above mentioned building blocks, the XMPP community has developed further specifications to standardize XMPP communication in various areas like file sharing, collaborative drawing, event publication/subscription, avatars and much more. Each standard is published as a so-called XMPP Extension Protocol (XEP) which runs through a commonly agreed standardization process.

Below, a few XEPs related to media exchange and sharing are introduced. We concentrate on two broad concepts: First, in subsection 2.2.1, we step-by-step introduce a technology called SI File Transfers with Published Stream Initiation Requests. Second,





Figure 2.2.: Selected XEPs for media transport and their interdepencies.



in subsection 2.2.2ff., we will have a look at a more sophisticated and advanced stream initiation protocol "Jingle" and present it as an alternative to the approach mentioned before. Figure 2.2 shows both set of XEPs, the SI File Transfer XEPs sitting on top of XEP-0095 "Stream Initiation" and the Jingle XEPs, building on their core XEP-0166 "Jingle Core".

#### 2.2.1. SI File Transfers with Published Stream Initiation Requests

The need to develop an extension to exchange binary data was percieved early by the XMPP community. Already 2002, it was possible to exchange URLs of external resources using the **Out Of Band Data** extension. Later, XEPs were published, which allowed controlled streams of binary data: first as **In-Band Bytestreams**, later using out-of-band **SOCKS5 Bytestreams**. Around those streaming methods, a standard called **Stream Initiation** was developed for initiating a bytestream independent from streaming method and application. Different applications, like **SI File Transfer**, were classified in profiles and standardized. Now, push-like file transfer was possible with XMPP. Another extension, called **Publishing Stream Initiation Requests**, made pull-like transfers possible by allowing information about a stream to be published to interrested subscribers or to a repository. In this subsection, we will step-by-step introduce every of the mentioned extensions and their functionality.

#### XEP-0066: Out Of Band Data

The first XMPP extension protocol specified for binary data exchange was XEP-0066 [SA06]. It provides a mean to inform XMPP entities about available ressources under a certain URL. It is the receiving entities responsibility to retrieve the data from this URL, if desired. This method can still be used in file transfer scenarios as a fallback solution, if more sophisticated technologies fail.

The URI is communicated by a Set-IQ with a qualified <query/> element which then contains a <url/> and optionally a <desc/> element which hold the URI and the metadata of the shared resource respectively. The receiver of this Set-IQ will retrieve the ressouce and send an empty Result-IQ, if it succeeds.

The XEP specifies more advanced technologies, where this combination of  $\langle url \rangle$  and  $\langle desc \rangle$  may be used: for example, it can be included inside data forms [EHM<sup>+</sup>07]. Data forms are a mechanism similar to web forms, which are exchanged between and filled out by XMPP entities to communicate arbitrary record-like information between XMPP entities. With the combination of Out Of Band Data and Data Forms it is possible to exchange complete files inside of Data Forms, similar to the "Choose file..." field of web forms. Furthermore the XEP provides a mean to include the out-of-band transport inside of Stream Initiation Requests [MME04b], which will be detailed later in this section.

#### XEP-0047: In-Band Bytestreams

In-Band bytestreams [KSA09] send binary data directly along the XMPP channel. Since the XMPP channel is pure XML, the stream has thus to be base64-encoded. This results in a large overhead and high server load. For those reasons, that technology is - especially



in the mobile sector - only a fallback option but may still be used in other low-bandwidth applications like games, shell-sessions or encrypted messaging.

An in-band bytestream is initiated by a Set-IQ with an qualified <open/> element. The <open/> tag provides all necessary information, like block-size, a sid which is unique for this transfer and the attribute stanza, which describes, if IQs (iq) or messages (message) should be used to exchange the actual data. IQs should be preferred, since they are always acknowledged by Result-IQs. The receiving entity confirms the opening of the stream with an empty Result-IQ.

After the stream is opened, it may be used bidirectionally. Chunks of data are exchanged by the two participating entities inside of Set-IQs with <data/> elements containing the base64-encoded data. Each <data/> element is tagged with a seq and sid attribute which identify the data chunck's stream and its position inside of the stream. Finally, the stream may be closed by either party with a <close sid="..." /> element.

#### XEP-0065: SOCKS5 Bytestreams

SOCKS5 Bytestrams xep:0065 are a mean to initiate a out-of band binary connection between two XMPP entities. It is NAT-safe (Network Address Translation) since it uses the SOCKS5 protocol which makes it possible to mediate the connection through socalled StreamHosts, which are nothing else than SOCKS5 proxies enhanced by XMPP functionality.

The SOCKS5 protocol rfc:1928 is an internet proxy protocol between application and transport layer. It makes it possible for any client-server application to use the services of a so-called SOCKS proxy server transparently and independently from the actual underlying protocol. That means, if both clients are behind a NAT, they can connect to a SOCKS proxy and exchanged data is transparently forwarded to the opposite entity. A SOCKS connection is established by the client sending first its supported authentication methods to the server. Then, the server chooses one authentication method and replies. The client authenticates and then issues a connection request containing, among others, the destination address, port and used protocol (TCP open, TCP accept or UDP). The server finally confirms the connection request.

The initiation of a SOCKS5 Bytestream via XMPP is as follows (see figure ...):

- 1. The initiator queries the target for SOCKS5 bytestream support.
- 2. The initiator tires to find a StramHost using service discovery by querying its XMPP server for a list of potential StreamHosts and then querying each potential StreamHost to find out, if it really is a StreamHost.
- 3. The initiator requests the full network address from the StreamHost using a Get-IQ with a qualified <query/>.
- 4. The StreamHost replies with an respective Result-IQ whose <query/> contains a sid attribute used as an unique identifier from now on and furthermore a <streamhost/> child elements with information about host and jid.
- 5. The initiator informs the target about all gathered streamhosts by sending a Set-IQ with a list of <streamhost/> elements inside an appropriate qualified <query/> element.





Figure 2.3.: SOCKS5 Bytestreams negotiation



- 6. The target tries to connect to one of the StreamHosts by opening a SOCKS5 TCP connection. The reported SOCKS5 destination address (DST.ADDR) is the SHA1-encrypted concatenation of sid, initiator JID and target JID. The destination port (DST.PORT) is set to 0.
- 7. The target notifies the initiator about the used StreamHost by sending a Result-IQ containing an appropriate qualified <query/> element with a <streamhost-used/> subelement.
- 8. The initiator opens a SOCKS5 TCP connection to the StreamHost. The destination address (DST.ADDR) and port (DST.PORT) are set like in (6.). That way, the server can be sure that both the initiator and the sender are willing to accept the connection.
- 9. The initiator opens the bytestream by sending a Set-IQ with an appropriate qualified <query/> tag containing an <activate/> tag.
- 10. The StreamHost activates the bytestream and replies with a Result-IQ.
- 11. The media may now be exchanged over the TCP connection via the SOCKS5 StreamHost.

There are situations, where the use of a StreamHost is not necessary, that is, when NAT is not applied and a direct TCP connection between the both XMPP entities can be established. In this case, the protocol flow is simplified: Only steps (5.) and (7.) are executed where the initiator itself is advertised as the StreamHost. Afterwards, the initiator will activate the bytestream and the media may be be exchanged over the TCP connection.

#### XEP-0095: Stream Initiation

The methods presented inside this section up to now are rather different streaming methods where different forms of streamed communication may be executed on top. There has been little told about stream negotiation and metadata exchange. This is the scope of XEP-0095 about Stream Initiation: it negotiates an out-of-band content stream between any two XMPP entities, i.e. choses the streaming method, provides sufficient metadata in advance and may be used for file transfers, audio/video chat and other applications.

Streams are initialized by a Set-IQ from the initiator containing a qualified  $\langle si/\rangle$  element. The content of the  $\langle si/\rangle$  element has two parts. Firstly, it contains a so-called profile, which describes the use case of the bytestream and its metadata. This may, for example, be a qualified  $\langle file/\rangle$  element in case of file transfer. Secondly, it contains a qualified  $\langle feature/\rangle$  element by http://jabber.org/protocol/feature-neg. This element posesses a  $\langle x/\rangle$  tag carrying a data form [EHM<sup>+</sup>07] which is used to negotiate the file streaming parameters, i.e. the streaming method used. The data form may offer several possible methods from which the responder will choose one. One example of a complete Set-IQ might look like (taken from [MME04b]):

```
<iq type='set' id='offer1' to='receiver@jabber.org/resource'>
  <si xmlns='http://jabber.org/protocol/si' id='a0'</pre>
```



```
mime-type='text/plain'
    profile='http://jabber.org/protocol/si/profile/file-
        transfer'>
  <file xmlns='http://jabber.org/protocol/si/profile/file-
    transfer'
        name='test.txt' size='1022'>
   <desc>This is info about the file.</desc>
  </file>
  <feature xmlns='http://jabber.org/protocol/feature-neg'>
   <x xmlns='jabber:x:data' type='form'>
    <field var='stream-method' type='list-single'>
     <option><value>
      http://jabber.org/protocol/bytestreams</value></option>
     <option><value>
      jabber:iq:oob</value></option>
     <option><value>
      http://jabber.org/protocol/ibb</value></option>
    </field>
   </x>
  </feature>
 </si>
</iq>
```

Here, the responder has the choice between SOCKS5-bytestreams, Out-Of Band Data and In-Band Bytestreams. In the case of success, the receiver will respond by with Result-IQ having a similar <code><si/> element</code> with a filled-out data form. The stream will then be opened according to the chosen streaming method.

#### XEP-0096: SI File Transfer

The SI File Transfer XMPP extension protocol [MME04a] finally adds metadata to a file transfer and provides, together with the streaming methods and negotiation technologies presented before, the possibility to carry out seamless file transfers, enhanced with metadata, reliable, even via NATs and optionally even featuring ranged transfers.

XEP-0096 defines a profile to be used with Stream Initiation Requests, which announces a file transfer: An appropriately qualified <file/> element may be specified inside a stream initiation request (<si/>). This element contains attributes with metadata of the file (size, name, date, hash) and optionally a <desc/> element to provide a humanreadable description plus an empty <range/> element to indicate support for ranged transfers which makes it possible for the receiver to specify offset and length when requesting a portion of the file.

#### **XEP-0137:** Publishing Stream Initiation Request

XEP-0137 [MM05] introduces a pull model for streams by bringing the XMPP extension "Publish-Subscribe" [MSAM08] and Stream Initiation Requests together. Publish-Subscribe is a generic XMPP extension to allow entities to publish items to a PubSub service. The item is published to a node, which covers an area of interest. Other entities



may subscribe to this node and receive events when new items are published. An entity may also create new nodes or subnodes or delete them. In fact, the PubSub-service hosts a whole node-tree. Entities may query the service for its nodes or for the published items. Owners of a node – i.e. entities which created that node – may query or manage sub-scriptions to their node or modify the items inside of the node. Subscriptions and nodes may be configured using Data Forms [EHM<sup>+</sup>07] to specify the behaviour of the PubSub service regarding the notification or access control.

By combining both PubSub and Stream Initiation Request, one gets a powerful model to publish links to binary ressources in a hierarchic content repository. Note, that only Stream Initiation Requests are published, the data itself is located elsewhere. It is retrieved from the publisher, when the stream is initiated based on the published Stream Initiation Request stored in the PubSub-tree and retrieved from subscribers or from entities which browse that tree.

A generic publish-IQ is a Set-IQ with a qualified <pubsub/> element containing a <publish/> element. In the case of Stream Initiation Requests, <publish/> possesses a <sipub/> element, which is similar to <si/> but does not contain any feature negotiation. The <sipub/> element is then pushed to all subscribers in accordance to "Publish-Subscribe" using XMPP-Messages containing an <event/> with a list of <items/> and the <sipub/> inside of a final <item/>. Note, that this is not the real stream initiation request yet but only a notification, that there is such a source available at the respective entity.

After the subscriber has recieved the <sipub/> notification, it may request the actual Stream Instantiation from the initiator. This is done by sending a Get-IQ with <start sid="..." /> to the initiator. The initiator will answer with a Result-IQ containing a similar <starting/> element and will then issue the actual Stream Initiation Request (<si/>) in accordance to "Stream Initiation" described earlier [MME04a].

### 2.2.2. Jingle – An XMPP Signalling Protocol

Jingle is a signaling protocol first introduced to allow simple video and voice chat. It is specified in XEP-0166 [LBSA<sup>+</sup>09]. It resembles the Session Initiation Protocol (SIP) [RSC<sup>+</sup>02] and was introduced after a long discussion inside the XMPP community which showed that two-stack clients working on both SIP and XMPP are difficult to realize. However, interworking of Jingle entities with SIP entities is made possible since many Jingle-related XEPs define direct mapping between SIP and Jingle so that translating gateways can be developed easily.

Jingle was designed with a maximum of flexibility concerning application types (i.e., what data is transmitted - voice/video chat, file transfer etc.), transport methods (i.e., how the data is transmitted - via UDP, TCP, Socks 5 etc.) and security preconditions. The XMPP core leaves the specification of those technologies to further XEPs while specifying only a common template to which all the related specifications have to comply. We will have a look onto application types in subsection 2.2.4 and onto transport methods in subsection 2.2.3. Further design goals of Jingle was strict separation of signalling from data, lightweighted clients and the support of session management functions.

A basic Jingle stanza is usually an IQ containing a qualified <jingle/> tag with attributes such as action, initiator, responder or sid (session-ID). action takes a spe-





Figure 2.4.: The Jingle protocol states.

cial role, since it defines how one XMPP user wishes to modify the session with their counterpart.

The <jingle/> element itself usually contains one or more <content/> elements one for each stream to be established. The <content/> element then consists of one <description/> and one <transport/> element, specifying the application data (the "what") and the transport method (the "how"). Application data is further described by a <payload-type/> subelement and a transport method by a <candidate/> subelement.

A basic Jingle session passes through the 3 states "pending", "active" and "ended" (see figure 2.4.

- 1. After resource determination, the initiator sends an Set-IQ initialization request to the responder (action="session-initiate"). The responder has to answer with an Result-IQ or an Error-IQ. In the case of succes, the session is in the transits to the state "pending".
- 2. Now, further negotiation can be performed, like adding/removing/editing transports or contents (action="transport-info", transport-replace, content-modify, content-add, content-replace).
- 3. Then, the session will be accepted by the responder (session-accept IQ-set), which will be acknowledged by the initiator (IQ-result). The sender will choose a subset of listed <payload-type/>s and <transport/>s which she supports herself. The session is now in the state of being "active".
- 4. Even after, further modifications to transports and contents can be carried out.
- 5. Finally, one party will end the session (session-terminate IQ-set with <reason/> element). Also this will be confirmed with a IQ-result.



During the whole session process, informational messages with action="sessioninfo" can be sent, e.g. the IQs containing a <ringing/> tag are used to signalize that the session initiation was received but not accepted yet.

## 2.2.3. Jingle Transport Method Specifications

#### XEP-0176: Jingle Raw UDP Transport Method

XEP-0176 defines a transport method for establishing and managing out-of-band sessions using raw-UDP between two entities defined by their IP address and port. This transport method is applicable where some packet loss is tolerable, e.g. in audio/video chats. Raw-UDP works as a "hit-or-miss" protocol: the transfer might work end-to-end, especially when the sending entity is a gateway / relay, e.g. when the back-to-back user agent sends an early media offer to the initiator on behalf of the responder.

#### XEP-0177: Jingle ICE-UDP Transport Method

XEP-0177 defines a transport method for establishment and management of out-of-band sessions using ICE-UDP. ICE-UDP stands for Interactive Connectivity Establishment and is suitable for the use of media applications communicating over Network Address Translators (NATs), where some packet loss is tolerable. ICE-core is currently available as a RFC draft [Ros07]. However, this RFC focusses on sessions negotiated via SIP, while XEP-0177 makes the use of ICE-UDP possible with XMPPs signalling protocol Jingle. XEP-0177 specifies furthermore a mapping between SIP and Jingle in this particular case.

#### XEP-0260: Jingle SOCKS5 Bytestreams Transport Method

The Jingle SOCKS5 Bytestream Transport Method (XEP-0260 [SAM09]) brings together the SOCKS5 Bytestream Protocol defined in XEP-0065 [SMSA07] (see section 2.2.1) and the Jingle protocol defined in XEP-0166 [LBSA<sup>+</sup>09]. With this extension, it is possible to instantiate Jingle Sessions in accordance to the Jingle protocol with data flowing over SOCKS5 Bytestreams.

#### XEP-0261: Jingle In-Band Bytestreams Transport

The Jingle In-Band Bytestream Transport Method (XEP-0261 [SA09c]) combines In-Band Bytestreams defined in XEP-0047 [KSA09] (see section 2.2.1 and the Jingle protocol defined in XEP-0166 [LBSA<sup>+</sup>09]. With this extension, it is possible to instantiate Jingle Sessions in accordance to the Jingle protocol with data flowing directly over the XMPP channel itself, that is, not over any signalling channel. Because of that, this transport method should be only a failsafe solution. The In-Band Bytestream Transport Method is a lossless transport method.

### 2.2.4. Jingle Application Format Specifications

#### XEP-0167: Jingle RTP Sessions

XEP-0167 [LSAE $^+$ 06] describes an application format for negotiating Jingle RTP media sessions and complies to the standard template for Jingle application formats defined

alongside with the Jingle core specification in XEP-0166 [LBSA<sup>+</sup>09]. Special attention has been paid to the coverage of all possible RTP-parameters and their mapping to SDP. Also, all necessary informational messages (e.g. ringing, on hold, mute) are defined.

The Jingle RTP application format is usually used with datagram transports (raw-UDP as in XEP-0177 or ICE-UDP as in XEP-0176, see subsection 2.2.3) if the media is light and the latency low – this may, e.g., apply to streamed media. Usually, the transported content consists of two components: an RTP channel (1) and an RTCP channel (2).

#### XEP-0262: Use of ZRTP in Jingle RTP Sessions

ZRTP [Ros07] is a variant of RTP supporting secure RTP transmission. It can be used as an alternative to the Secured Real Time Protocol (SRTP). Negotiating ZRTP happens rather on the signal level base. However, in the SDP protocol a zrtp-hash attribute is required with ZRTP which communicates version and Hello Message.

XEP-0262 describes how this SDP attribute translates to Jingle. In Jingle, a sessioninfo action would be sent after session initiation, containing a <zrtp-hash/> element.

#### XEP-0266: Codecs for Jingle RTP Sessions

XEP-0266 [SA09a] is strictly informational and provides suggestions about which codecs a Jingle entity should support. Since codecs are often subject to patents, the discussion about this topic has been very controversial in the XMPP community. In XEP-0266, some audio and video codecs are discussed according to criterias like quality, RTP packetization standard, cross-platform availability and patents. The audio codecs mentioned are Speex and G.711, the video codecs are Theora, Dirac and H.264.

The extension protocol suggests, that support for patent-clear, freely implementable and commonly deployed codecs should be supported. For audio, this would apply to both Speex and G.711. For video, no recommendation can be made yet, but Theora and Dirac are seen to have the most chances for the future, when they are deployed to more platforms.

#### 2.2.5. File transfers and XML Streams using Jingle

#### XEP-0234: Jingle File Transfer

XEP-0234 [SA09b] shall improve SI File Transfer defined in XEP-0096 [MME04a] (see section 2.2.1, "File Transfer using Stream Initiation Requests"). The XMPP community identifies two drawbacks in that early standard: first, it supports no negotiation of File Transfer parameters but only acceptance or denial. Second, it is the only technology which uses Stream Initiation Requests – instead, one could use Jingle, which is much more powerful.

The extension protocol defines how the Jingle Protocol defined in XEP-0166 [LBSA<sup>+</sup>09] and the file description format in "SI File Transfer" (XEP-0096 [MME04a]) work together and describes a clear update path how to move from SI File Transfer to Jingle File Transfer.

File transfer is usually accomplished using the SOCKS5 or the In-Band transport methods of Jingle (see section 2.2.3), since loss of data is not tolerated. The XMPP community



announces the development of another transport method, ICE-TCP, to provide more effective TCP transport over NAT.

A file transfer is initiated like every other Jingle session by sending a set-IQ with a <jingle/> tag with action="session-initiate". The <description/> subtag will contain a <offer/> or <request/> element, depending on if the file is pushed or pulled from the initiator. This element then contains a qualified <file/> element. The <file/> element describes the file according to the structure defined in XEP-0096 [MME04a].

### 2.2.6. Further XEPs concerning Jingle

#### XEP-0181: Jingle DTMF

XEP-0181 [PSA08] defines an extension for XMPP to send Dual Tone Multi-Frequency (DTMF) events for dialing and issuing commands, e.g. of interactive voice response applications. Normally native RTP methods (like "audio/telephone event" or "audio/tone" media type) should be preferred, but when communicating with RTP-unaware entities, e.g. gateways to the PSTN, this protocol may be used. A DTMF event is signalled by sending a <jingle/> set-IQ with action="session-info", which contains a tag of the following structure:

<dtmf xmlns='urn:xmpp:jingle:dtmf:0' code='0-9,#,\*,A-D' duration='milliseconds' volume='0-63'/>

#### XEP-0269: Jingle Early Media

Jingle Early Media, defined in XEP-0269 [CSA09], defines a mean of exchanging media before the session is definitively accepted. It is comparable with the SIP header Early-session and accomplished using a content-add Jingle action. The media may be generated by the initiator or an intermediary. If an intermediary generates the early media, it has to use a codec and a transport method advertised by the initiator. This protocol may be used when dealing with ringtones or announcements using audio streams or Dual Tone Multi Frequency events (DTMF).

# 2.3. Second-Stack Technologies

This section will concisely present two other technologies – WebDAV (2.3.1) and the Atom Publishing Protocol (2.3.2). We name these protocols "Second-Stack Technologies" since they are independent from XMPP, which is used in the Mobilis Project. The use of those second-stack technologies would definitively require either wrapping or changing of the protocol fragments to fit into the XMPP stanza concept or it would require to introduce a second protocol stack and negotiation between XMPP and the respective protocol. We will also shortly motivate, how this can be done.

## 2.3.1. WebDAV

The WebDAV protocol (Web based Distributed Authoring and Versioning Protocol) is an extension to the Hypertext Transfer Protocol 1.1 (HTTP) which removes certain re-



strictions of the classical HTTP protocol. Originally, HTTP only allows Get and Post Request, i.e. downloading and uploading of information. WebDAV is developed by the WebDAV Working Group, the DASL Working Group and the Delta-V Working Group of the Internet Engineering Task Force. It is specified by numerous RFCs, mainly RFC 4918 [Dus07].

WebDAV adds support for much more operations like deletion, directory creation or modification or even versioning. To be precise, the following methods are added: PROPFIND (to access the metadata of a ressource), PROPPATCH (to modify the metadata of a ressource), MKCOL (to create a directory – called "Collection" in WebDAV), COPY (to copy a ressource), MOVE (to move a ressource), LOCK (to disallow modifications of a ressource temporarily), UNLOCK (to remove a lock).

More complex technologies, like the version controlling system Subversion [Ste02] are based on WebDAV. There is also a WebDAV extension called CalDAV [web08] which makes it possible to manage a calendar using the WebDAV protocol – this extension is specified in RFC 4791 [DDD07] and used e.g. by Google Calendar [Goob].

On the one side WebDAV seams like a promising technology: It is wide-spread – supported in many desktop operating systems like Windows XP and Linux – and first applications have been built which bring WebDAV to mobile phones (see section 3.2 and 3.5). WebDAV can handle the transport of binary data like HTTP can do – without the need of base64-encoding. When integrating WebDAV into an XMPP protocol stack, one can use a dedicated repository server to store the media ressources and use e.g. Out-Of-Band Data (see section 2.2.1) to communicate the URLs of the ressource. A very similar approach to managage binary ressources inside of collaborative documents has been taken by Google with their product Google Wave – we will present this solution in more detail in section 3.6.

However a WebDAV repository has the drawback. It uses a directory structure as the underlying ressource classification system. This concept is too restrictive. What we are looking for is an architecture, which distributes ressources according to it's metadata – not according to a physical location like a webserver path. Also, there are no open frameworks for WebDAV available except Jakarta SLIDE <sup>1</sup>, which is discontinued.

#### 2.3.2. Atom Publishing Protocol

The Atom Syndication Format (ASF) is a standard for platform independent information exchange and an alternative to RSS (Really Simple Syndication) [webe]. On top of that, the Atom Publishing Protocol (AtomPub or APP) is a platform independent XML format for editing web ressources. It was originally developed to provide a mean for webfeed administrators to publish feed items to an Atom feed in a standardized way. Today, it is standardized by the IETF in RFC 5023 [Gdh07].

The Atom Publishing Protocol runs on top of the HTTP protocol. A client, who is interested in publishing an entry to a collection first retrieves a so-called service document via HTTP-GET from a dedicated URL. This service document is from the content type application/atomserv+xml and contains one single <service/> element with one or more <workspace/> element containing <collection href="..." />" elements. The

<sup>&</sup>lt;sup>1</sup>http://jakarta.apache.org/slide/

client will then issue a POST request to the address specified in href. Also requests like DELETE are possible.

The idea of collections makes the Atom protocol more attractive for the use with metadata-driven content repositories, since the APP server may decide itself, where it should put the uploaded content and in which context it should offer the ressource to other participants. However, certain other drawbacks limit the use of APP in our situation: firstly, APP was developed for XML data where Media sharing, especially image sharing handles pure binary data. Secondly, again, APP is a protocol which needs a separate web server and thus a second protocol stack. And thirdly, library support in this area is not mature yet and there have been no efforts to bring APP to a mobile platform. Two libraries on java basis have been published to our knowledge: ROME propono, currently available in version  $0.6^{-2}$  and Apache Abdera, currently available in version  $0.4^{-3}$ .

# 2.4. Conclusion

In this chapter, we introduced four possible technologies to allow media sharing in collaborative environments: SI File Transfers with Published Stream Initiation Requests (2.2.1) and Jingle File Transfers (2.2.5) as a solution integrated into XMPP as well as WebDAV (2.3.1) and the Atom Publishing Protocol (2.3.2) as second-stack technologies. Table 2.1 summarizes the insights made in this chapter according to support of metadata-driven repositories, a suiting transport method for media sharing purposes and library support for mobile applications.

|           | Metadata-driven | Suiting Transport   | Library support       |
|-----------|-----------------|---------------------|-----------------------|
|           | repositories    | Method              |                       |
| SI FT     | Yes             | SOCKS5              | Smack                 |
| Jingle FT | Yes             | SOCKS5, later: ICE- | Not available         |
|           |                 | TCP                 |                       |
| WebDAV    | No              | HTTP                | Apache Slide (discon- |
|           |                 |                     | tinued)               |
| APP       | Yes             | HTTP                | Rome Propono,         |
|           |                 |                     | Apache Abdera (un-    |
|           |                 |                     | sure)                 |

Table 2.1.: Overview of presented technologies

<sup>&</sup>lt;sup>2</sup>http://wiki.java.net/bin/view/Javawsxml/RomePropono

<sup>&</sup>lt;sup>3</sup>http://abdera.apache.org/

# 3. Related Work

Media sharing, or more general, file sharing on mobile devices is a widely discussed topic in the academic as well as in the economic sector. However, there are only a few elaborations who combine media sharing techniques with social collaboration mechanisms provided by mobile systems and, in particular, XMPP.

In the following section, we want to present a selection of promissing solutions. We will start by discussing academic papers. In section 3.1, we will introduce the work of Belimpasakis et al. [BLB07], who developed an independent content sharing middleware which can connect to a given list of content repositories. Then, in section 3.2, we will present a paper from Tolvanen et al. [TSLA06] who integrated remote file systems into the mobile device. Section 3.3 shows the work of Martuszewski et al. [MBLH06], who implemented a distributed file sharing service using on the Session Initiation Protocol. Section 3.4 introduces the work of Sarvas et al. [SVPN04] who outlined how to build up a collaborative photo album enhanced with contextual metadata provided by the mobile phone.

In section 3.5 and 3.6, we will present recent approaches from the economic sector: first, we introduce file sharing applications for mobile devices running on the Google Android platform (3.5) and second, we will present how the transfer and storage of binary data is handled in a new collaborative tool called Google Wave (3.6). Section 3.7 concludes this chapter and compares presented work to our vision of a collaborative media sharing repository.

## 3.1. Belimpasakis et al.: Content Sharing Middleware for Mobile Devices

Belimpasakis et al. [BLB07] focus on the use of smart phone cameras as primary source of digital images to be shared. Like us, they distinguish between two primary use cases: sharing media with third party servers which act as intermediary hosts (e.g. Flickr) and sharing media device-to-device (e.g. based on proximity based ad hoc networks or based on remote connections).

In their work, they develop a middleware, which abstracts from specific sharing protocols and lets the user connect to arbitrary sharing repositories to browse or search them or to upload and download files. Also aggregated browsing across multiple repositories is possible. The middleware consists of the following parts (see figure 3.1:

1. An **API** which provides a common interface of the functionality offered by all sharing protocols to third party applications ("sharing applications"). This includes methods for uploading and downloading media, (aggregated) browsing a repository or accessing media's metadata (like EXIF-metadata or thumbnails).





Figure 3.1.: Sharing Middleware Simplified Design

- 2. Extension points to add maximum flexibility for upper and lower layers. New sharing protocols can be added "at the botton" as so-called "sharing plugins" and new functionality for the overlaying sharing applications can be added "at the top" as so called "sharing services".
- 3. A middleware configuration utility to manage the sharing repositories and their respective techniques. The authors anticipate that in future work, this configuration will be much more context-aware or user-centric. One could e.g. use ad-hoc or proximity-based connectivity mechanisms to discover available repositories or one could fetch a list of the available media repositories from a user database, e.g. from the phone book, which could containing a respective field for each person. In our work, we will be presenting a way, how to come closer to this goal using the Mobilis platform with it's services, which feature integration into social networks [DS09].

To pay special attention to restrictions in a mobile environment (traffic cost, battery power, slow CPU), downloaded data is only updated by client request, i.e. when downloaded again. This avoids development of sophisticated caching and conflict resolving mechanisms and is also the way we choose. Furthermore, the API provides clear distinction between the use case of browsing a repository and downloading the content from it. In the first case, only thumbnails and metadata is accessed to save bandwidth.

The discussed sharing protocols are UPnP AV (for the "Home environment domain"), Atom (for the "Internet domain") and WebDAV (for the "Business domain"). In our work, we will concentrate on one single sharing protocol.

The client-server related sharing is driven by the idea to use arbitrary third party servers as sharing repositories. That is, because the introduced sharing application is middleware solution which doesn't provide it's own client-server architecture but rather enables the client to connect to any already existing sharing service. This enables the integration of well-established repositories with associated communities (e.g. Flickr). In this sense, the introduced work is different from our work as we will concentrate on a client-server solution with our own, central Mobilis server. However, there have been already efforts to integrate social networks into the Mobilis platform, so we refer in this case to  $[HFV^+]$  [DS09].





Figure 3.2.: Concept UI for uploading & downloading content [BLB07]

## 3.2. Tolvanen et al.: Remote Storage for Mobile Devices

Tolvanen et al. [TSLA06] designed and implemented a solution to integrate remote repositories transparently into the Symbian file system. The framework makes it possible to mount practically every arbitrary WebDAV or FTP repository onto a new drive letter of the phone. The contents of the repository can then be used like local files on the device. Even offline access and modification with later synchronisation is possible.

The foundations of this project are inspired by Coda and WebDAV. Pure Coda was not considered to be appropriate in the mobile sector, since it was mainly designed for high-bandwidth carriers. The decision was finally made to use WebDAV, although there were certain limitations in comparison to Coda (no callback-promise, no replication mechanisms, no path-independent identifiers).

The underlaying file systems have been adapted for disconnected operations using sophisticated file caching techniques. In particular, two general approaches of file caching are presented with their trade-offs, especially when applied in the mobile sector.

- File block caching for immediate file access Only a part of the file is requested from the server and stored in a cache. The size of the transfered block should be at least the size needed to fulfill the issued read(..)-request. In practise, however, multiple read(..)-requests are issued in a row which would result in too many round trips. This problem is resolved by requesting bigger blocks, depending on the file structure of the according MIME type and on the typical application behaviour to access this file type (e.g. skimming for metadata, streaming). Once a block is received, it is stored in a cache having a user-defined size and running with a LRU strategy. However, with this technique incompletely cached files cannot be accessed in disconnected mode.
- Aggressive (whole-file) caching for disconnected access The complete file is requested from the server and stored in a cache. This allows the user to access the file also in disconnected mode but disables "skimming" files in real time, e.g. for browsing or streaming, without the files being transmitted completely.

To combine the best of both worlds, a hybrid solution is used: files are requested blockwise. Once transmitted completely, they are made available for disconnected operations. The framework allows user intervention ("cache hoarding"), e.g. the definition of sticky flags for the cache using a dedicated user interface. It also provides means to modify files (i.e., the cache contents) when disconnected or "weakly connected" (using e.g. GPRS).





Figure 3.3.: Prototype Architecture

Several methods to resolve conflicts when re-integrating local changes are also discussed in the paper.

The framework consists of an "Enhanced File Browser" for cache control and a "Mounter" on the user interface side. Furthermore, a Remote Storage Client component is plugged in the symbian-own file server which communicates with the "Remote File Engine" managing the communication over arbitrary protocols - e.g. WebDAV and FTP. Multiple mounted repositories all have their own file server thread, so caching can be realized parallely.

# **3.3.** Matuszewski et al.: Mobile Peer-to-Peer Content Sharing Application

The work of Matuszewski et al. [MBLH06] presents a mobile peer-to-peer content sharing service in cellular networks based on SIP (the Session Initiation Protocol), which is part of the IP Multimedia Subsystem (IMS). It introduces an architecture which is based on peer-to-peer media sharing rather then centralized client-server media sharing, since a client-server approach is considered to have poor scalability, a slow content publishing process, a low variety of offered content and the lack of possibility to experiment due to high usage of the centralized server.

A demo is developed using "Registrars" and "Finders" as core components. The "Registrar" provides information to super-peers about the current state of the sub-peers (service started/stopped). The super-peer can subscribe to the information of the sub-peers. The "Finder" component is responsible for generating and receiving SIP XML-messages used for content retrieval. Alongside the core, a "Transfer" component exists for managing the transport of files between two peers (e.g. using TCP/IP). It is responsible for session-initialization, hash-checking and managing local shared content.

This work is only of marginal relevance for our research. Building dual-stack applications using both XMPP and SIP is considered to be difficult [LBSA<sup>+</sup>09], which is why we consider purely XMPP-based solutions, like introduced in section 2.4 to be a good alternative for file transfer session initialization. Also, the related project was developed relying on GPRS architecture, while nowadays 3G connections like UMTS/HSDPA provide much more opportunities.




Figure 3.4.: The posting process where (a) the images are selected, (b) posting initiated,(c) new folder created, d) named, (e) the people selected, and (f) finally the images are uploaded. [SVPN04]



Figure 3.5.: The Horizontal Timeline View of the user's (Chris) own folders and folders shared by others (Markus and Anna). The two selected folders are in darker color. [SVPN04]

# 3.4. Risto Sarvas et al.: MobShare: Controlled and Immediate Sharing of Mobile Images

Sarvas et al. [SVPN04] developed an architecture for personal image management and photo sharing using mobile phone cameras. The designed and implemented prototype allows posting mobile images into an organized web album. The teoretical work in this paper focusses on issues of user interface design and user habits in taking and sharing photographs and outlines the characteristics of a mobile phone camera being rather a communication device with several network connections, advanced computing ressources (like J2ME or Symbian) and access to contextual or social information which may enrich metadata assigned to a picture.

This work differs from other work presented before in the dual architecture which has been applied: On one side, a mobile phone application based on Symbian is used. On the other side, a web platform on a Struts-driven Tomcat-server exists. This distinction is made because of two general identified use cases:



The first is capturing the picture and sharing it with other users. This is done via the mobile phone (see figure 3.4. After pictures are selected for sharing, they are distributed in two steps. First, the user is asked explicitly to assign the pictures to a folder, which forces a strong organization of the images. Then, the user selects a set of persons to share the pictures with from her phonebook. The phone number (MSISDN) is used as an unique identifier to retrieve the user – users who are not part of the system get invited to the system by a short message.

The second use case is viewing and commenting the picture. This is done on a web platform using a desktop PC, where every user can login using her phone number and password. The contents of the repository are displayed in 3 granularity levels: The highest level is a horizontal timeline view with separated users and their folders aligned vertically. New pictures are highlighted (see figure 3.5). One level down, a user can compare the content of two folders using a vertical timeline view with both folders side-by-side. The second-lowest level is a folder view showing a chronological thumbnail list of one folder. The lowest level finally is the view of a single image with a caption and discussion.

To compare this solution with our approach, we can admit, that todays mobile phones have advanced and the use of them has changed. The distinction between a desktop and a mobile platform is not necessary anymore since todays smartphones, networks and users can handle tasks like displaying and navigating through big repositories on the phone. Nevertheless, the principles defined in this paper, like the dependency on 3 dimensions - user, folder and time - is an important aspect which we incorporated into our design, adding another dimension: location. However, using the phonebook as user base does not apply to our work, since we bet on XMPP and JIDs.

## 3.5. Android Applications: OnAir and ES File Explorer

The Developer Community of Google's Mobile Phone Operating System Android <sup>1</sup> has developed first applications to facilitate file sharing on mobile devices. Those applications are "OnAir" [Clo] and "EStrongs File Explorer" [webb].

**OnAir** [Clo] is a free Android software which opens a WebDAV or a AppleTalk server on the Android phone where it is installed. One can then connect to this server with any device running a WebDAV client and having access to the IP address and port of the WebDAV server running on the mobile phone. That way, OnAir allows simple file transfers only under "happy circumstances" – i.e., if the phone and the client are logged in to the same WLAN network. Also, contextual aspects are not taken into consideration, e.g. to tag the transmitted files with metadata and thus allow rich media sharing. Furthermore, this program provides only a simple, directory-based client-server solution and social information is not taken into account to allow collaborative sharing.

**EStrongs File Explorer** [webb] is another free Android application which can browse shared directories to NetBIOS servers running e.g. on Windows platforms or as Samba servers on Linux platforms. In contrast to OnAir, the application is realized as a client while the paired device has to run the server. However, similar restrictions apply: no

<sup>&</sup>lt;sup>1</sup>http://developer.android.com/





Figure 3.6.: The Google Wave Attachment Server Architecture [LT09]

context or social information are used and no collaborative sharing is possible. Also, the server has to be reachable by its IP address and port. Note, since we consider the paired device to be a desktop station, this is easier since desktop stations are more likely accessible from a known IP address than mobile phones.

# 3.6. Google Wave Attachments (Google Wave Federation Protocol)

Google Inc. recently published a collaborative product called "Google Wave" <sup>2</sup> which tries to combine communication tools like email, instant messanging, wikis, collaborative editors and other collaborative "gadgets" into one single extensible product. The elementary unit in "Google Wave" is a "wave", a conversation object hosted on the server in which multiple users participate. A wave is split up into a tree structure of wavelets which user can read, modify or reply to in near real-time. The protocol used to propagate those changes is called the Google Wave Federation Protocol, and it will be be open-source according to Google Inc. Already now, multiple white-papers are available [web09].

Inside of wavelets, binary data can be embedded. In [LT09], Michael Lancester explains how binary data is stored on so-called attachment servers, how it is referenced inside of XML-based wavelets and how changes to the attachment repository are communicated (see figure 3.6).

<sup>&</sup>lt;sup>2</sup>http://wave.google.com/



The attachment server, where all binary data of the attachments is stored, is an HTTP server. It supports upload (HTTP POST) and download (HTTP GET) of the attachments, which are stored in a database. For every attachment, one row exists, storing the thumbnail, the actual attachment content and the metadata of the attachment. Thumbnail and content are stored in BLOB fields (Binary large objects), the metadata is stored in a protocol buffer [Gooa], a format developed by Google Inc. to store serialized data efficiently. Every attachment is further referenced by a globally unique ID. Inside of the wavelet object, which embeds the attachment, a portion of the metadata is repeated – if changes are done to the metadata at the attachment server side, they are pushed via Remote Procedure Calls (RPC) to the wave server.

Creation and modification of attachments can be done in various ways: a thumbnail can be uploaded via HTTP POST, the attachment content (or non-overlapping parts of it) can be uploaded via HTTP POST or a link to an existing attachment can be created. These operations are idempotent, that means, they can be executed in parallel. With every attachment operation, the attachment ID, wavelet name and other metadata is specified as HTTP headers. An attachment is downloaded by an HTTP GET request with special HTTP headers specifying the attachment ID and a token, stored inside the wavelet object.

In contrast to our work, Google Wave concentrates on hosted conversations (wave objects) with participants instead of locations as the key concept of media exchange. It also is not targeted primarily to the mobile sector. Also, it uses XMPP only marginally to store binary media – in fact, most of the communication takes part using HTTP and RPC. Furthermore, the introduced technology is not standardized by any authority.

#### 3.7. Conclusion

In the previous sections, numerous previous efforts in media sharing on mobile devices were introduced which covered the basic scenario introduced in 1 by using technologies described in 2. However, none of them provided the necessary features to fulfill the requirement of a collaborative social mobile media sharing platform integrable into an XMPP-powered system. Most of the introduced examples concentrated on directorybased file sharing or file transfers without taking the numerous affiliations of the user and available context information or metadata into account. The work of Sarvas et al. (3.4) comes closest to our vision but it lacks the support for a standardized technology like XMPP. Furthermore, location awareness is not supported. Also, not all mobile use cases are covered, since management, viewing and discussing the media ressources is done in a web browser even though mobile phone operating systems, SDKs and handsets have dramatically improved which allows to build applications with advanced functionality.

As we showed in chapter 2, the XMPP standards foundation lately developed appropriate standards to make media sharing with annotated metadata possible using XMPP. In fact, none of the works specified before ran applications using the XMPP protocol – despite of the Google Wave Foundation Protocol, which, although, uses proprietary negotiation mechanisms not developed by the XMPP standards foundation. Also, most of the communication in this protocol takes part out-of-band from the XMPP stream without proper XMPP negotiation.



In the next chapter (4) we will thus settle requirements to detail our vision of a new collaborative metadata-driven mobile media sharing platform based on XMPP.

# 4. Requirements Analysis

Based on the preceeding introduction of the tourism scenario (1.2) which showed the business need for a collaborative mobile media sharing platform, we will now introduce the requirements set to such a system to improve currently available systems introduced in the previous chapter (3). This system will run on top of available collaborative media sharing technologies evaluated in chapter 2 and be integrated in the current Mobilis system presented in section 1.1.

Requirements are descriptions of what a system should do and how this goal should be reached. Therefore, we will start in section 4.1 by introducing functional requirements based on the presented user scenario. We will oppose them to the minimum device capabilities needed to accomplish this goal in section 4.2. Then, non functional requirements are introduced in section 4.3 and finally Human-Computer Interaction considerations are presented in section 4.4. At the end of each section, the elaborated requirements are summarized in a prioritized table (tables 4.1, 4.2, 4.3 and 4.4). The last section (4.5) of this chapter concludes the key guidelines for developing the prototype system.

#### 4.1. Functional Requirements

The primary functional requirements in our media sharing scenario is the publication of pictures (FR-1). In mobile environment, pictures are usually taken with the mobile phone camera, so it should be possible to load them directly in the sharing application (FR-1.1). However, the system should not be restricted to store pictures only – moreover it should be possible transmit any file to the repository (FR-1.2). The selected picture or file may be sent to a picture repository for other users to retrieve it (FR-1.3) or only a thumbnail file with metadata may be sent to the repository and the actual file may stay at the users device for users to retrieve it later (FR-1.4). The user may also choose the option to share the image with one single user only (FR-1.5), where a direct and instant file transfer would be initiated without the repository seeing any of the transmitted data.

The prototype should support the management of metadata stored alongside with the content (FR-2). First, the image is geotagged with the location where the image is taken or, if this information is not available, with the location where the image is stored into the repository (FR-2.1). The image is also tagged with a date from when it is taken or, if this information is not available, with the date of the upload (FR-2.2). Furthermore, the image was shared by a specific owner, which classifies images according to their user (FR-2.3). The user may finally enter a free title which is stored as well (FR-2.4). All those classifications should be further classifications (FR-2.5).

The repository should be browsable by other users (FR-3). Browsing the repository means retrieving information about a set of pictures meeting a specific condition. Browsing has to be done using easy-to-use filtering controls (FR-3.1). The repository should be browsable by the location classification using map view (FR-3.2), by date by entering a



start and end date in a calendar view (FR-3.3) and by the creator of the picture (FR-3.4). The system should moreover support custom types of browsing (FR-3.5).

After the repository has been browsed and the user has found a picture of interest, she can invoke certain actions on it (FR-4). This includes displaying all metadata associated with the picture (FR-4.1), replacing the picture by another (FR-4.2), downloading the item to the local disk (FR-4.3) or deleting the item (FR-4.4).

Security considerations have to apply during the whole process (FR-5). The repository should have provide access control – i.e., not every user should be able to browse or down-load from the repository, what may be accomplished by using the roster as a whitelist (FR-5.1). On a picture level, all modifications to the picture, i.e. deletion (FR-4.4) and replacement (FR-4.2) should be possible for the owner only, if not more sophisticated access control mechanisms are introduced (FR-5.2). If possible, the data transfer connection should be encrypted (FR-5.3).

Finally, it should be possible to use existing functionality provided by the Mobilis Platform (FR-6). The JID should be the central entity, which identifies users and services (FR-6.1). Functionality from the previous prototypes MobilisBuddy [HFV<sup>+</sup>] and Mobilis-Guide [Kor08a] should be integrated (FR-6.2) and the status of other work in the Mobilis Project has to be followed (FR-6.3).

|        | Description                                            | Priority |
|--------|--------------------------------------------------------|----------|
| FR-1   | Publishing of content                                  | High     |
| FR-1.1 | Publishing of images taken with the phone camera       | High     |
| FR-1.2 | Publishing of arbitrary files                          | High     |
| FR-1.3 | Publishint to a group of users (client-server)         | High     |
| FR-1.4 | Publishing to a group of users (hybrid)                | Low      |
| FR-1.5 | Publishing to a single user (peer-to-peer)             | Medium   |
| FR-2   | Metadata classifications                               | High     |
| FR-2.1 | Spacial classification                                 | High     |
| FR-2.2 | Temporal classification                                | High     |
| FR-2.3 | Classification concerning ownership                    | High     |
| FR-2.4 | User provided title                                    | Medium   |
| FR-2.5 | Arbitrary classification                               | Medium   |
| FR-3   | Browsing of content                                    | High     |
| FR-3.1 | Specialized views for every type of browsing           | High     |
| FR-3.2 | Browsing based on location by map view                 | High     |
| FR-3.3 | Browsing based on date by calendar view                | High     |
| FR-3.4 | Browsing based on creator                              | High     |
| FR-3.5 | Browsing based on arbitrary criteria                   | Medium   |
| FR-4   | Interacting with content                               | High     |
| FR-4.1 | Listing of the complete metadata set of one item       | High     |
| FR-4.2 | Replacing the item by another                          | High     |
| FR-4.3 | Downloading the item                                   | High     |
| FR-4.4 | Deleting the item                                      | High     |
| FR-5   | Security                                               | Medium   |
| FR-5.1 | Access control on repository level (e.g. using Roster) | Medium   |
| FR-5.2 | Access control to content level (e.g. using ownership) | Medium   |



|        | Description                                           | Priority |
|--------|-------------------------------------------------------|----------|
| FR-5.3 | Privacy considerations (e.g. encryption)              | Low      |
| FR-6   | Support of previous and future work                   | High     |
| FR-6.1 | JID as central identity                               | High     |
| FR-6.2 | Seamless integration of MobilisBuddy and MobilisGuide | Medium   |
| FR-6.3 | Coordination with current Mobilis project             | Medium   |

Table 4.1.: Summary of Functional Requirements

# 4.2. Device Capabilities

To realize the preceedingly explained use cases, the mobile device and the mobile network have to fullfil some necessities concerning capacity, performance and equipment. First of all, collaborative solutions, especially such, which are based on client-server or peerto-peer architecture, require constant connectivity to a wireless networks (DC-1). Given the relatively large size of media files sent media sharing scenarios, even newer wireless technologies with sufficient bandwidth and data rate – so-called 3G networks – should be available and supported by the device (DC-1.1). The device may also connect to pure IP networks like WLAN or be handovered between several networks (DC-1.2). However, generally the user can be assumed to be "always online" (DC-1.3).

To allow spacial classification of shared images (see FR-2.1) the device has to provide sensors to determine its location (DC-2.1). This can be done by GPS triangulation (DC-2.1) or by location determination using the service provided through the mobile network, like Assisted GPS (A-GPS), location determination by the networks CellID or a database containing WLAN-Footprints (DC-2.2). If all automated or assisted location determination functionality fails, the device should offer the possibility to enter the location manually (DC-2.3).

For publishing images taken by the mobile phone camera (see FR-1.1), the mobile phone flash drive can be accessed (DC-3.1). Furthermore, the Camera-API should allow aquiring images directly from the mobile phone camera (DC-3.2). Geotagging of taken images (DC-3.3) and date-tagging (DC-3.4) should be possible for further classification (see FR-2).

Finally the development environment for applications on the mobile device should support common software technology practises (DC-4) to facilitate easy and modular development (see FR-6). The operating system which suits this purpose best is the Android Operating System with the Android Software Development Kit (SDK), currently available in release 1.6, which is used in the Mobilis Project (DC-4.1). Android applications are written in Java (DC-4.2) and are portable between any handset, which runs the Android platform (DC-4.3).

|        | Description                                              | Priority |
|--------|----------------------------------------------------------|----------|
| DC-1   | Connectivity to a wireless network                       | High     |
| DC-1.1 | Wireless network has sufficient bandwidth                | High     |
| DC-1.2 | Occasional availability of higher capacity wireless net- | Medium   |
|        | works like WLAN                                          |          |



|        | Description                                           | Priority |
|--------|-------------------------------------------------------|----------|
| DC-1.3 | "Always-online" assumption                            | High     |
| DC-2   | Location sensitivity (see FR-2.1)                     | Medium   |
| DC-2.1 | Automatic location retrieval using GPS                | High     |
| DC-2.2 | Assisted location retrieval using A-GPS, CellID or    | Medium   |
|        | WLAN-Footprint                                        |          |
| DC-2.3 | Manual setting of location                            | Low      |
| DC-3   | Mobile images accessible                              | High     |
| DC-3.1 | Aquiring media from images stored on the mobile phone | High     |
|        | flash drive                                           |          |
| DC-3.2 | Aquiring media directly from the camera               | Low      |
| DC-3.3 | Geo-tagging of taken pictures                         | High     |
| DC-3.4 | Date-tagging of taken picture                         | High     |
| DC-4   | Developer-friendly Platform (compare to UC-6)         | High     |
| DC-4.1 | Operation system: Android 1.6                         | High     |
| DC-4.2 | Programming language: Java                            | High     |
| DC-4.3 | Portability                                           | Medium   |

Table 4.2.: Summary of Device Capabilities

# 4.3. Non Functional Requirements

In addition to functional requirements to realize and the device capabilities to be assumed, there are a number of non functional requirements concerning design and later implementation of the collaborative media sharing platform. First, the designed architecture should provide a maximum of exchangability, variability and reusability according to best-practices of software technology (NF-1): It should fit into the service oriented architecture of the Mobilis Project defined in [Mac07] (NF-1.1) and thus be a layered framework architecture using design patterns [GHJV95] (NF-1.2). Concerning extensibility, especially support for new media types (other than images) (NF-1.3) and future media sharing technologies (e.g. Jingle) (NF-1.4) should be added.

During development, standardized and elaborated technologies and frameworks should be used, where applicable (NF-2). We use XMPP as collaborative protocol (NF-2.1). If possible, the transfer of binary content should underly a standardized protocol (NF-2.2). The implementation of this protocol should be reusable for future work (NF-2.3).

Finally, the mobile sector requires some special considerations which do not apply to the desktop sector (NF-3). A mobile connection may face sudden loss or handover, to which the application has to adapt (NF-3.1). Also, transmitting data should be considered expensive and thus minimized. (NF-3.2). Firstly, because data fares are still higher than on fixed networks, especially in the tourism case, where roaming rates apply (NF-3.2). Secondly, because sending data over the air is battery consuming (NF-3.3). Thus, file transfers have to be optimized, that is, compressed (NF-3.4). On the other side, a certain trade-off has to be made considering computational expensive operations, which should be delegated from the weak mobile device to the server (NF-3.5). What comes to peerto-peer connections, one should consider, that the opposite party may use an unreliable



|        | Description                                               | Priority |
|--------|-----------------------------------------------------------|----------|
| NF-1   | Exchangability, variability, reusability                  | High     |
| NF-1.1 | Integration into the Mobilis architecture (see UC-6)      | High     |
| NF-1.2 | Layered service architecture, Use of Design Patterns      | High     |
| NF-1.3 | Support for other media types                             | High     |
| NF-1.4 | Support for other media sharing technologies (e.g. Jin-   | Low      |
|        | gle)                                                      |          |
| NF-1.5 | Server support for other clients / client platforms       | High     |
| NF-1.6 | Reusability on client level for other applications        | High     |
| NF-2   | Standardized or elaborated technologies                   | Medium   |
| NF-2.1 | Collaborative protocol: XMPP                              | High     |
| NF-2.2 | Standardized file transfer protocol                       | High     |
| NF-2.3 | Implementation of standardized file transfer reusable for | High     |
|        | other applications                                        |          |
| NF-3   | Considerations concerning the mobile environment          | High     |
| NF-3.1 | Adaptions to the mobile network                           | High     |
| NF-3.2 | Low traffic cost approach (consider roaming!)             | High     |
| NF-3.3 | Energy awareness                                          | High     |
| NF-3.4 | Efficient file transfers, use of compression              | Medium   |
| NF-3.5 | Server-client balance (traffic vs. computation power)     | High     |
| NF-3.6 | Keep in mind peer-to-peer connection problems             | Medium   |

connection, like oneself may do (NF-3.6).

Table 4.3.: Summary of Device Capabilities

#### 4.4. Human Factors

Although the mobile user interface is not the main focus of this work, there are some issues which should be highlighted and cannot be underestimated. Comparing using a mobile phone and using desktop PC, one can recognize, that the mobile phone is used in a context, where the user may not be primilary focused on solving tasks with the mobile phone itself. Especially in the tourism case, the mobile phone is rather an accessoire than a device where oneself puts all ones attention to. Thus, input behaviour differs from working on a PC (HF-1). Operations should be executed with the fewest clicks possible (HF-1.1) and suggestions should be provided upon typing considering small mobile phone keyboards (HF-1.2). UI elements should be arranged in a clear way for the user to find her desired operation immediately (HF-1.3). Multitasking should be provided to execute file transfers in the background, so users can deal with other tasks in the meantime (HF-1.4).

The user interface should be goal-oriented to imitate the users thinking (HF-2). This means, that multiple image collection views have to be shown (see NF-3) to allow the user to solve the task of finding one image without the need to search manually (HF-2.1). The map, however, should be the main artifact (HF-2.2), since location is the most important concept in mobility [Lau]. Finally, it should be possible to interlink between different social objects (HF-2.3), that is, e.g., to contact a user who published a certain picture or



|        | Description                                | Priority |
|--------|--------------------------------------------|----------|
| HF-1   | Mobile phone input considerations          | High     |
| HF-1.1 | Fewest clicks possible                     | High     |
| HF-1.2 | Suggestions upon typing                    | Low      |
| HF-1.3 | Clear arrangement of UI elements           | High     |
| HF-1.4 | Multitasking / background downloads        | High     |
| HF-2   | Goal-oriented user interface               | High     |
| HF-2.1 | Multiple image collection views (see UC-4) | High     |
| HF-2.2 | Map as main artifact (see UC-4.1)          | High     |
| HF-2.3 | Interlink between social objects           | Medium   |

to show all pictures of a certain user.

Table 4.4.: Summary of Human Factors

# 4.5. Conclusion

In the previous sections, functional requirements were elaborated from the introducing user stories and minimum device capabilities to realize those requirements where identified. Besides, non-functional requirements and human factors where gathered. While non functional requirements and device capabilities focus mostly on the collaborative media sharing aspect of our work, non-functional requirements and human factors take the special conditions of a mobile environment into account, stressing both the nature of mobile networks as well as mobility and thus the necessarity for location sensivity. In the following chapter, we will introduce the design of such a media sharing system, which will meet the requirements preceedingly defined.

# 5. Conceptual Design

This chapter introduces an architecture of distributed entities communication via the XMPP protocol to exchange media (or, in more specific, images), store that media in a repository or access it according to the requirements settled in the previous chapter. In the first section (7.1) we will review file transfer technologies from the foundations chapter (2) and decide upon one technology for one-to-one file transfers. We will then work out a repository architecture which fits best our needs for a multimedia repository of our requirements (5.2), continue by discussing methods to break down the repository into several so-called "broker services" and finally choose a decomposition which fits best to the mobilis architecture (5.3). For this decomposition, we will work out the service primitives and how they translate to sequences of XMPP-IQ messages (5.4) issued between the broker services. Section 5.5 concludes this chapter.

### 5.1. Finding an XMPP-based File Transfer Protocol

In chapter 2 we presented four possible file transfer mechanisms: SI File Transfers, Jingle File Transfers, WebDav and APP. We compared these technologies based on different criteria in table 2.1. In this section, we explain our decision for one of them and the resulting protocol architecture.

#### 5.1.1. SI File Transfers

According to our findings, we decided to build a media sharing environment based on SI File Transfers. With that come several advantages: First, the underlaying XMPP protocol stack does not have to be extended by a second protocol stack (SIP, WebDav, APP) possibly resulting in a parallel client-server architecture which has to be maintained asynchroneously. Instead, the Mobilis framework can continue to use XMPP as the only core technology and that way build on a future-proof protocol.

Another argument for SI File Transfers is the available library support. The Mobilis Framework runs on Android devices (DC-4.1), with user applications based on Java (DC-4.2). At Mobilis, we are using the Ignite Realtime Smack library to realize communication via XMPP. Smack also supports stream initiation requests. The library was found to be portable to the Android platform while other java-based file transfer libraries, like Apache Slide (for WebDav) or Rome Propono and Apache Abdera (for APP) might not be so cooperrative.

For Jingle, no suitable library existed, since this technology is a relatively new, but newertheless promising technology. An argument for Jingle is that it is generic and usable in other out-of-band-sessions. However, this protocol fastly becomes heavyweight in that context, especially for mobile devices. Furthermore, a complete implementation of the Jingle-standard is behind the scope of this work.

#### 5.1.2. One-to-one File Transfers

A one-to-one file transfer using stream initiation requests is executed as described in the "Foundations" chapter in section 2.2.1. We take this one-to-one file transfer as the atomar building block to publish a file peer-to-peer to another user (FR-1.5). Later (in subsections 5.4.4 and 5.4.5) we will show, how this atomar file transfer can be used in a custom XMPP extension to store files into a repository (FR-1.3) or to allow a directory-based hybrid technique with pulling the file from the user on-demand (FR-1.4).

#### 5.1.3. One-to-many File Transfers

The XMPP community already developed a mechanism to allow file storage and pulling from a central repository: Published Stream Initiation Requests (XEP-0137 [MM05]). It is based on the idea to hold a pubsub trees containing pubsub items, each one representing one repository item enhanced with metadata. However, plain published stream initiation request does not fit our requirements of in two ways: First, multidimensional metadata (FR-2) cannot be mapped logically onto a pubsub tree. Second, a hybrid solution (FR-1.4) where the actual file content stays on the sender side until it is pulled by a receiver, is hard to realize, since the server cannot store any actual media content but only a reference where it can be found. In the next section, we will introduce a solution to this problem.

# 5.2. The Cube Media Repository

According to our requirements, media content – in our scenario, images – are classified by a range of metadata aspects. For our prototype requirements, we chose location, date and ownership (FR-2.1, FR-2.2, FR-2.3). Since these aspects are independent from each other, they cannot be mapped onto a tree structure without loosing this independence. Instead of a tree structure, which lays the foundation of the pubsub mechanism, a "**cube**" structure is desired. This cube structure is visualized in figure 5.1. The "cube" contains every repository item at a discrete position inside a multidimensional hyperspace spanned by all orthogonal dimensions of metadata classification. We call the position of an item in every dimension a **slice**, so that every item is assigned to a number of slices, one slice for each dimension.

When browsing this repository (FR-3) it should be possible for a requester to filter only repository items located in a well-defined area of the hyperspace. Additionally to slices, a repository item holds a set of rigid properties: alongside with a unique identifier **uid**, the user which has **ownership** of the item (i.e., who uploaded it) is saved. Also, a reference to a **content store** is held.

The content store physically stores the binary content of the repository item along with some information needed for efficiently carrying out SI File Transfers. This is, to large parts, the mime-type and file size of the stored content.





Figure 5.1.: Multidimensional metadata classification system "cube"

# 5.3. Breaking down the Architecture

#### 5.3.1. Decomposition into Entities

The decomposition of the design into two areas of concern – management of a **repository cube** and a **content store** – is an important principle for the future design. It allows load-balancing: while the repository cube is in charge of classifying repository items and browsing the repository in – possibly complex – queries (FR-2.5), the content store only holds the actual content but therefore needs sufficient storage space.

There are various approaches how both repository cube and content store can be incorporated into a mobile networked system. Three general ways are shown in figure 5.2. The most simple realization (**combined scenario**) is done by combining repository cube and content store in one single entity, which is connected to its mobile clients. This approach is easy to implement and has few management overhead but also allows no form of load balancing like described above.

A distributed scenario realizes content store and repository cube in different entities. This allows repository cubes to distribute contents to multiple content stores for loadbalancing. However, it requires the development of a sophisticated algorithm to choose the content store which should be used, if a new repository item should be stored. A content store then could also have multiple repository cubes registered and a mobile client might finally be able to connect to one or more different repository cubes.

The **hybrid scenario** facilitates a peer-to-peer media sharing architecture with central



Figure 5.2.: Decomposition approaches of architecture in repository service and content broker

repository cubes working as directories. However, here, the actual file content stays at the client side, so the client itself plays the role of a content store. This scenario is therefore close to the hybrid scenario introduced in requirement FR-1.4. In this situation no additional server storage is required, but client outage due to disconnections from the network must be carefully considered, in which case contents from the repository might not be available (NF-3.6).

It should be noted, that these three approaches are not discreet options but rather principles, which might be combined. It is indeed possible to develop a heterogenous system, in which some content items are stored on the client devices (hybrid scenario) while other files are stored in a central independent content store. Since an item in a repository cube always points to the correct content store, the content may always be localized by a requester.

#### 5.3.2. Decomposition regarding the Mobilis Architecture

The Mobilis architecture introduces a Mobilis server which offers several services to a client, while a set of services is always encapsulated by one single "broker services" [DS09] [DS09]. To allow communication of a client with its broker service, Mobilis server and client connect to an XMPP server opening a bidirectional XML-stream over TCP. The overall architecture of the Mobilis platform is shown in figure 5.3.

By convention, the XMPP server acts under one XMPP user, e.g., mobilis@xmpp, with each broker service having its own XMPP connection using a seperate XMPP resource, i.e., mobilis@xmpp/Buddy, mobilis@xmpp/Coordinator etc. This convention brings several advantages:

First, an end user, who configures her client, has to know only the Mobilis server XMPP user (mobilis@xmpp) and does not have to take care about all the broker services which





Figure 5.3.: Decomposition with regard to the Mobilis archtiecture

are running on the server. The broker services, that is, the resources of the connected XMPP user (mobilis@xmpp), however, might be easily queried from the XMPP server by sending a Service Discovery message for all items to mobilis@server. The XMPP server will reply to this message with a list of connected resources if both Mobilis server (mobilis@xmpp) and the client XMPP entity have each other at their XMPP roster with a subscription state set to "both" (see [HMESA08]). This mechanism provides also a simple trust mechanism to be negotiated between Mobilis server and client before any communication can occur between both (FR-5.1).

Second, since every broker service has their own XMPP connection, the broker services can be deployed as well on different physical machines as also be realized in one software package only. Having all the same XMPP user (mobilis@xmpp), the only requirement for setting up a new broker service next to existing ones is to know the account data of the server XMPP user (mobilis@xmpp) which is a fair amount of trust that a broker service can work with the other broker services under the name of a combined XMPP server.

For our media repository, we introduce two new broker services: a repository broker (mobilis@xmpp/Repository) and a content broker (mobilis@xmpp/Content). Although they are realized in the same software package (the Mobilis server prototype) they are not connected to each other but communicate with each other via XMPP only. Hence, the realization can be classified as a **distributed scenario** (see subsection 5.3.1) with one repository cube and one content store. However, we will see, that the realization also contains elements of the hybrid scenario, as the Mobilis server can decide to leave the content on the client device without an upload process to the content broker (FR-1.4). In





Figure 5.4.: Service primitives of content service and repository service

this case, the client plays the role of the content broker and can be contacted to deliver its contents right to requesters.

# 5.4. Service Primitives

Figure 5.4 shows the service primitives, that is, the fundamental requests which can be issued by a user to the media repository. The fundamental service primitives are browsing of the repository (FR-3 and FR-4.1) as well as upload (FR-1) / replacing (FR-4.2), download (FR-4.3) and deletion (FR-4.4) of content. Additionally, a service discovery and registration / unregistration mechanism is used to couple the user, repository broker and content broker together.

It should be outlined, that the mobile client issues its requests to the repository service only. However, despite of service discovery, browsing the repository is the only primitive which the repository broker may fulfill on its own. In all other processes (download, upload and deletion), a content broker is involved in handling a request. The repository service will then itself generate a specific request and issue it to the content broker service. This would be, for content deletion, a request to remove the content from the content store. In case of download, this is a request to send the content to the requester. And finally in case of upload – the most complex scenario – the repository broker requests the content broker.

Figure 5.5 shows that each service primitive translates to a set of XMPP IQs issued between the entities. These IQs are either taken from a public XEP or they are custom IQs. Requests are always sent by Set-IQs and Get-IQs, where Set-IQs are ment to change the persistent state of a receiver and Get-IQs are a mean to retrieve information. According





Figure 5.5.: Service primitives of content service and repository service detailed by IQ

to the XMPP specification [SA04b] every Set-IQ and Get-IQ has to be acknowledged by a Result-IQ or Error-IQ, depending on if the request could be fulfilled or not. In our design, the Result-IQ following a Get-IQ will always carry the requested information. A Result-IQ following a Set-IQ may contain nothing or the repeated request payload, parts of it or detailed information about the performed actions.

#### 5.4.1. Custom IQs

The custom IQs used to manage the media repository contain either a child element of the form <repository-.../> or <content-.../>, depending on if they are handled by the repository broker or the content broker. The only exception is the <content-transfer/> IQ, which is sent to the repository broker but will be directly forwarded then to the respective content broker. The child elements <repository-.../> are declared in the namespace http://rn.inf.tu-dresden.de/mobilis#services/RepositoryService and the child elements of the form <content-.../> are declared in .../ContentService.

Every child element contains further child elements as a payload to detail the request or acknowledgement. Figure 5.6 illustrates both namespaces with their containing IQs. Refer to section A.1 of the appendix for a complete XSD schema definition of all custom IQs.

#### The Mobilis Namespace

<condition/> is an XML element to describe arbitrary boolean conditions on a set of key-value pairs. It is used inside of a <repository-query/> tag to browse a





Figure 5.6.: Mobilis Namespaces and their Custom IQs

repository and filter out certain items of it in an arbitrary way (FR-3.4). However, since the backing concept is more widely applicable, it was decided that the element should be included in the core Mobilis namespace. A <condition/> contains an op attribute describing the operator. op may be either one of the comparison operators eq (equal), ne (not equal), gt (greater than), lt (lower then), ge (greater or equal), le (lower or equal) or one of the logical operators and, or or not. In case of a comparison operator, the key and value attribute represent the values to be compared. In case of a logical operator, one or more <condition/> elements may be used as subelements to represent subterms.

#### The RepositoryService Subnamespace

- <repository-query/> is used as an IQ child element in the primitive to browse the repository (FR-3) and to upload/replace items into the repository (FR-1 and FR-4.2). Depending on the actual primitive and whether it is used as a request or as an answer, the payload of the element is either a <condition/> element, that describes which repository items should be queried, or one or more <repository-item/> elements describing the repository elements which are inserted into the repository or read-out while browsing the repository.
- <repository-delete/> is used as an IQ child element in the primitive to delete items
   (FR-4.4) from the repository. The element contains as a payload one or more
   <repository-item/> elements which should be deleted.



<repository-item/> is a child element used in both <repository-delete/> and <repositoryquery/>. It provides information about a item stored in the repository. According to our model specification (see section 5.2) these can be rigid values like a unique identifier (uid attribute), the owner / creator of the repository item (owner attribute) or a reference to the content broker where the item is stored (content attribute). Furthermore, the slices of the repository-item may be listed as a sequence of <slice/> child elements inside of the <repository-item/> element. Every <slice/> element will contain a key and a value attribute to identify the dimension and position of the slice. Not all information about a repository item has to be represented inside of a <repository-item/> element. If it is, we speak of a complete <repository-item/> element. If only <slice/> elements are specified, we call the <repository-item/> element simple, if additionally a uid attribute is present concrete. If only a uid attribute (and optionally a content attribute) is present we speak of a referencing <repository-item/> element.

#### The ContentService Subnamespace

- <content-register/> and <content-unregister/> are used as IQ child elements to register and unregister a repository broker service at a content broker service. Since the intent of the request (repository and content brokers JIDs) can be determined from the sender and receiver of the IQ packets, no payload has to be attached to these elements.
- <content-transfer/> is used as IQ cild element during the download (FR-4.3) and upload (FR-1) / replace (FR-4.2) primitive to request the initiation of a file transfer. It consists of three child elements containing plain text only: <retrieve-from/> being the source where the content item should be retrieved from, <send-to containing the destination of the file transfer and <uid/> to identify, together with the repository from which the <content-transfer/> request was issued the content item itself.
- <content-item/> is used as a child element of the <desc/> subelement inside a Stream Initiation Request based file transfer following on a <content-transfer/> request to assign the SI File Transfer uniquely to a content item.
- <content-delete/> is used as IQ child element in the deletion (FR-4.4) primitive to delete content from a content broker. It as the only child element an <uid/> element to identify the content item to be deleted. Since the <content-delete/> can only be issued from the repository broker, the content item can be uniquely identified that way.

#### 5.4.2. Service Discovery & Register / Unregister Service Pimitive

To start communication of the participating entities, it is first necessary, that the mobile client knows the JID of the repository broker and the repository broker the one of the content broker. Per default, the address of the mobilis server (mobilis@xmpp) is already known to both entities. The challenge is to find out the correct ressource(s) of the repository and content broker(s).



In case of the client discovering the repository broker service, it will first query the connected resources of mobilis@xmpp from the XMPP Server. This is possible using the following XEP-0030 service discovery mechanism [HMESA08]:

```
<iq type='get' id='mobilis_1'
from='client@xmpp/MXA' to='mobilis@xmpp'>
<query xmlns='http://jabber.org/protocol/disco#items' />
</iq>
```

If both Mobilis client and Mobilis server are on each others roster and subscribed to each other, the XMPP server will return the connected resources, in this case equivalent to the list of broker services:

```
<iq type='result' id='mobilis_1'
    from='mobilis@xmpp' to='client@xmpp/MXA'>
    <item jid='mobilis@xmpp/Repository' />
    <item jid='mobilis@xmpp/Content' />
    <item jid='mobilis@xmpp/Coordinator' />
    <item jid='mobilis@xmpp/Buddy' />
<//iq>
```

The mobile client will then discover the supported service namespaces of each broker service by querying the items of the Mobilis service namespace node:

```
<iq type='get' id='mobilis_2'
from='client@xmpp/MXA' to='mobilis@xmpp/Repository'>
<query xmlns='http://jabber.org/protocol/disco#items'
node='http://rn.inf.tu-dresden.de/mobilis#services' />
</iq>
```

The repository broker will answer with a list of items, each item mentioning one service namespace.

```
<iq type='get' id='mobilis_2'
from='mobilis@xmpp/Repository' to='client@xmpp/MXA'>
<query xmlns='http://jabber.org/protocol/disco#items'
node='http://rn.inf.tu-dresden.de/mobilis#services'>
<item node='http://rn.inf.tu-dresden.de/mobilis#services/
RepositoryService'
name='ContentService' />
</query>
</iq>
```

That way, the mobile client will look for a broker service supporting the correct namespace .../RepositoryService. If the discovery process yielded more than one repository broker service, a list will be shown to the end user to choose one repository broker.

The repository broker will discover the content broker in an analogue way (by discovering broker service supporting the .../ContentService namespace). Once it has found a content broker, it will register at the content broker to show the desire to manage contents of the store:

```
<iq type='set' id='mobilis_3'
from='mobilis@xmpp/Repository'
to='mobilis@xmpp/Content'>
<content-register xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
ContentService' />
</iq>
```





Figure 5.7.: Service registration and unregistration service primitive

The content service will confirm the registration with a respective Result-IQ:

```
<iq type='result' id='mobilis_3'
from='mobilis@xmpp/Content'
to='mobilis@xmpp/Repository'>
<content-register xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
ContentService' />
</iq>
```

It may also send an Error-IQ instead, if the repository already was registered or, for whatever reason, it decides that the repository cannot register at the content broker service. Currently, there is no specific security mechanism developed, but future work can include such mechanisms in the registration process.

Before the repository broker service finishes its work, it will unregister from the content service:

```
<iq type='set' id='mobilis_4'
from='mobilis@xmpp/Repository'
to='mobilis@xmpp/Content'>
<content-unregister xmlns='http://rn.inf.tu-dresden.de/mobilis#
services/ContentService' />
</iq>
```

This will be acknowledged by an Result-IQ (or an Error-IQ, if unregistration is not possible, that is, if, e.g., the repository is not registered):

```
<iq type='result' id='mobilis_4'
from='mobilis@xmpp/Repository'
```





Figure 5.8.: Browsing service primitive

```
to='mobilis@xmpp/Content'>
  <content-unregister xmlns='http://rn.inf.tu-dresden.de/mobilis#
    services/ContentService' />
</iq>
```

Figure 5.7 shows the sequence diagram of both registration and unregistration.

#### 5.4.3. Browsing Service Pimitive

Figure 5.8 shows the sequence diagram for the browsing service primitive. Browsing the repository (FR-3) means requesting the metadata of all those repository items which slices match a certain condition (FR-3.4). The mobile client thus issues a **<repository-query/>** Get-IQ with a **<condition/>** element stating the filter conditions:

```
<iq type='get' id='mobilis_5'
from='client@xmpp/MXA'
to='mobilis@xmpp/Repository'>
<repository-query xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
RepositoryService'>
<condition op='and' xmlns='http://rn.inf.tu-dresden.de/mobilis'>
<condition key='taken' op='lt' value='1256468400000' />
<condition key='taken' op='gt' value='1256461200000' />
</condition>
<//repository-query>
<//iq>
```

The <condition/> element of the above example states that the date when the photo was taken (taken) should be before (lt) October 25 2009 12:00 (1256468400000) and (and) after (gt) October 25 2009 10:00 (1256468400000). The value of the date is represented as a unix-timestamp (milliseconds since 1970). While the mobile client is waiting for the result, the repository broker will query the repository cube according to the <condition/> element and finally return a IQ-Result with one <repository-item/> element for every matching item to the mobile client:

```
<iq type='get' id='mobilis_5'
from='client@xmpp/MXA'
to='mobilis@xmpp/Repository'>
```





Figure 5.9.: Download service primitive

The returned <repository-item/> elements are *complete*, that means, they mention all the data which is available about the item in the repository: the uid (uid), a reference to the content broker (content), the owner/creater (owner) as well as a sequence of all <slice/>s the item is assigned to. In our case, these are the dimensions time (taken) (FR-2.2), origin (owner) (FR-2.3), user defined name (title) (FR-2.4) and place (longitude\_e6, latitude\_e6 - longitude and latitude multiplied with 10<sup>6</sup>) (FR-2.1).

#### 5.4.4. Download Service Pimitive

The downlaoad service primitive (illustrated in figure 5.9) aims to retrieve the actual content of a repository item from its content broker service. The mobile client will therefore send a <content-transfer/> Get-IQ to the repository service stating that it wants the content with the specified uid to be transferred from the content broker (retrieve-from) to itself (send-to):

```
<iq type='get' id='mobilis_6'
from='client@xmpp/MXA'
to='mobilis@xmpp/Repository'>
```



```
<content-transfer xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
ContentService'>
<uid>8a808081246fc4e201246fc54f480002</uid>
<retrieve-from>content@xmpp/Content</retrieve-from>
<send-to>client@xmpp/MXA</send-to>
</content-transfer>
</iq>
```

Both <retrieve-from/> and <send-to/> are optional since they can be derived from the IQ sender and the content broker reference of the repository item.

The repository broker will forward this element to the content broker (eventually with additional retrieve-from and <send-to/> elements).

```
<iq type='get' id='mobilis_7'
from='mobilis@xmpp/Repository'
to='mobilis@xmpp/Content'>
<content-transfer xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
ContentService'>
<uid>8a808081246fc4e201246fc54f480002</uid>
<retrieve-from>content@xmpp/Content</retrieve-from>
<send-to>client@xmpp/MXA</send-to>
<//content-transfer>
<//iq>
```

Finally, the content broker will initiate a SI file transfer of the actual content to the requester mentioned by <send-to/>. The file transfer request's <desc/> element will contain an XML coded <content-item/> element referencing repository and uid, so the file transfer can be assigned to the correct request on client side.

```
<iq type='set' id='mobilis_8'
    from='client@xmpp/Repository'
   to='mobilis@xmpp/Content'>
  <si xmlns='http://jabber.org/protocol/si'
      id='68081925' mime-type='binary/octet-stream'
      profile='http://jabber.org/protocol/si/profile/file-transfer'>
    <file xmlns='http://jabber.org/protocol/si/profile/file-transfer'
       name='Image.jpg' size='9170'>
      <desc>
<content-item xmlns='http://rn.inf.tu-dresden.de/mobilis#Services/
   ContentService'>
<repository&gt;mobilis@content/Repository&lt;/repository&gt;
<uid&gt;8a808081246fc4e201246fc54f480002&lt;/uid&gt;
<description&gt;the actual description&lt;/description&gt;
</content-item&gt;
      </desc>
    </file>
    <feature xmlns='http://jabber.org/protocol/feature-neg'>
      <x xmlns='jabber:x:data' type='form'>
        <field var='stream-method' type='list-single'>
          <option><value>
            http://jabber.org/protocol/bytestreams
          </value></option>
          <option><value>
            http://jabber.org/protocol/ibb
          </value></option>
        </field>
```



```
</x>
    </feature>
  </si>
</iq>
```

In parallel to the initiation of the file transfer, a Result-IQ is sent back to the repository broker:

```
<iq type='result' id='mobilis_7'
    to='mobilis@xmpp/Content'
    from='mobilis@xmpp/Repository'>
  <content-transfer xmlns='http://rn.inf.tu-dresden.de/mobilis#services/</pre>
     ContentService' />
</iq>
 ... and from there to the mobile client:
<iq type='result' id='mobilis_6'
    to='mobilis@xmpp/Repository'
    from='client@xmpp/MXA'>
  <content-transfer xmlns='http://rn.inf.tu-dresden.de/mobilis#services/</pre>
     ContentService' />
```

</iq>

If an error occured, Error-IQs are used instead of Result-IQs. An error occurs, if the content item cannot be found on the content server, if a file transfer cannot be established or if the request reaching the content broker was not sent by a registered repository broker. For future implementation, also more enhanced security mechanisms (on the side of the repository broker) concerning the request of content items are possible (FR-5.2).

#### 5.4.5. Upload/Replacing Service Primitive

Uploading new items into the repository or replacing existing items in the repository are the most complex service primitives. Uploading/Replacing happens in two stages. First, the item is created at the repository broker but the actual content stays on the mobile client. In the second stage, the repository broker may require an assigned content broker to request handover of the content from the mobile client to the content broker. The content will finally be transferred by an SI file transfer from the mobile client to the content broker after which the content broker informs the repository broker, that the content now is stored at another location. The repository broker will thus update its repository cube to hold the new reference to the content broker. The whole process is illustrated in the sequence diagram of figure 5.10.

When uploading an item, the mobile client will first send a <repository-query/> Set-IQ to the repository broker.

```
<iq type='set' id='mobilis_9'
    from='client@xmpp/MXA'
   to='mobilis@xmpp/Repository'>
 <repository-query xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
     RepositoryService'>
    <repository-item>
      <slice key='taken' value='1256464800000' />
      <slice key='longitude_e6' value='12105000' />
      <slice key='latitude_e6' value='47080000' />
```





Figure 5.10.: Upload / Replacing service primitive

It contains one or more *simple* or *concrete* <repository-item/> elements representing the items which should be added to or replaced in the repository. A *simple* item, as shown in the above example, contains <slice/> elements only and creates a new repository-item inside the repository. A *concrete* item has an additional uid attribute which references an already existing item, which should be replaced.

The repository broker will insert the item with its slices into the repository cube or update the existing items depending on the request. It will then send back a Result-IQ to confirm the operation:

```
<iq type='set' id='mobilis_9'
from='mobilis@xmpp/Repository'
to='client@xmpp/MXA'>
<repository-query xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
RepositoryService'>
<repositoryService'>
<repository-item uid='8a808081246fc4e201246fc54e480205'
content='mobilis@xmpp/Content' />
</repository-query>
</iq>
```

The Result-IQ will contain a *referencing* repository-item for every inserted or updated repository item. The referencing repository-item mentions only the **uid** of the item and which **content** broker may be expected to ask for handover of the content. Instead of a



Result-IQ, an Error-IQ may be sent, if any error occurs while storing the repository item into the repository cube. This is the case when an item, which should be replaced, cannot be found, is not owned by the requester or if a database error occurs.

Note, that the actual content item is still at the mobile client side. That means, that any other mobile client, that requests the content file, will contact the client (FR-1.4). That means, the client should implement all capabilities of a content broker. After publishing an item to the repository broker, the client should be ready to transfer the content to any third party, which requests it, until the content is finally handed over to a content broker at some point in the future. The content broker, which will request this handover is mentioned in the content attribute.

To initiate the handover, the repository broker will at some point in the future notify a content broker to ask the mobile client to handover the content file. Therefore, a <content-transfer/> Set-IQ is sent from the repository broker to the content broker:

```
<iq type='set' id='mobilis_10'
from='mobilis@xmpp/Repository'
to='content@xmpp/Repository'>
<content-transfer xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
ContentTransfer'>
<uud>8a808081246fc4e201246fc54e480205</uud>
<retrieve-from>client@xmpp/MXA</retrieve-from>
<send-to>mobilis@xmpp/Repository</send-to>
<//content-transfer>
<//uiq>
```

The content broker then sends a <content-transfer/> Get-IQ to the mobile client to request handover of the content item:

```
<iq type='get' id='mobilis_11'
from='content@xmpp/Repository'
to='client@xmpp/MXA'>
<content-transfer xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
ContentTransfer'>
<uid>8a808081246fc4e201246fc54e480205</uid>
<retrieve-from>client@xmpp/MXA</retrieve-from>
<send-to>mobilis@xmpp/Repository</send-to>
</content-transfer>
<//iq>
```

The actual handover is then carried out by a SI file transfer similar to that of the download service primitive (see 5.4.4). Afterwards, the client confirms the request by an Result-IQ to the content broker:

```
<iq type='result' id='mobilis_11'
from='client@xmpp/MXA'
to='mobilis@xmpp/Content'>
<content-transfer xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
ContentTransfer' />
</iq>
```

This will trigger another Result-IQ sent back from the content broker to the repository broker who will upon reception of this IQ know, that the location where the content has been stored has changed. It will therefore update the repository cube to hold the new content broker reference.





Figure 5.11.: Deletion service primitive

```
<iq type='result' id='mobilis_11'
    from='mobilis@xmpp/Content'
    to='mobilis@xmpp/Repository'>
    <content-transfer xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
        ContentTransfer' />
</iq>
```

#### 5.4.6. Deletion Service Primitive

Deleting an item from the repository is depicted in figure 5.11. The mobile requests deletion using a <repository-delete/> Set-IQ referencing all the items it wants to delete in <repository-item/> elements:

```
<iq type='set' id='mobilis_12'
from='client@xmpp/MXA'
to='mobilis@xmpp/Repository'>
<repository-delete xmlns='http://rn.inf.tu-dresden.de/mobilis#services
    /RepositoryService'>
    <repository-item uid='8a808081246fc4e201246fc54e480205' />
</repository-delete>
<//iq>
```

If the item exists and if the mobile client owns the item (FR-5.2), the repository broker will remove the repository item from the repository cube and send a <content-delete/>Set-IQ to the associated content broker:

```
<iq type='set' id='mobilis_13'
from='mobilis@xmpp/Repository'
to='mobilis@xmpp/Content'>
<content-delete xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
ContentService'>
<uid>8a808081246fc4e201246fc54e480205</uid>
</repository-delete>
</iq>
```

The content broker will remove the content from its content store and send back <content-delete/> a Result-IQ to the repository broker:



```
<iq type='set' id='mobilis_13'
from='mobilis@xmpp/Content'
to='mobilis@xmpp/Repository'>
<content-delete xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
ContentService' />
</ig>
```

... which will confirm the deletion by sending back a <repository-delete/> Result-IQ to the mobile client:

```
<iq type='result' id='mobilis_12'
    to='client@xmpp/MXA'
    from='mobilis@xmpp/Repository'>
    <repository-delete xmlns='http://rn.inf.tu-dresden.de/mobilis#services
        /RepositoryTransfer' />
</iq>
```

# 5.5. Conclusion

This chapter introduced an architecture for a XMPP-based metadata-structured repository. The designed repository is general enough to manage all kinds of media (FR-1.2) which includes image files (FR-1.1) with arbitrary metadata classification (FR-2.5), which includes the classification location, time, ownership and title (FR-2.1 through FR-2.5). Using the elaborated architecture, both centralized server scenarios (FR-1.3) as well as hybrid scenarios (FR-1.4) are possible. Also user-to-user sharing is possible using the building block of SI File Transfers (FR-1.5).

Service primitives have been introduced to allow interaction with the repository items (FR-4) and security mechanisms have been considered where applicable (FR-5.1 and FR-5.2). Encryption (FR-5.3) has not been covered but can be achieved by higher layer protocols. The architecture has been described to fit into the mobilis platform (FR-6.2).

Hence, most functional requirements can be covered by the current architecture. What is left is the implementation of a prototype which actually uses the described architecture and XMPP extension for the presented picture sharing scenario. Also, non-functional requirements have to be considered during implementation. The next chapter will concentrate on this topic.

# 6. Implementation Considerations

Having defined the architecture of a general repository system in the previous, this chapter concentrates on the implementation of a prototype to proof the concept of the architecture as well as realize the picture sharing usage scenario introduced in the beginning. First, we introduce the layered implementation of both Mobilis client and server (6.1) and then point out, how the same code can be reused on both client and server side (6.2). We proceed by explaining how the Mobilis Media prototype fills extension points of client and server (6.3) and finally highlight both system boundaries and internal structure of the server (6.4) and the client (6.5) prototype. Section 6.6 concludes this chapter.

#### 6.1. The Mobilis Architecture

The general architecture of the Mobilis platform is shown in 6.1. Mobilis media, the mobilis media sharing repository platform, has to be included into this architecture (FR-6.2 and FR-6.3). In the Mobilis environment, multiple (mobile) Mobilis clients communicate with a Mobilis server using an XMPP server as communication relay. The Mobilis client and server applications are realized in Java (DC-4.2). The server application runs on a JDK 1.6.0\_10 runtime environment.

On client side, multiple Mobilis **applications** may be installed independently, each one using another set of broker services of the Mobilis Server application. Such a set of broker services used by one client application is referred to as a **package**. The package on the server side and the application on the client side together make up a **project**.

All client applications run on the Android SDK 1.6, that is, as Java applications on the Android operating system inside a special Dalvik virtual machine optimized for mobile environments. Client applications make also heavily use of Android SDK framework classes for the purpose of retrieving content or contextual information or for displaying a GUI to the user.

Both client and server use the **Smack 1.3** library to communicate via XMPP. To avoid deployment of the (quite heavyweight) Smack library in every client application, the Smack library is encapsulated into one central application: the **MXA application** developed in parallel by István Koren, also a member of the Mobilis team. Overlaying applications can bind by means of interprocess communication to the MXA and use services of the MXA to send and receive packets over XMPP using Smack. The MXA consists of one central **XMPPService**, used to exchange core XMPP packets, like IQs and messages, and, on top of that, several **extension services**, which realize XMPP Extensions like file transfer, service discovery etc.

The logic representation of the messages exchanged between client and server – the custom IQs – are incorporated into a lightweight **XMPPBean** layer which can be used both on Mobilis server and on Mobilis client side. There is one set of XMPPBeans for every Mobilis project. Since the interface to the MXA on the server side is different from



Figure 6.1.: The inner architecture of the Mobilis platform

the interface to Smack on the client side, two glue layers are required (**Bean MXA glue** and **Bean Smack glue**) to serialize and deserialize XMPPBeans to match the MXA or Smack interface respectively.

On the server side, on top of the XMPPBean layer, **broker services** reside. A Broker Service is an entity which manages a single XMPP connection of the Mobilis Server and has a set of **Mobilis services** assigned to it. It can receive a set of IQs and knows to which Mobilis service these IQs should be forwarded to. These overlying Mobilis Services finally interpret those IQs, test requests on validity and execute respective actions in the Server's **app logic**. The Mobilis Services will also decide upon the requests answer sent over the broker service back to the requester.

On the client side, on top of the XMPPBean layer, so called **external services** are running. External services are services which make use of MXA functionality but realize high-level non-standard XMPP protocols. They are implemented as Android Service classes, that means, they run in the background of the Android operating system and other processes can connect to them by means of interprocess communication to request certain actions. External services do not have a GUI – this final layer is provided by **activity** layer. Activities in sense of Android are a screen where a user tries to accomplish a certain task. Each activity binds to one or more external services and executes certain commands of these services upon request by the user.





Figure 6.2.: XMPP Beans as a representation for IQ packets and XML snippets

# 6.2. Reuse of the XMPP layer using XMPPBeans

A special role in the Mobilis architecture is given to the the layer of the so-called XMPP-Beans, which represent XMPP IQs on class level. This layer is the only one which is re-used in client and server, which provides both easy maintainability and on the other hand assures constraints concerning the syntax of exchanged IQs on both client and and server. The XMPPBean layer of the Mobilis Media project is shown in figure 6.2.

The XMPPBean layer provides some basic classes, which are used in every Mobilis project, like the class XMPPBean representing an XMPP IQ or the more general interface XMPPInfo representing a snippet of XML. XMPPInfo provides methods for unserializing (fromXml(...)) and serializing (toXml()). It also provides methods to get the root element of the carried XML (getChildElement()) and the corresponding namespace (getNamespace()). An XMPPBean object supports additionally information carried by an XMPP IQ like from, to, id etc.

For every custom IQ, there will be one subclass of XMPPBean. Hence, every Mobilis project has its own concrete XMPP Bean subclasses and this set of subclasses is linked into the Android application and into the Server package. In the example of Mobilis Media, the <content-.../> and <repository-.../> IQs are represented by respective Content...Bean and Repository...Bean classes. All those classes implement methods for serialization and deserialization as well as the methods to retrieve the class-specific namespace and child element. Sub elements may be included into the bean by aggregating other concrete XMPPInfo classes.

An XMPPBean object can neither be understood by Smack nor by MXA. Therefore, it has to be converted to the representation used on the respective system. This is done by a bean glue layers. The pattern of this process is shown in figure 6.3.





Figure 6.3.: Translation of XMPP Beans to the Smack or MXA layer

In case of MXA, the concrete XMPPBean must be converted to a XMPPIQ class, which holds the XML payload of the bean as plaintext. Converting XMPPIQ classes to XMPPBeans and vice versa is done by an entity called the Parceller. Converting to XMPPIQ is done straightforward by deserializing the bean. However, converting an incoming XMPPIQ to a bean is more difficult: the namespace and element pair has to be resolved to a concrete XMPPBean implementation first. To achieve this, the Parceller holds a list of prototypes, which it may scan for the correct subclass, then invoke the clone() method upon this prototype and perform unserialization upon this copy.

On the server side the responsibility is spread to three classes: Since Smack represents IQs as subclasses of IQ, a BeanIQAdapter simply wraps an XMPPBean and adapts the IQ interface to the XMPPBean interface. Deserialization in Smack is done by implementations of the IQProvider interface. Here, a prototype pattern is used again to create a respective BeanIQAdapter for a XMPPBean with characteristic namespace and child element. The third class, the BeanFilterAdapter, is an implementation of the Smack interface PacketFilter which may be used to filter incoming packets to match the namespace / child element combination of a specific XMPPBean.

# 6.3. Mobilis Media as a Mobilis Project

The Mobilis Media project prototype is included into the Mobilis platform as one package on server side and one sample Android application on client side. Figure 6.4 shows how the project fits into the architecture. The server package implements all the functionality introduced for the repository architecture in chapter "Conceptual Design" (5). The sample




Figure 6.4.: The inner architecture of Mobilis Media as a Mobilis project

Android application provides functionality to browse an image repository using a map (FR-3.1) and a filtered list (FR-3.2) as well as an user interface to upload new items to the repository. As a side-effect, this user interface also allows one-to-one file transfer based on the XMPP extension for SI File Transfer (FR-1.5).

## 6.3.1. Server Prototype

The server prototype includes a **repository broker** and a **content broker**, as introduced in chapter 5. Connected to those broker services are respective Mobilis services, which interprete incoming **<repository-.../>** and **<content-.../>** IQs, perform security and other checks and finally manipulate the overlying **application logic** according to the requests.

The application logic is more precisely a **Repository Cube** and a **Content Store** respectively. Both entities make use of a database to persist the modeled data. For this purpose, the **Hibernate framework**<sup>1</sup> is used. The file contents, however, are stored by the content store to the file system using JDK core functionality.

#### 6.3.2. Client Prototype

The client prototype introduces two new external services: The **transfer service** allows one-to-one file transfers and transfers to a cube repository (upload service primitive, see

<sup>&</sup>lt;sup>1</sup>https://www.hibernate.org/



subsection 5.4.5). To accomplish the first, it makes use of the file transfer service and the XMPPService, both offered by the MXA. It also adds another layer around the MXA File Transfer Service by displaying notifications about ongoing transfers in the Android notification manager. The transfer service will be more detailed in subsection 6.5.2.

The second service, called **repository service**, provides an interface to communicate with the repository broker through all other service primitives despite of upload, that is, repository service discovery, browsing of the repository, download and deletion of repository items. The repository service uses the service discovery service and the XMPPService of the MXA and will be detailed in subsection 6.5.3.

Both services are used by overlying activities, which form the GUI layer. However, it should be noted that any other Android application may register to the services and use their interface by means of interprocess communication.

The activities which form the user interface are shown in figure 6.5. The **send activ**ity is used if the user chooses to send a single image either to another XMPP user or to a repository. In this activity, the user may choose the destination and enter a description for the transfer. The **transfer activity** shows all ongoing transfers, their origin or destination, the file and the progress of the transfer. Furthermore, a user can accept or deny incoming transfers by interacting with this window. Both send activity and transfer activity make use of the transfer service.

The **repository activity** shows the contents of a repository selected by the user. Therefore, it embeds either a **repository list activity** or a **repository map activity**. In those activities, the user may select a repository item, what would invoke the **Repository Item Activity**. That activity shows information about the repository item and commands which may be invoked upon them, like replacing, downloading and deletion. All repository activities make use of the repository service.

## 6.4. The Mobilis Media Server Prototype

The Mobilis server prototype has already undergone vast development in previous Mobilis projects and therefore has reached a high software majurity concerning the integration of new brokers and services. Currently, it includes broker service for a mobile tourist guide [Kor08a], a buddy finder [HFV<sup>+</sup>] and collaborative editing [Her09]. This section describes, how broker services and mobilis service can be integrated on class level (6.4.1) and how this is done at Mobilis Media in particular (6.4.2). Finally the realization of the repository cube data model on database level is introduced (6.4.3).

#### 6.4.1. General Mobilis Server Class Model

Figure 6.6 shows the core classes to implement service brokers (MobilisBroker class) and Mobilis services (MobilisService class). Instances of both classes are configured dynamically via a configuration file (MobilisSettings.xml) and managed by the MobilisManager singleton. The basic task of every MobilisBroker object is to maintain a XMPP connection class) and hold references to concrete MobilisService objects.

The MobilisService class is abstract and will be subclassed by every concrete Mobilis service. In the abstract method registerPacketListener(), every concrete service





Figure 6.5.: Activities forming the User Interface of the Mobilis Media Android Application



Figure 6.6.: Mobilis Server Classes for Service Brokers and Mobilis Services

registers its PacketListener interface to receive a certain set of IQ messages arriving at the XMPP connection held by the assigned MobilisBroker. Both MobilisServices and MobilisBrokers implement the interface NodeInformationProvider to allow the client to query the service broker for connected Mobilis services via XMPP Service Discovery [HMESA08].

#### 6.4.2. Mobilis Media Server Class Model

Figure 6.7 shows how Mobilis Media is integrated into the Mobilis Server on class level. The content broker and the repository broker are represented as instances of the MobilisBroker class. They hold a reference to an instance of the concrete MobilisService classes ContentService and MobilisService respectively. These classes define various method which are called upon reception of related IQs (in...(bean)) or if IQs should be sent out from the service to another XMPP entity (out...()).

The backing application logic consists of the two classes ContentStore and RepositoryCube which provide an interface to arbitrarily manipulate the data structures laying behind both entities. The backing data model is stored both on the file system (in a folder store/ContentService) and in a database, managed by the Hibernate framework <sup>2</sup>, in detail, a org::hibernate::Session instance.





Figure 6.7.: Mobilis Media Server Core Classes



Figure 6.8.: Mobilis Media Server Database Model for the Repository Cube Data Model

## 6.4.3. Mobilis Media Database Model

The data model described in chapter "Conceptual Design" (section 5.2) is realized using a relational database. Using the Hibernate framework the relational records are mapped to instances of classes of the server prototype. Figure 6.8 shows both the relational model as well as its mapping to the class model using Hibernate. The object-relational mapping is declared on Java sourcecode level by Java annotations assigned to the respective Java types and their members. Those annotations specify the related relational entity, that is, which elements are tables, primary keys etc.

Once an object of such an annotated type is handed over to a the Hibernate session by calling session.save(object), the object becomes managed by Hibernate – any change to the object is henceforth written to the database (possibly with a certain buffered delay). In similar ways, objects may be read out from the database using the session. Hibernate uses the JDBC (Java Database Connectivity) interface which can connect to a large amount of different database systems. In our prototype implementation, we connect to a MySQL 5.1 database <sup>3</sup> using the Java MySQL Connector 5.1.10 <sup>4</sup>.

In Mobilis Media, there are three tables stored in the database: contentitem which represents instances of the ContentItem class. Those records/objects represent items in the ContentStore, which is managable by the ContentService. The other two tables repositoryitem and repositoryitem\_slice represent instances of the RepositoryItem class and it's slice assignment. RepositoryItem objects are stored in the RepositoryCube which can be managed by the RepositoryService. The slice assignment of repository items is represented as a simple String-to-String-Map on class level. Both repositoryitem and contentitem are completely independend from each other on database and on class level. The link between both items is built on semantics of the more abstract service broker layer.

## 6.5. The Mobilis Media Client Prototype

This section describes some system boundaries and internal structures of the client prototype. We start by introducing some fundamentals of interprocess communication on Android in subsection 6.5.1 since interprocess communication was extensively used in the prototype to allow reusability of the prototype (NF-1.6). One manner of interprocess communication is the use of Android services, or, in terms of the Mobilis platform, external services. The two Mobilis Media external services – TransferService and Repository-Service – are introduced in subsections 6.5.2 and 6.5.3. Subsection 6.5.4 gives a brief overview of overlying GUI layer.

## 6.5.1. Interprocess Communication on Android

A process of the Android framework is always running inside a Context. This context can be either an Activity or a Service. An activity is a piece of GUI where the user accomplishes a certain task. An (Android) service may be started independently and

<sup>&</sup>lt;sup>2</sup>https://www.hibernate.org/

<sup>&</sup>lt;sup>3</sup>http://dev.mysql.com/downloads/mysql/5.1.html

<sup>&</sup>lt;sup>4</sup>http://www.mysql.com/products/connector/



perform background tasks. It is also possible for a service to offer an interface where another context can connect to. Services and activities have a lifecycle managed by the android system, i.e. a service runs until a task is complete and it stops itself or until a consumer unbinds from its interface. An activity normally runs until it is hidden by the user. This lifecycle mechanism allows the Android operating system to manage memory efficiently, that is, to kill processes automatically, where the lifecycle of services and activities has ended. More information about process management on android can be found in [weba].

An easy mean of interprocess communication are Intents. An intent is an request to the system to execute a specific action and it may either start another activity, start a service or bind to a service interface. An Intent object may be sent from any context object to the system by calling context.startActivity(intent), context.startService(intent) or context.bindToService(intent). The system will then find the activity or service which is responsible for handling that intent, start it and send the intent to the respective context. This is possible because all Android applications declare in their manifest which intents they can handle. (There are also more ways to handle intents, for more information, see [webd]). If more than one applications is found capable, the user is requested to choose one application.

When a context binds to a service's interface, it will receive an **IBinder** object which represents a remote interface, in this case, the remote interface of the service thread. Using an Android own interface description language named AIDL (Android Interface Description Language) this **IBinder** may be typecasted to the concrete remote interface and thereafter be be used to issue remote calls to the service. More information about AIDL can be found at [webc].

AIDL generated interfaces only accept parameters and return types which implement the Parcelable interface. Framework classes which are "parcelable" are for example Intent, IBinder, Message (a class containing fields like what, when and a hash map of arbitrary other Parcelables) or Messanger but the programmer is free to make any class parcelable that she wishs to.

A Messenger is a target for Messages. In the owning thread, it is coupled to a Handler. Once sent to another process, this process can invoke messenger.sendMessage(Message) what will enqueue the message in a message queue at the destination thread and call handler.handleMessage(Message) when the thread is ready. Such a message queue, however, must be tied to a Looper. This means, a thread using a Handler must run in an infinite loop to check for new messages. This loop can be entered by calling Looper.prepare() before creating the Handler object and finally calling Looper.loop() to start enter the infinite message loop.

#### 6.5.2. External Service: TransferService

#### Service Boundaries

There are two ways to interact with the TransferService: The first is by starting it to execute a file transfer – either to another XMPP entity or to a repository. This is done by sending an Intent with the action de.tudresden.inf.rn.mobilis.media.intent.SEND\_TO\_JID or ....SEND\_TO\_REP in the following way:



```
Intent i = new Intent("de.tudresden.inf.rn.mobilis.media.intent.
   SEND_TO_REP");
// has to be provided always - also if SEND_TO_JID is used.
i.putExtra("STR_TO", "mobilis@xmpp/Repository");
i.putExtra("STR_DESCRIPTION", "Any_description");
i.putExtra("STRA_PATHS", new String[] { "path/to/file/1", "path/to/file
   /2" });
// the following lines only if the file is send to a Repository
Bundle b = new Bundle[2];
b[0] = new Bundle();
b[0].putString("file1_slice1", "value_for_file1_slice1");
b[0].putString("file1_slice2", "value_for_file1_slice2");
b[1] = new Bundle();
b[1].putString("file2_slice1", "value_for_file2_slice1");
b[1].putString("file2_slice2", "value_for_file2_slice2");
i.putExtra("BDLA_SLICES", b);
// this line only if other items in the repository should be replaced.
i.putExtra("STRA_REPOSITORYITEMS_UIDS", new String[] { "uidforfile1", "
   uidforfile2" });
// send the intent
context.startService(i);
```

The string extras STR\_TO and STR\_DESCRIPTION name the recieptient and the description used during file transfer. STRA\_PATHS is an array of paths where the files can be found on the mobile device's file system. BDLA\_SLICES contains the desired slice assignment for every file and STRA\_REPOSITORYITEMS\_UID the UIDs of the repository items which should be replaced. If the last extra is not present or any of the string array contents is set to null, the repository item will be newly created and not replace another.

The second way to interact with the TransferService is to bind to its AIDL interface. Therefore a de.tudresden.inf.rn.mobilis.media.services.ITransferService intent has to be sent:

```
Intent i = new Intent("de.tudresden.inf.rn.mobilis.media.services.
ITransferService");
context.bindService(i);
```

The IBinder which is sent back to the context's onBind(...) method once the service is bound provides the following remote interface:

- int startTransferToJid(FileTransfer) initiates a file transfer to another XMPP entity. The properties of the file transfer are described in the given FileTransfer object. The service will return an unique ID of the transfer.
- int startTransferToRep(String, RepositoryItemParcel, FileTransfer) initiates a file transfer to a Cube Repository. The arguments name the repository, the desired properties of the repository item and the desired properties of the file transfer. An unique ID for this file transfer will be returned.
- void registerMediaTransferMessenger(Messenger, int) registers a Messenger to be informed when the state of file transfers change or a new file transfer arrives. The second argument indicates the direction about which the Messenger should be informed (incoming / outgoing file transfers).



- void unregisterMediaTransferMessenger(Messenger, int) unregisters a Messenger registered using registerMediaTransferMessenger.
- **boolean acceptTransferFromJid(String, int)** accepts an incoming transfer with a given id and and stores it to a given file. Returns, wheter the transfer has been accepted successfully.
- **boolean denyTransferFromJid(int)** denies an incoming file transfer with a given id. Returns, if this action has been executed successfully.
- **intgetIds(int)** gets the ids of all file transfers. The parameter indicates if ids from incoming or outgoing transfers should be returned.
- **TransferParcel getTransferParcel(int)** returns information about the state of a specific file transfer (with its id given as argument) represented in a **TransferParcel** object.

#### Internal Structure

The internal structure of the TransferService is shown in figure 6.9. The class TransferService itself manages the lifecycle of the service. It inherits from XMPPConsumerService, a base class which is responsible for binding to the underlying IXMPPService provided by the MXA. It also initiates the XMPP connection procedure if the MXA didn't connect to the XMPP server yet. The TransferService class defines an inner class called ServiceBinder which inherits from ITransferService::Stub, a stub class automatically code-generated by AIDL implementing the ITransferService interface and enriched by code allowing interprocess communication.

The ServiceBinder class aggregates a TransferManager which is responsible of managing all Transfer objects, each one representing one file transfer and having its own lifecycle. An object can register as TransferObserver at a Transfer object to be informed when the state of the file transfer changes. A class may also register as Transfer-RequestObserver at the TransferManager to be informed about incoming file transfers. Per default, the ServiceBinder implements and registers with both interfaces to be informed about every change of state and about every new incoming transfer. It then notifies all Messengers which have been registered using the registerMediaTransfer-Messenger(...) method of the remote interface.

A Transfer knows that its state has changed by a call sent to the ServiceHandler. The ServiceHandler is an inner class of TransferService which is wrapped into a Messenger and send to the IFileTransferService to be informed about transfer state updates, i.e. completion of negotiation processes, transfer of a single file block etc. The XMPPConsumerService provides the base implementation of ServiceHandler from which the ServiceHandler in TransferService inherits. The base implementation catches messages concerning XMPP connection and reacts to them.

Another internal class of TransferService is ServiceNotifier. It is responsible for updating the notification window during a file transfer or in case a new file arrives.





Figure 6.9.: Internal Structure of the Transfer Service

## 6.5.3. External Service: RepositoryService

#### Service Boundaries

The RepositoryService can be used by connecting to its AIDL interface sending an Intert with the action de.tudresden.inf.rn.mobilis.media.services.IRepositoryService:

```
Intent i = new Intent("de.tudresden.inf.rn.mobilis.media.services.
IRepositoryService");
context.bindService(i);
```



The IBinder which is sent back to the context's onBind(...) method once the service is bound provides the following remote interface. Every method is used for one service primitive, as it was introduced in the chapter "Conceptual Design" in section 5.4.

- void discover(String, Messenger, int) Discovery Service Primitive: Discovers all repository brokers from a mobilis server with the given bare JID (first parameter). The result will be sent to a Messenger.
- void query(String, ConditionParcel, Messenger, int) Browsing Service Primitive (FR-3): Queries a repository broker with a given JID (first argument) for repository items. The filtering condition is given by a ConditionParcel object.
- **void delete(String, String[**, Messenger, int)] **Deletion Service Primitive** (FR-4.4): Deletes a list of uids (second parameter) from a repository broker with a given JID (first parameter).
- void transfer[String, String, String, Messenger, int) Download Service Primitive (FR-4.3): Requests the initiation of a content transfer from a given repository broker (first parameter) and given content broker (second parameter) given the item's uid (third parameter).

The last two parameters always specify the Messenger where the result has to be sent to and a result code, which is used to identify the result with the request.

#### **Internal Structure**

Like the TransferService, the RepositoryService is responsible for for managing its own lifecycle and inherits from XMPPConsumerService which maintains the connection to the IXMPPService offered by the MXA. The RepositoryService also contains a ServiceHandler, an inner class inheriting from Handler. This class is wrapped into a Messenger and sent to the IXMPPService to notify it about the progress of every tasks carried out in the name of the RepositoryService. Messages issued to the ServiceHandler are forwarded to the respective Task objects.

The ServiceBinder is another internal class of the RepositoryService which implements IRepositoryService via the abstract AIDL-generated class IRepositoryService::Stub. An instance of ServiceBinder is returned as an IBinder to any context which binds to the service. For every call to the interface, a new Task is created – there is a concrete implementation of the abstract Task class for every of the four methods of the IRepositoryService interface.

#### 6.5.4. User Interface

#### **System Boundaries**

The User Interface of the client prototype is represented by a set of Activity classes. The following Intent actions can be used to start an activity of the Mobilis Media application from any other Android application:





Figure 6.10.: Internal Structure of the Repository Service

- de.tudresden.inf.rn.mobilis.media.intent.SEND Opens the SendActivity which will first let the user choose an image from a picture chooser.
- android.intent.action.SEND Has the same effect despite of the fact that the image is determined by image.getData(). This intent is called by the system image gallery application which is pre-installed on Android OS when a user selects an image and clicks the "Share" button.
- de.tudresden.inf.rn.mobilis.media.intent.CHECK\_TRANSFER Opens the Transfer-Activity with the list of ongoing incoming and outgoing transfers.
- de.tudresden.inf.rn.mobilis.media.intent.DISPLAY\_REPOSITORYITEM Opens the RepositoryItemActivity to show metadata and commands of a single repository item. The intent has to have two extras: STR\_REPOSITORY, a String holding the repository JID and PAR\_REPOSITORYITEM, an instance of the parcelable RepositoryItemParcel which holds the contents of the repository item.

#### **Internal Structure**

Given the use of the underlying services, despite of some subtleties handling with framework UI classes, the implementation of the GUI layer is straightforward. An interesting



Figure 6.11.: Architecture for exchanging messages between a RepositoryActivity and its subactivities

issue is the implementation of the **RepositoryActivity** since it calls and communicates with multiple subactivities. The corresponding class structure is shown in figure 6.11.

RepositoryActivity is a subclass of TabActivity and therefore able to host a set of tabs, each one displaying another Activity. While the RepositoryActivity is responsible for querying the repository items using the RepositoryService, the sole task of the Activity classes hosted inside the RepositoryService is to let the user choose a filtering and to display the filtered items.

To allow communication between RepositoryActivity and subactivities, both activities posess a Messenger which is used for bidirectional communication to notify the counterpart upon change of the filterin condition, need to refresh the view etc. The messenger of the RepositoryActivity is given to the subactivity as an Intent extra when the subactivity is started by the RepositoryActivity. The subactivity then immediately sends a Message to this messenger to give its own messenger to the RepositoryActivity. This functionality is encapsulated by the class RepositorySubActivityHandler, which is aggregated by every subactivity. It inherits from Handler and delegates incoming messages to a SubActivityListener which can be registered using repositorySubAcrtivityHandler.setSubActivityListener(...). In the current implementation, the subactivities act as SubActivityListener themselves.



## 6.6. Conclusion

In this chapter, an prototype implementation of the Mobilis media sharing platform designed in chapter 5 was presented and served as a proof of concept for the design. The prototype implementation was related to the Mobilis architecture and integrated into it.

The Mobilis server has been enhanced by two broker services realizing a media repository open for different usage scenarios. Relational databases administered by Hibernate serve as realization of the data model for the repository. As stated in the design and requested by the requirements (FR-3.5 and FR-2.5), the repository is highly generic concerning storaged data and therefore allows various usage scenarios.

One scenario, the scenario of picture sharing was realized by a the implementation of an Android client with a UI suitable for this task. But also this client implementation provides code which can be reused in future client prototypes which make use of the repository functionality. Android services have been realized which implement file transfer and transfer to repositories. The remote interface of the service was described as well as the internal structure of them.

# 7. Evaluation

While the preceeding chapters to large parts delt with the formulation of the problem and the elaboration of a possible solution, this chapter evaluates the solution in terms of practicability, performance, efficiency and energy consumption in a mobile environment. In doing so, non functional requirements which have been set in chapter 4 are revisited and performance tests are carried out. [Kor08a] already analyzed applicability of XMPP and Android in a mobile development. This chapter will concentrate on evaluating the design decision for SI File Transfer (7.1) and then continue by architecture of the cube repository (7.2). Afterwards the implementation will be evaluated (7.3) – to large parts concerning the introduction of a multiprocess client prototype with interprocess communication and concerning the use of relational databases managed by Hibernate on server side. The chapter will be concluded summarizing known issues and challenges (7.4).

## 7.1. Applicability of SI File Transfer

In section of the chapter "Conceptual Design" Stream Initiation File Transfers where introduced as a file transfer protocol. Indeed this protocol has proven to be very reliable for wireless networks: since both entities that transfer a file can connect to a SOCKS5 proxy server after the transfer is negotiated, no incoming TCP stream has to be accepted by the mobile client, especially not when a file arrives at the client. This is especially important because incoming TCP streams are still blocked by most mobile network providers.

Another argument for SI File transfer is the fact, that it is a technology which can send binary data unencoded over the wire. The only stage with unneccessary redundancy is the the negotiation of the file transfer. The redundancy, however is due to the XML character of the XMPP stanzas what is rather a general XMPP problem. Other problems concerning XMPP also apply: for example, it is not possible to restart the file transfer from a specific offset when one entity disconnects, e.g., due to mobile handover or weak signal reception.

To quantitatively evaluate the SI File Transfer protocol, several performance measurements have been executed.

#### 7.1.1. Test Environment and Methodology

The test was carried out by sending images from the mobile client prototype to the repository broker with different file sizes and different block sizes. Two file sizes where used: 95833 Bytes and 1020249 Bytes. The block size indicates how many bytes are transferred in one row before sending Message objects to the above layers and proceeding with the next block. The small image of 95833 Bytes was transferred at block sizes of 1024, 2048 and 4096 Bytes. The bigger file was transferred with block sizes of 2048 Bytes and 4096 Bytes.



The used mobile phone was a HTC G1 connected to a 54kbps WLAN access point. The mobile phone was rebooted before every measurement to provide the same starting conditions. The mobilis server ran on an ASUS F3JM laptop with 1.83 GHz and 2.0 GB RAM. Both devices were connected to a WLAN access point with 54Mbps.

The system time in milliseconds was measured at the initiation of the SI File Transfer, after negotiation and after the transfer of every block. The measurement took place on MXA level and was written to the console, which was read out by USB debugging.

#### 7.1.2. Measurement of Transfer Time

Figures 7.3 and show the progress of the transfer for the filesize of 95833 Bytes and 1020249 Bytes respectively. The diagrams show at which time (y axis) a specific amount of bytes is transferred (x axis). In figure 7.3 some kinks are visible every 10 blocks where the transfer seems to stop for about 500ms.

In the case of a small filesize (95833 Bytes), the speed of the transfer with a smaller block size seems faster than with larger block size. However, in case of bigger files (1020249 Bytes) this effect is reversed. Figure 7.4 shows this effect: starting from ca. 200kB, the speed suddenly grows for the bigger block size. It is assumed that this effect is due to the change of quality of service parameters for bigger files, e.g. the TCP slow start mechanism.

Figures 7.3 and 7.4 show the speed of the file transfer (y axis) for the amount of bytes transferred (x axis). The speed is calculated by taking the derivate of the original graph

$$v_i = \frac{\Delta \text{TransferredBytes}_i}{\Delta t_i} = \frac{\text{TransferredBytes}_i - \text{TransferredBytes}_{i-1}}{t_i - t_{i-1}}$$

Another measurement of interest is the time needed to negotiate the file transfer. In the current collected data, this time varies between 300ms and 900ms.

Table 7.1 summarizes our findings by  $t_{nego}$ ,  $t_{end}$  as well as the average and standard derivate values for transfer speed ( $\bar{v}$  and  $\tilde{v}$ ) are and illustrate our findings:

| Scenario                            | $t_{\rm nego}/{\rm ms}$ | $t_{end}/ms$ | $\bar{v}/kBs^{-1}$ | $\tilde{v}/kBs^{-1}$ |
|-------------------------------------|-------------------------|--------------|--------------------|----------------------|
| Filesize 97833kB, Blocksize 1024B   | 392                     | 9031         | 17.869             | 10.409               |
| Filesize 97833kB, Blocksize 2048B   | 918                     | 6841         | 24.747             | 14.771               |
| Filesize 97833kB, Blocksize 4096B   | 325                     | 5559         | 20.908             | 6.177                |
| Filesize 1020249kB, Blocksize 2048B | 345                     | 68775        | 32.073             | 32.505               |
| Filesize 1020249kB, Blocksize 4096B | 508                     | 373426       | 12.726             | 16.358               |

Table 7.1.: Maximum Transfer Time and Speed of the test transfers.

## 7.2. Evaluation of the Repository Architecture

The custom XMPP extension protocol defined in chapter 5 provide all necessary functionality to realize to realize the cube repository architecture are flexible enough to allow extension of the service primitives to allow more complex query mechanisms. This is necessary to let the mobile client specify its request more precisely to allow unnecessarily transmitted data. Imagine a user querying the database with a <condition> matching





#### Transfer Time Test Case 95833 Byte Image

Figure 7.1.: Transfer time of a 95833 bytes image





Figure 7.2.: Transfer time of a 1020249 bytes image





Transfer Speed Test Case 95833 Byte Image

Figure 7.3.: Transfer time of a 95833 bytes image





Figure 7.4.: Transfer time of a 1020249 bytes image



an enormous high number of repository items. In the current architecture they will all be returned - moreover - with all slice assignments what may also be a high number. Taking into account the redundancy overhead of XMPP the size of the returned package might be enormous and slow down both mobile client and server.

A solution to this problem is to allow fine tuning of the <repository-query> package. Compared to an SQL statement, the <condition> corresponds to the where clause. Future implementation should also add the possibility to restrict the returned information in number (SQL limit clause), granularity (SQL select clause) and sorting (SQL order by clause).

The same applies to the replacement of repository items. Currently, a repository item has to be replaced completely, that means, its slices are completely overwritten and even the content has to be stored newly. This is an enormous overhead which can be avoided, if the update logic would be fixedly implemented in the custom cube repository protocol.

More ideas concerning the custom cube extension protocol can be found in the prospect of chapter 8.

## 7.3. Evaluation of the Implementation

#### 7.3.1. Server Side

One core problem on the server side is the database connection. The implementation of the repository slicing with a simple HashMap is far from optimal. Assume the mobile client issues a simple request like the following:

```
<iq type='get' id='mobilis_5'
from='client@xmpp/MXA'
to='mobilis@xmpp/Repository'>
<repository-query xmlns='http://rn.inf.tu-dresden.de/mobilis#services/
RepositoryService'>
<condition op='and' xmlns='http://rn.inf.tu-dresden.de/mobilis'>
<condition key='taken' op='lt' value='1256468400000' />
<condition key='taken' op='gt' value='1256461200000' />
</condition>
</repository-query>
<//iq>
```

The request will be translated by the **RepositoryCube** to the following so-called HQL statement:

This HQL statement will be translated by Hibernate to an equivalent SQL statement:

```
select
  repository0_.uid as uid1_,
  repository0_.content as content1_,
  repository0_.owner as owner1_
from
  mobilis_repositoryitem repository0_,
  mobilis_repositoryitem_slice slices1_,
  mobilis_repositoryitem_slice slices2_
```



```
where
repository0_.uid=slices1_.uid
and repository0_.uid=slices2_.uid
and slices1_.slice_key = 'taken'
and slices2_.slice_key = 'taken'
and slices1_.slice_value<='1256468400000'
and slices2_.slice_value>='1256461200000'
```

The example shows that for every <condition> one cross join with two where-conditions are introduced. However the statement could be optimized into into three independent nested statements:

```
select
 repository0_.uid as uid1_,
 repository0_.content as content1_,
 repository0_.owner as owner1_
from
 mobilis_repositoryitem repository0_
where
  (select slices1_.slice_value
      from mobilis_repositoryitem_slice slices1_
      where slices1_.slice_key = 'taken'
      and slices1_.uid = repository0_.uid)
    <='1256468400000'
 and (select slices2_.slice_value
      from mobilis_repositoryitem_slice slices2_
      where slices2_.slice_key = 'taken'
      and slices2_.uid = repository0_.uid)
   >='1256461200000'
```

The time needed to process both requestes we analyzed using the MySQL console. The second, optimized statement executed in 50ms while the Hibernate-generated statement executed in about 300ms.

The result of the two inner statements depend on the currently visited record of the outer statement so they cannot be precalculated before the outer statement is run. However, they should be executable quite fastly since they are dependent on the uid and slice\_key field of the mobilis\_repositoryitem\_slice table which are primary keys and therefore stored in a search-efficient datatype. The outer statement, however, has to traverse all repository items.

Having a **<repository-query>** with c conditions and a repository with N repository items each having n slide assignments, the database hence has to perform c hash accesses on N repository items. Since a hash access is of order  $O(n \log n)$  the complexity of a single request is described by

$$O(N \cdot c \cdot n \log n)$$

#### 7.3.2. Client Side

One key experience we made when using the client prototype was the finding, that the User Interface sometimes felt "sluggish" when the file transfer was ongoing. That means, the progress bar notifying the user about the transfer progress was updated delayedly.



The reason to this fact has been researched: In parallel to the actual file transfer measurements (as introduced in section 7.1), the time was measured, when the user interface was notified about the progress. Figure 7.5 and 7.6 show this effect: the dashed lines represent the transfer as shown to the user while the solid lines show the transfer as it is in fact happening.

It turns out, that this effect is percieved less for bigger block sizes. The smaller the block size the much more significant this **lag** is, especially for very large files, since the lag accumulates over time. In our example the accumulated lag at the end of the file transfer is in the following order (table 7.2):

| Scenario                            | $Lag_{max}/ms$ |
|-------------------------------------|----------------|
| Filesize 97833kB, Blocksize 1024B   | 52227          |
| Filesize 97833kB, Blocksize 2048B   | 12959          |
| Filesize 97833kB, Blocksize 4096B   | 2471           |
| Filesize 1020249kB, Blocksize 2048B | 1759111        |
| Filesize 1020249kB, Blocksize 4096B | 53621          |

Table 7.2.: Lag between Transfer Time and UI Response.

1759111ms – that is almost 30 minutes! This is a totally unacceptable value for productive use. During this time, the mobile phone seems unusable because the GUI thread takes up very much resources and even heats up the phones processor, what can be literally felt. This is a clear violation to the non functional requirements NF-3.3 and NF-3.5.

The reason of this defect lies probably in a design failure concerning the interprocess communication between MXA, external services and GUI layer. For synchronizing threads, we make use of the Android framework classes Message, Handler and Messenger. However, these classes use Message queues, so if receiptient threads are currently busy, e.g. drawing an UI element, incoming messages are added to a queue. If handling one Message takes longer then transferring a block over the wire, a bottleneck is created which slows down the UI, creating waiting Messages, taking up ressources, eventually slowing the thread down even more etc. pp.

A possible solution would be the use of other means of content sharing, e.g., a pulling mechanism. However, the time of this work was limited so broader research on this issue could not be accomplished more intensively.

## 7.4. Conclusion

In this chapter, both the architecture of the custom XMPP extension for cube media repositories as well as its implementation on client and server side have been examined qualitativedly and in measure. Three potential issues where identified: The first was the inflexibility of the repository query and upload mechanism, which is solvable by extending the related protocol by further elaborations. The second is the question if the current relational database model is efficient and scalable enough. To answer this question, further measurements and calculations should be carried out. And the final issue, the sluggishness of the GUI layer, is a clear defect on implementation level. It represents





Transfer Time & Time to GUI Test Case 95833 Byte Image

Figure 7.5.: Speed of the transfer of a 95833 bytes image





Test Case 1020249 Byte Image



Figure 7.6.: Speed of the transfer of a 1020249 bytes image



a lesson-learned which should be considered when dealing with other real-time updated GUIs. The following chapter presents a prospect with ideas for future work which have not been considered in requirements and design.

## 8. Prospect

From the introductory user scenario indicating a problem, this thesis has developed a long bend over the whys, whats, hows to a solution of that problem. The presented solution was evaluated and lessons learned where shared. During the whole process, further problems were identified and new ideas came to life. This chapter presents problems, which where not in the scope of this thesis and therefore also have not been solved by the current prototype. They provide a starting point for future work.

Section 8.1 introduces the idea for new prototypes based on the current architecture and suggests possible enhancements to the current prototype which would improve the user experience. Section 8.2 shows how the underlying architecture can be modified to be more flexible and adapted to the mobile environment.

## 8.1. Possible Enhancements of the Prototype

While the repository is general enough to provide a framework for realization of other user stories, especially the client prototype user interface is constructed to strictly implement the settled requirements of an image sharing tool. A simple task would be to implement prototypes which use the repository architecture for other means of media sharing, like music or video sharing. Another possible task could be to implement a client prototype running in another environment, e.g., on a desktop system. Together with a mobile prototype, the architecture may then be used to ubiquitously manage a users personal image library.

Finally, some functionality is not implemented, which would be nice-to-have when using the prototype in daily life: this concerns handy features like uploading or downloading multiple files at once, seeing a thumbnail view of online content or filtering the items by user-defined conditions. Also an overview over downloaded content allowing synchronization of it with uploaded content would be an enhancement to the user experience.

## 8.2. Possible Enhancements of the Repository Architecture

We already analyzed the repository architecture in the previous chapter (see section 7.2) and expressed the need for more sophisticated query and update mechanisms. In particular, updates and requests should be possible on a more fine-granular level than repository items. Also the query condition language (syntax and semantics of the <condition/> tag) could be enriched by more complex terms, functions and operators than it currently supports. Sorting the result, limiting it to a specific amount of items or specifying the granularity of the returned items could be implemented. Partly this is already introduced

in the current design by the distinction between *concrete*, *complete*, *referencing*, or *simple* <repository-item/>s (see subsection 5.4.1).

Moreover, security mechanisms could be dramatically improved by implementing proper authentication mechanisms or access control lists. This might include the possibility to split up a repository into sub-repositories, which is currently only supported by introducing multiple repository brokers.

#### 8.2.1. Practical Comparison with other File Transfer Technologies

We use SI File Transfer as a building block of our repository architecture to transfer binary data between XMPP entities. The reason for this design decision has been broadly discussed (see 7.1). However, the architecture of the repository allows replacing this mean of transfer by another, probably more advanced technologies, like Jingle [LBSA<sup>+</sup>09], if practical reasons like the availability library support would make the effort to integrate the technology reasonable. Future work may modify the introduced media sharing by replacing SI File Transfers by another one-to-one binary transfer and evaluate those methods practically.

#### 8.2.2. Practical Comparison with other Repository Models

The presented repository architecture is backed by a data model which has a cube shape. This shape was chosen based on the introductory user scenario. In other file sharing scenarios, hierarchical storage might be beneficial. However, hierarchical information can only be mapped difficultly to the repository.

Future work could develop a hierarchical repository architecture and compare the introduced cube structure to the hierarchical structure. During the development of this thesis, a Pub-Sub library <sup>1</sup> from Ignite Realitime was announced. This library could be used to develop a hierarchical repository based on Published Stream Initiation Requests and, if possible, suggest a hybrid solution which combines the multi-dimensional and hierarchical model.

Also one core strength of XMPP has not been taken into account yet: the possibility to use it as a push service. Using a publish-subscribe mechanism, a user could be automatically informed about newly available content. This would save bandwidth, which is a core issue in mobile environments.

#### 8.2.3. Thinking Big: Replication and Partitioning

A media sharing platform can grow quite big with the amount of participating users and files. Good scalability is therefore an important property. The presented architecture introduced some means of load balancing by allowing multiple content stores and repository cubes on different physical entities. However, in todays media sharing platforms far more professional technologies exist: Files are partitioned and spread among different entities or they are held in multiple replicas on different storages which creates the need for a proper synchronization algorithms.

<sup>&</sup>lt;sup>1</sup>http://nixbit.com/cat/programming/libraries/smack-pubsub-extensions/



Figure 8.1.: Media Bridges as a mean for a genaralized social cube based media repository. Icons are registered trademarks of Yahoo Inc., Nokia Oy and Facebook respectively.

## 8.3. Coupling with other Media Repositories

The introduced user scenario of travel picture sharing provides a fairly well-known practical background to be extended to many other use cases. One possible extension lies in the weakness of the social aspect of the presented solution: our platform introduces just another social network to a possible new user and the user probably already has other social network accounts where she shares and publishes pictures. An idea would therefore be to integrate an interface to other social networks into the presented architecture.

Indeed, this is easily possible due to the flexible data model of content with assigned arbitrary metadata. The implemented content store and repository cube, by design, store images into the file system and into a relational database currently. This has been a simple design decision, but of course, they may also store images into any other media repository, like Flickr<sup>2</sup>, Nokia Ovi<sup>3</sup> or Facebook<sup>4</sup>. The advantage of this is, that a user already has a community of friends there waiting to see her pictures.

On implementation level, the presented idea would result in an abstraction of RepositoryCube and ContentBroker and a set of replacable media bridges, which provide their own implementation of the two entities. This concept is shown in figure 8.1. The

<sup>&</sup>lt;sup>2</sup>http://www.flickr.com

<sup>&</sup>lt;sup>3</sup>http://www.ovi.com

<sup>&</sup>lt;sup>4</sup>http://www.facebook.com





Figure 8.2.: The Mobilis Media Cloud Icons are registered trademarks of Yahoo Inc., Nokia Oy and Facebook respectively.

idea can be realized in a similar way to the generalized handling of friend lists using a BuddyBroker, which has been described in [DS09].

## 8.4. Conclusion

To conclude, the Mobilis Media repository can be extended to build up a central **Media Sharing Cloud** which allows media exchange between different content creation devices like Mobile phones and arbitrary content storage entities being either tied to the Media Sharing Cloud or located remotedly. That way, platforms like Facebook, Flickr etc. can be connected to. Imposing that repository brokers can also play the role of clients in the sense of the Media Sharing Cloud, they may also be used as adapters or aggregators to link several repositories together. The overall idea of the **Mobilis Media Cloud** is depicted in figure 8.2.

Given the possible size of such a media cloud, future work should beyond the extension of the IQ interface also focus on the design of content distribution, replication and synchronization algorithms. And supposing the variety of user stories, various user prototypes addressed to different tasks could be developed. The introduced Mobilis Media picture sharing solution can in fact be seen as the part of a generalized content sharing platform, which to build up provides of room for quite a high number of research challenges and economical innovations.

## A. Appendix

## A.1. XSD Schema of used custom IQs

The following listings show the XSD (XML schema definition) of the IQ namespaces defined for the media repository in section 5.4.1.

#### The Mobilis Namespace

```
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"</pre>
 targetNamespace="http://www.rn.inf.tu-dresden.de/mobilis">
<xs:simpleType name="mobilis:opLogicalClause">
 <xs:restriction base="xs:string">
    <xs:enumeration value="or"/><xs:enumeration value="and"/>
 </xs:restriction>
</rs:simpleType>
<xs:simpleType name="mobilis:opLogicalUnary">
 <xs:restriction base="xs:string">
    <rs:enumeration value="not"/>
  </xs:restriction>
</xs:simpleType>
<xs:simpleType name="mobilis:opComparison">
 <xs:restriction base="xs:string">
   <xs:enumeration value="lt"/><xs:enumeration value="gt"/>
    <xs:enumeration value="le"/><xs:enumeration value="ge"/>
    <xs:enumeration value="ne"/><xs:enumeration value="eq"/>
 </xs:restriction>
</xs:simpleType>
<rs:simpleType name="mobilis:uid">
 <xs:restriction base="xs:string" />
</xs:simpleType>
<xs:simpleType name="mobilis:jidFull">
 <xs:restriction base="xs:string">
    <xs:pattern value="^[\w.-]+@[\w.-]+$" />
 </xs:restriction>
</xs:simpleType>
<xs:element name="condition" targetNamespace="http://www.rn.inf.tu-</pre>
   dresden.de/mobilis">
 <rs:complexType>
   <xs:choice minOccurs="1" maxOccurs="1">
      <rs:all>
```



```
<xs:attribute name="op" type="mobilis:opLogicalUnary" use="</pre>
           required" />
        <xs:element name="condition">
      </rs:all>
      <rs:all>
        <xs:attribute name="op" type="mobilis:opLogicalClause" use="</pre>
           required" />
        <re><rsd:sequence></r>
          <xs:element name="condition">
        </xsd:sequence>
      </rs:all>
      <rs:all>
        <xs:attribute name="op" type="mobilis:opComparison" use="</pre>
           required" />
        <xs:attribute name="key" type="xs:NMTOKEN" use="required" />
        <xs:attribute name="value" type="xs:NMTOKEN" use="required" />
      </rs:all>
  </xs:complexType>
</xs:element>
```

```
</xs:schema>
```

#### The RepositoryService Subnamespace

```
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"</pre>
  targetNamespace="http://www.rn.inf.tu-dresden.de/mobilis#services/
     RepositoryService">
<xs:import namespace="http://www.rn.inf.tu-dresden.de/mobilis#services"
   />
<xs:complexType name="mobilis:repository:item:referencing">
  <xs:attribute name="uid" type="mobilis:uid" use="required" />
</xs:complexType>
<xs:complexType name="mobilis:repository:item:simple">
  <rs:sequence>
    <xs:element name="slice">
      <xs:attribute name="key" type="xs:NMTOKEN" use="required" />
      <xs:attribute name="value" type="xs:NMTOKEN" use="required" />
    </xs:element>
  </xs:sequence>
</xs:complexType>
<re><rs:complexType name="mobilis:repository:item:concrete"></r>
  <rs:extension base="mobilis:repository:item:simple">
    <xs:attribute name="uid" type="mobilis:uid" use="required" />
  </xs:extension>
</xs:complexType>
<xs:complexType name="mobilis:repository:item:complete">
  <xs:extension base="mobilis:repository:item:simple">
    <xs:attribute name="content" type="mobilis:jidFull" use="required" /</pre>
    <re><rs:attribute name="owner" type="mobilis:jidFull" use="required" /></r>
  </xs:extension>
```



```
</xs:complexType>
<xs:element name="repository-delete">
  <rs:complexType>
    <xs:sequence minOccurs="1">
      <xs:element name="repository-item" type="</pre>
         mobilis:repository:item:referencing" />
    </xs:sequence>
  </xs:complexType>
</xs:element>
<xs:element name="repository-query">
  <rs:complexType>
    <xs:choice minOccurs="1" maxOccurs="1">
      <xs:sequence minOccurs="1">
        <rs:choice>
          <xs:element name="repository-item" type="</pre>
             mobilis:repository:item:concrete" />
          <rs:element name="repository-item" type="
             mobilis:repository:item:simple" />
        </rs:choice>
      </xs:sequence>
      <xs:sequence minOccurs="1">
        <xs:element name="repository-item" type="</pre>
           mobilis:repository:item:complete" />
      </xs:sequence>
      <rs:element name="condition" />
    </rs:choice>
  </xs:complexType>
</xs:element>
```

```
</xs:schema>
```

#### The ContentService Subnamespace

```
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"</pre>
  targetNamespace="http://www.rn.inf.tu-dresden.de/mobilis#services/
     ContentService">
<xs:import namespace="http://www.rn.inf.tu-dresden.de/mobilis#services"</pre>
   />
<xs:element name="content-delete">
  <rs:complexType>
    <xs:element name="uid" type="mobilis:uid" />
  </xs:complexType>
</rs:element>
<rs:element name="content-register" />
<rs:element name="content-unregister" />
<xs:element name="content-transfer">
  <rs:complexType>
    <xs:choice minOccurs="1">
      <xs:element name="retrieveFrom" type="mobilis:jidFull" />
```



```
<xs:element name="sendTo" type="mobilis:jidFull" />
</xs:choice>
<xs:element name="uid" type="mobilis:uid" />
</xs:complexType>
</xs:element>
<xs:complexType>
<xs:choice minOccurs="1">
<xs:element name="retrieveFrom" type="mobilis:jidFull" />
<xs:element name="sendTo" type="mobilis:jidFull" />
</xs:choice>
<xs:element name="uid" type="mobilis:jidFull" />
</xs:choice>
<xs:element name="uid" type="mobilis:uid" />
</xs:complexType>
</xs:element name="sendTo" type="mobilis:jidFull" />
</xs:choice>
<xs:element name="sendTo" type="mobilis:jidFull" />
</xs:choice>
<xs:element name="uid" type="mobilis:uid" />
</xs:complexType>
</xs:element name="sendTo" type="mobilis:uid" />
</xs:choice>
```

</xs:schema>

## A.2. Data Source of the Performance Evaluation

The following attached pages contain the raw data measured during evaluation of the prototype. They are used for the respective conclusions in sections 7.1 and 7.3.2. See subsection 7.1.1 for a description of the test methodology. The attachment consists of two parts: the first part contains measurements of the 9583 bytes image and includes pages A.2-1 through A.2-4. The second part contains measurements of the 1020249 bytes image and takes up pages A.2-5 through A.2-10. Horizontally, the tables are split up into the measurement of the different block sizes and vertically the measured data for each transferred block is listed. The data includes:

- **kb transferred** the accumulated number of kilobytes which has been transferred with this block.
- **at Service** the number of milliseconds which has passed when the block is read out from the MXA, measured since the transfer has been initiated
- **at GUI** the number of milliseconds which has passed when the user is informed about the transferred block, measured since the transfer has been initiated.
- **Delta** the number of milliseconds which has passed since the last measurement of "at Speed" or "at GUI" respectively..
- **Speed** the first derivate, that is, how fast the last block has been transferred in kb/s.
- **Lag** the number of milliseconds which passes between arrival of the block at the MXA and notification of the end user that the block has been transferred.

# A.2 Data Source of the Performance Evaluation Test Case 9583 Bytes Image File

Technische Universität Dresden

| Block Size |             |            |       | 1024   |        | ·     |          |             |            | 21    | 048    |          | ·     |          |             |            | 4     | 960    |        | -      |         |
|------------|-------------|------------|-------|--------|--------|-------|----------|-------------|------------|-------|--------|----------|-------|----------|-------------|------------|-------|--------|--------|--------|---------|
|            | kb          | at Service | Delta | Speed  | at GUI | Delta |          | kb          | at Service | Delta | Speed  | at GUI [ | Delta |          | kb          | at Service | Delta | Speed  | at GUI | belta  |         |
| Block #    | transferred | (ms)       | (ms)  | (kb/s) | (ms)   | (ms)  | Lag (ms) | transferred | (ms)       | (ms)  | (kb/s) | (ms)     | (ms)  | Lag (ms) | transferred | (ms)       | (ms)  | (kb/s) | (ms)   | (ms) L | ag (ms) |
| initiated  |             | 0          |       |        | 0      |       | 0        |             | 0          |       |        | 0        |       | 0        |             | 0          |       |        | 0      |        | 0       |
| 0          | 0           | 342        | 342   |        | 414    | 414   | 72       | 0           | 918        | 918   |        | 930      | 930   | 12       | 0           | 325        | 325   |        | 337    | 337    | 12      |
| 1          | 1024        | 826        | 484   | 2.12   | 829    | 415   | 8        | 2048        | 1239       | 321   | 6.38   | 1255     | 325   | 16       | 4096        | 682        | 357   | 11.47  | 693    | 356    | 11      |
| 2          | 2048        | 914        | 88    | 11.64  | 1104   | 275   | 190      | 4096        | 1342       | 103   | 19.88  | 1489     | 234   | 147      | 8192        | 859        | 177   | 23.14  | 876    | 183    | 17      |
| 3          | 3072        | 866        | 84    | 12.19  | 1207   | 103   | 209      | 6144        | 1455       | 113   | 18.12  | 1576     | 87    | 121      | 12288       | 1025       | 166   | 24.67  | 1146   | 270    | 121     |
| 4          | 4096        | 1013       | 15    | 68.27  | 1328   | 121   | 315      | 8192        | 1501       | 46    | 44.52  | 1675     | 66    | 174      | 16384       | 1187       | 162   | 25.28  | 1243   | 97     | 56      |
| 2          | 5120        | 1233       | 220   | 4.65   | 1612   | 284   | 379      | 10240       | 1670       | 169   | 12.12  | 1995     | 320   | 325      | 20480       | 1414       | 227   | 18.04  | 1542   | 299    | 128     |
| 9          | 6144        | 1337       | 104   | 9.85   | 1702   | 06    | 365      | 12288       | 1769       | 66    | 20.69  | 2114     | 119   | 345      | 24576       | 1614       | 200   | 20.48  | 1798   | 256    | 184     |
| 7          | 7168        | 1378       | 41    | 24.98  | 1815   | 113   | 437      | 14336       | 1968       | 199   | 10.29  | 2409     | 295   | 441      | 28672       | 1825       | 211   | 19.41  | 2030   | 232    | 205     |
| 8          | 8192        | 1488       | 110   | 9.31   | 2046   | 231   | 558      | 16384       | 2024       | 56    | 36.57  | 2520     | 111   | 496      | 32768       | 2419       | 594   | 6.90   | 2416   | 386    | ċ,      |
| 6          | 9216        | 1636       | 148   | 6.92   | 2276   | 230   | 640      | 18432       | 2173       | 149   | 13.74  | 2692     | 172   | 519      | 36864       | 2646       | 227   | 18.04  | 2728   | 312    | 82      |
| 10         | 10240       | 1718       | 82    | 12.49  | 2624   | 348   | 906      | 20480       | 2298       | 125   | 16.38  | 2939     | 247   | 641      | 40960       | 2876       | 230   | 17.81  | 3094   | 366    | 218     |
| 11         | 11264       | 1790       | 72    | 14.22  | 2791   | 167   | 1001     | 22528       | 2853       | 555   | 3.69   | 4561     | 1622  | 1708     | 45056       | 3095       | 219   | 18.70  | 3191   | 97     | 96      |
| 12         | 12288       | 1879       | 89    | 11.51  | 3102   | 311   | 1223     | 24576       | 2901       | 48    | 42.67  | 4834     | 273   | 1933     | 49152       | 3311       | 216   | 18.96  | 3683   | 492    | 372     |
| 13         | 13312       | 2002       | 123   | 8.33   | 3469   | 367   | 1467     | 26624       | 3036       | 135   | 15.17  | 5199     | 365   | 2163     | 53248       | 3442       | 131   | 31.27  | 3920   | 237    | 478     |
| 14         | 14336       | 2049       | 47    | 21.79  | 3851   | 382   | 1802     | 28672       | 3112       | 76    | 26.95  | 5592     | 393   | 2480     | 57344       | 3636       | 194   | 21.11  | 4357   | 437    | 721     |
| 15         | 15360       | 2147       | 98    | 10.45  | 4187   | 336   | 2040     | 30720       | 3244       | 132   | 15.52  | 5980     | 388   | 2736     | 61440       | 3807       | 171   | 23.95  | 5424   | 1067   | 1617    |
| 16         | 16384       | 2668       | 521   | 1.97   | 4595   | 408   | 1927     | 32768       | 3286       | 42    | 48.76  | 6275     | 295   | 2989     | 65536       | 4029       | 222   | 18.45  | 5768   | 344    | 1739    |
| 17         | 17408       | 2809       | 141   | 7.26   | 5257   | 662   | 2448     | 34816       | 3406       | 120   | 17.07  | 6653     | 378   | 3247     | 69632       | 4528       | 499   | 8.21   | 5989   | 221    | 1461    |
| 18         | 18432       | 2894       | 85    | 12.05  | 5551   | 294   | 2657     | 36864       | 3457       | 51    | 40.16  | 6972     | 319   | 3515     | 73728       | 4691       | 163   | 25.13  | 6207   | 218    | 1516    |
| 19         | 19456       | 2940       | 46    | 22.26  | 6039   | 488   | 3099     | 38912       | 3577       | 120   | 17.07  | 7188     | 216   | 3611     | 77824       | 4828       | 137   | 29.90  | 6465   | 258    | 1637    |
| 20         | 20480       | 3009       | 69    | 14.84  | 6554   | 515   | 3545     | 40960       | 3663       | 86    | 23.81  | 7414     | 226   | 3751     | 81920       | 4968       | 140   | 29.26  | 6725   | 260    | 1757    |
| 21         | 21504       | 3163       | 154   | 6.65   | 6955   | 401   | 3792     | 43008       | 3766       | 103   | 19.88  | 7658     | 244   | 3892     | 86016       | 5136       | 168   | 24.38  | 7005   | 280    | 1869    |
| 22         | 22528       | 3226       | 63    | 16.25  | 8146   | 1191  | 4920     | 45056       | 3843       | 77    | 26.60  | 8258     | 600   | 4415     | 90112       | 5291       | 155   | 26.43  | 7317   | 312    | 2026    |
| 23         | 23552       | 3303       | 77    | 13.30  | 8584   | 438   | 5281     | 47104       | 3989       | 146   | 14.03  | 8591     | 333   | 4602     | 94208       | 5464       | 173   | 23.68  | 7775   | 458    | 2311    |
| 24         | 24576       | 3348       | 45    | 22.76  | 9030   | 446   | 5682     | 49152       | 4055       | 66    | 31.03  | 8869     | 278   | 4814     | 95833       | 5559       | 95    | 17.11  | 8030   | 255    | 2471    |
| 25         | 25600       | 3443       | 95    | 10.78  | 9338   | 308   | 5895     | 51200       | 4223       | 168   | 12.19  | 9153     | 284   | 4930     |             |            |       |        |        |        |         |
| 26         | 26624       | 3559       | 116   | 8.83   | 996    | 322   | 6101     | 53248       | 4670       | 447   | 4.58   | 9624     | 471   | 4954     |             |            |       |        |        |        |         |
| 27         | 27648       | 3641       | 82    | 12.49  | 9974   | 314   | 6333     | 55296       | 4773       | 103   | 19.88  | 9878     | 254   | 5105     |             |            |       |        |        |        |         |
| 28         | 28672       | 3697       | 56    | 18.29  | 10304  | 330   | 6607     | 57344       | 4821       | 48    | 42.67  | 10204    | 326   | 5383     |             |            |       |        |        |        |         |
| 29         | 29696       | 3782       | 85    | 12.05  | 10659  | 355   | 6877     | 59392       | 4971       | 150   | 13.65  | 10565    | 361   | 5594     |             |            |       |        |        |        |         |
| 30         | 30720       | 3880       | 98    | 10.45  | 11117  | 458   | 7237     | 61440       | 5031       | 60    | 34.13  | 10932    | 367   | 5901     |             |            |       |        |        |        |         |
| 31         | 31744       | 3959       | 79    | 12.96  | 11426  | 309   | 7467     | 63488       | 5115       | 84    | 24.38  | 12151    | 1219  | 7036     |             |            |       |        |        |        |         |
| 32         | 32768       | 4012       | 53    | 19.32  | 12267  | 841   | 8255     | 65536       | 5184       | 69    | 29.68  | 12301    | 150   | 7117     |             |            |       |        |        |        |         |
| 33         | 33792       | 4474       | 462   | 2.22   | 12646  | 379   | 8172     | 67584       | 5349       | 165   | 12.41  | 12683    | 382   | 7334     |             |            |       |        |        |        |         |
| 34         | 34816       | 4511       | 37    | 27.68  | 13058  | 412   | 8547     | 69632       | 5395       | 46    | 44.52  | 13074    | 391   | 7679     |             |            |       |        |        |        |         |
| 35         | 35840       | 4586       | 75    | 13.65  | 13455  | 397   | 8869     | 71680       | 5509       | 114   | 17.96  | 13469    | 395   | 7960     |             |            |       |        |        |        |         |
| 36         | 36864       | 4653       | 67    | 15.28  | 13875  | 420   | 9222     | 73728       | 5553       | 44    | 46.55  | 13878    | 409   | 8325     |             |            |       |        |        |        |         |
| 37         | 37888       | 4806       | 153   | 6.69   | 14287  | 412   | 9481     | 75776       | 5703       | 150   | 13.65  | 14325    | 447   | 8622     |             |            |       |        |        |        |         |
| 38         | 38912       | 4859       | 53    | 19.32  | 15167  | 880   | 10308    | 77824       | 5755       | 52    | 39.38  | 14718    | 393   | 8963     |             |            |       |        |        |        |         |

# A.2 Data Source of the Performance Evaluation Test Case 9583 Bytes Image File

| <b>3lock Size</b> |             |            |       | 1024   |        |       |          |             |              | 2     | 048    |                |       |            |             |                | 4096      |        |       |          |
|-------------------|-------------|------------|-------|--------|--------|-------|----------|-------------|--------------|-------|--------|----------------|-------|------------|-------------|----------------|-----------|--------|-------|----------|
|                   | kb          | at Service | Delta | Speed  | at GUI | Delta |          | kb          | at Service   | Delta | Speed  | at GUI         | Delta |            | ¢b<br>f     | at Service Del | ta Speed  | at GUI | Delta |          |
| 810CK #           | transferred | (ms)       | (ms)  | (KD/S) | (ms)   | (ms)  | Lag (ms) | transferred | (ms)<br>rerc | (ms)  | (kb/s) | (ms)<br>15 407 | (ms)  | Lag (ms) 1 | cransterred | (ms) (m        | s) (kb/s) | (ms)   | (ms)  | Lag (ms) |
| Ϋ́, Ϋ́            | 39936       | 4911       | 75    | 19.04  | 12004  | 43/   | 5690T    | 71861       | 0585         | IOI   | 20.28  | 1949/          | 611   | 704T       |             |                |           |        |       |          |
| 4(                | 40960       | 4980       | 69    | 14.84  | 1641/  | 813   | 1143/    | 81920       | 5924         | 89    | 30.12  | 15950          | 453   | 10026      |             |                |           |        |       |          |
| 4                 | 41984       | 5118       | 138   | 7.42   | 16653  | 236   | 11535    | 83968       | 6414         | 490   | 4.18   | 16420          | 470   | 10006      |             |                |           |        |       |          |
| 4                 | 43008       | 9779       | 108   | 9.48   | 1/213  | 995   | 1198/    | 86016       | 64/3         | 59    | 34./1  | 16915          | 495   | 10442      |             |                |           |        |       |          |
| 45                | 44032       | 5314       | 88    | 11.64  | 17611  | 398   | 12297    | 88064       | 6581         | 108   | 18.96  | 17415          | 500   | 10834      |             |                |           |        |       |          |
| 44                | 1 45056     | 5369       | 55    | 18.62  | 18453  | 842   | 13084    | 90112       | 6606         | 25    | 81.92  | 17898          | 483   | 11292      |             |                |           |        |       |          |
| 45                | 46080       | 5472       | 103   | 9.94   | 18920  | 467   | 13448    | 92160       | 6705         | 66    | 20.69  | 18765          | 867   | 12060      |             |                |           |        |       |          |
| 46                | 5 47104     | 6020       | 548   | 1.87   | 19421  | 501   | 13401    | 94208       | 6785         | 80    | 25.60  | 19260          | 495   | 12475      |             |                |           |        |       |          |
| 47                | 7 48128     | 6113       | 93    | 11.01  | 19954  | 533   | 13841    | 95883       | 6841         | 56    | 29.91  | 19797          | 537   | 12956      |             |                |           |        |       |          |
| 48                | 3 49152     | 6162       | 49    | 20.90  | 20458  | 504   | 14296    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 45                | 50176       | 6327       | 165   | 6.21   | 21107  | 649   | 14780    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 50                | 51200       | 6363       | 36    | 28.44  | 22005  | 898   | 15642    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 51                | 1 52224     | 6430       | 67    | 15.28  | 22557  | 552   | 16127    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 52                | 53248       | 6481       | 51    | 20.08  | 23139  | 582   | 16658    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 53                | 54272       | 6583       | 102   | 10.04  | 23733  | 594   | 17150    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 54                | t 55296     | 6653       | 70    | 14.63  | 24312  | 579   | 17659    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 55                | 56320       | 6701       | 48    | 21.33  | 25271  | 959   | 18570    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 56                | 57344       | 6739       | 38    | 26.95  | 25898  | 627   | 19159    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 57                | 58368       | 6817       | 78    | 13.13  | 26587  | 689   | 19770    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 58                | 59392       | 6853       | 36    | 28.44  | 27221  | 634   | 20368    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 55                | 60416       | 9069       | 53    | 19.32  | 27873  | 652   | 20967    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 90                | 61440       | 6933       | 27    | 37.93  | 28861  | 988   | 21928    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 61                | 1 62464     | 7041       | 108   | 9.48   | 29557  | 969   | 22516    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 62                | 63488       | 7087       | 46    | 22.26  | 30207  | 650   | 23120    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 63                | 64512       | 7113       | 26    | 39.38  | 30946  | 739   | 23833    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 64                | 1 65536     | 7150       | 37    | 27.68  | 32076  | 1130  | 24926    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 65                | 66560       | 7320       | 170   | 6.02   | 32796  | 720   | 25476    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 66                | 67584       | 7350       | 30    | 34.13  | 33521  | 725   | 26171    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 67                | 68608       | 7380       | 30    | 34.13  | 34253  | 732   | 26873    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 99                | 3 69632     | 7420       | 40    | 25.60  | 36133  | 1880  | 28713    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 65                | 70656       | 7480       | 60    | 17.07  | 36227  | 94    | 28747    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 70                | 71680       | 7511       | 31    | 33.03  | 36962  | 735   | 29451    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 71                | 1 72704     | 7547       | 36    | 28.44  | 37735  | 773   | 30188    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 72                | 73728       | 7585       | 38    | 26.95  | 38889  | 1154  | 31304    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 73                | 74752       | 7961       | 376   | 2.72   | 39700  | 811   | 31739    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 74                | t 75776     | 8008       | 48    | 21.33  | 40492  | 792   | 32483    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 75                | 76800       | 8057       | 48    | 21.33  | 41364  | 872   | 33307    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 76                | 77824       | 8091       | 34    | 30.12  | 42552  | 1188  | 34461    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 77                | 7 78848     | 8180       | 89    | 11.51  | 43377  | 825   | 35197    |             |              |       |        |                |       |            |             |                |           |        |       |          |
| 78                | 3 79872     | 8242       | 62    | 16.52  | 44228  | 851   | 35986    |             |              |       |        |                |       |            |             |                |           |        |       |          |
# A.2 Data Source of the Performance Evaluation Test Case 9583 Bytes Image File

|                       |            |      | 1024   |        |         |           |             |            | 2       | 048    |        |         |            |             |            |         | 4096   |        |        |          |
|-----------------------|------------|------|--------|--------|---------|-----------|-------------|------------|---------|--------|--------|---------|------------|-------------|------------|---------|--------|--------|--------|----------|
| at Service Delta Spee | Delta Spee | Spee | p      | at GUI | Delta   |           | kb          | at Service | Delta   | Speed  | at GUI | Delta   |            | ¢           | at Service | Delta   | Speed  | at GUI | Delta  |          |
| (ms) (ms) (k          | (ms) (kl   | R    | b/s)   | (sm)   | (ms)    | Lag (ms)  | transferred | (ms)       | (ms)    | (kb/s) | (ms)   | (ms)    | Lag (ms) t | transferred | (sm)       | (ms)    | (kb/s) | (sm)   | (ms)   | Lag (ms) |
| 96 8290 48            | 48         |      | 21.33  | 45448  | 1220    | 37158     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 20 8326 36            | 36         |      | 28.44  | 47186  | 1738    | 38860     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 44 8418 92            | 92         |      | 11.13  | 47420  | 234     | 39002     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 58 8459 41            | 41         |      | 24.98  | 48302  | 882     | 39843     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 92 8492 33            | 33         |      | 31.03  | 49883  | 1581    | 41391     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 16 8529 37            | 37         |      | 27.68  | 50547  | 664     | 42018     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 40 8638 109           | 109        |      | 9.39   | 51539  | 992     | 42901     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 54 8683 45            | 45         |      | 22.76  | 52760  | 1221    | 44077     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 88 8729 46            | 46         |      | 22.26  | 53732  | 972     | 45003     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 12 8774 45            | 45         |      | 22.76  | 54647  | 915     | 45873     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 36 8843 69            | 69         |      | 14.84  | 55922  | 1275    | 47079     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 50 8890 47            | 47         | _    | 21.79  | 56920  | 968     | 48030     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 84 8929 35            | 36         | •    | 26.26  | 57869  | 949     | 48940     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 08 8984 55            | 55         | 10   | 18.62  | 59175  | 1306    | 50191     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 32 9010 26            | 2(         | 10   | 39.38  | 60151  | 976     | 51141     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 33 9031 23            | 2          | -    | 28.62  | 61308  | 1157    | 52277     |             |            |         |        |        |         |            |             |            |         |        |        |        |          |
| 95.063                | 95.063     | -    | 17.896 |        | 645.347 | 18288.432 |             |            | 142.521 | 24.747 |        | 112.438 | 5077.667   |             |            | 222.360 | 20.908 | 3      | 21.200 | 844.080  |
| 103.015               | 103.015    |      | 10.409 |        | 364.883 | 15529.149 |             |            | 158.993 | 14.771 | 2      | 78.076  | 3896.084   |             |            | 113.376 | 6.177  | H      | 82.850 | 869.190  |

A.2-3

| Block Size  |             |            |           | 2048           |             |              |          |             | l          |            | 4096   |        |            |          |
|-------------|-------------|------------|-----------|----------------|-------------|--------------|----------|-------------|------------|------------|--------|--------|------------|----------|
| N = = 1 + 4 | kb          | at Service | Delta     | Speed          |             |              | 1 ()     | kb          | at Service | Dalta (ma) | Speed  | at GUI | Dalta (ma) | 1 ()     |
| initiated   | transferred | (ms)       | (ms)      | (KD/S)         | at GUI (ms) | Deita (ms)   | Lag (ms) | transferred | (ms)       | Delta (ms) | (KD/S) | (ms)   | Delta (ms) | Lag (ms) |
| 0           | 0           | 345        | 345       |                | 349         | 349          | 4        | 0           | 508        | 508        |        | 540    | 540        | 32       |
| 1           | 2048        | 739        | 394       | 5.20           | 2075        | 1726         | 1336     | 4096        | 1230       | 722        | 5.67   | 1243   | 703        | 13       |
| 2           | 4096        | 774        | 35        | 58.51          | 3280        | 1205         | 2506     | 8192        | 1414       | 184        | 22.26  | 1515   | 272        | 101      |
| 3           | 6144        | 908        | 134       | 15.28          | 5723        | 2443         | 4815     | 12288       | 1568       | 154        | 26.60  | 1702   | 187        | 134      |
| 4           | 8192        | 961        | 53        | 38.64          | 7103        | 1380         | 6142     | 16384       | 1771       | 203        | 20.18  | 1915   | 213        | 144      |
| 5           | 10240       | 1070       | 109       | 18.79          | 8447        | 1344         | 7377     | 20480       | 2175       | 404        | 10.14  | 2197   | 282        | 22       |
| 6           | 12288       | 1121       | 51        | 40.16          | 11005       | 2558         | 9884     | 24576       | 2349       | 174        | 23.54  | 2456   | 259        | 107      |
| 7           | 14336       | 1619       | 498       | 4.11           | 12496       | 1491         | 10877    | 28672       | 2518       | 169        | 24.24  | 2610   | 154        | 92       |
| 8           | 16384       | 1693       | 74        | 27.68          | 13940       | 1444         | 12247    | 32768       | 2739       | 221        | 18.53  | 3253   | 643        | 514      |
| 9           | 18432       | 1804       | 111       | 18.45          | 15344       | 1404         | 13540    | 36864       | 3015       | 276        | 14.84  | 3548   | 295        | 533      |
| 10          | 20480       | 1861       | 57        | 35.93          | 17868       | 2524         | 16007    | 40960       | 3552       | 537        | 7.63   | 3685   | 137        | 133      |
| 11          | 22528       | 1980       | 119       | 17.21          | 19496       | 1628         | 1/516    | 45056       | 3704       | 152        | 26.95  | 4115   | 430        | 411      |
| 12          | 24576       | 2052       | 52<br>151 | 13 56          | 21156       | 1553         | 20528    | 53248       | 3843       | 203        | 29.47  | 4282   | 420        | 439      |
| 14          | 28672       | 2105       | 105       | 19.50          | 25104       | 2393         | 20320    | 57344       | 4208       | 162        | 25.10  | 5085   | 383        | 877      |
| 15          | 30720       | 2374       | 86        | 23.81          | 26709       | 1605         | 24335    | 61440       | 4810       | 602        | 6.80   | 5580   | 495        | 770      |
| 16          | 32768       | 2441       | 67        | 30.57          | 28310       | 1601         | 25869    | 65536       | 5030       | 220        | 18.62  | 6103   | 523        | 1073     |
| 17          | 34816       | 2578       | 137       | 14.95          | 30139       | 1829         | 27561    | 69632       | 5180       | 150        | 27.31  | 6501   | 398        | 1321     |
| 18          | 36864       | 2627       | 49        | 41.80          | 32665       | 2526         | 30038    | 73728       | 5351       | 171        | 23.95  | 7236   | 735        | 1885     |
| 19          | 38912       | 2712       | 85        | 24.09          | 34413       | 1748         | 31701    | 77824       | 5621       | 270        | 15.17  | 7537   | 301        | 1916     |
| 20          | 40960       | 2783       | 71        | 28.85          | 36114       | 1701         | 33331    | 81920       | 7283       | 1662       | 2.46   | 7832   | 295        | 549      |
| 21          | 43008       | 3189       | 406       | 5.04           | 38675       | 2561         | 35486    | 86016       | 7690       | 407        | 10.06  | 9052   | 1220       | 1362     |
| 22          | 45056       | 3244       | 55        | 37.24          | 41000       | 2325         | 37756    | 90112       | 7917       | 227        | 18.04  | 10840  | 1788       | 2923     |
| 23          | 47104       | 3431       | 187       | 10.95          | 42773       | 1773         | 39342    | 94208       | 8089       | 172        | 23.81  | 11275  | 435        | 3186     |
| 24          | 49152       | 3515       | 84        | 24.38          | 44644       | 1871         | 41129    | 98304       | 8282       | 193        | 21.22  | 11604  | 329        | 3322     |
| 25          | 51200       | 3051       | 130       | 22 57          | 40021       | 1977         | 42970    | 102400      | 8640       | 358        | E2 90  | 11994  | 390        | 3354     |
| 20          | 55296       | 3795       | 83        | 24 67          | 52089       | 4334         | 47203    | 110592      | 8796       | 80         | 51 20  | 12545  | 345        | 3884     |
| 28          | 57344       | 3897       | 102       | 20.08          | 54746       | 2657         | 50849    | 114688      | 8888       | 92         | 44.52  | 13094  | 414        | 4206     |
| 29          | 59392       | 3976       | 79        | 25.92          | 57067       | 2321         | 53091    | 118784      | 8989       | 101        | 40.55  | 14012  | 918        | 5023     |
| 30          | 61440       | 4052       | 76        | 26.95          | 59564       | 2497         | 55512    | 122880      | 9206       | 217        | 18.88  | 14384  | 372        | 5178     |
| 31          | 63488       | 4188       | 136       | 15.06          | 60127       | 563          | 55939    | 126976      | 9284       | 78         | 52.51  | 14877  | 493        | 5593     |
| 32          | 65536       | 4241       | 53        | 38.64          | 61442       | 1315         | 57201    | 131072      | 9381       | 97         | 42.23  | 15282  | 405        | 5901     |
| 33          | 67584       | 4326       | 85        | 24.09          | 62778       | 1336         | 58452    | 135168      | 9458       | 77         | 53.19  | 16125  | 843        | 6667     |
| 34          | 69632       | 4402       | 76        | 26.95          | 63359       | 581          | 58957    | 139264      | 9684       | 226        | 18.12  | 16573  | 448        | 6889     |
| 35          | 71680       | 4525       | 123       | 16.65          | 64505       | 1146         | 59980    | 143360      | 10082      | 398        | 10.29  | 16863  | 290        | 6781     |
| 36          | 73728       | 4790       | 265       | 7.73           | 65955       | 1450         | 61165    | 147456      | 10128      | 46         | 89.04  | 17437  | 574        | 7309     |
| 37          | 75776       | 4855       | 65        | 31.51          | 66648       | 693          | 61793    | 151552      | 10210      | 82         | 49.95  | 17869  | 432        | 7659     |
| 38          | 7/824       | 4892       | 37        | 28.05          | 68635       | 820          | 62923    | 155648      | 10292      | 82         | 49.95  | 18306  | 437        | 8014     |
| 40          | 81920       | 5001       | 36        | 56.89          | 69875       | 1240         | 64874    | 163840      | 10545      | 208        | 19 69  | 19570  | 817        | 9025     |
| 41          | 83968       | 5078       | 77        | 26.60          | 70894       | 1019         | 65816    | 167936      | 10610      | 65         | 63.02  | 20089  | 519        | 9479     |
| 42          | 86016       | 5139       | 61        | 33.57          | 71807       | 913          | 66668    | 172032      | 10698      | 88         | 46.55  | 20619  | 530        | 9921     |
| 43          | 88064       | 5256       | 117       | 17.50          | 73146       | 1339         | 67890    | 176128      | 10780      | 82         | 49.95  | 21167  | 548        | 10387    |
| 44          | 90112       | 5336       | 80        | 25.60          | 74206       | 1060         | 68870    | 180224      | 10876      | 96         | 42.67  | 21735  | 568        | 10859    |
| 45          | 92160       | 5441       | 105       | 19.50          | 75130       | 924          | 69689    | 184320      | 13098      | 2222       | 1.84   | 22280  | 545        | 9182     |
| 46          | 94208       | 5474       | 33        | 62.06          | 76555       | 1425         | 71081    | 188416      | 14037      | 939        | 4.36   | 23268  | 988        | 9231     |
| 47          | 96256       | 5558       | 84        | 24.38          | 77461       | 906          | 71903    | 192512      | 14865      | 828        | 4.95   | 23844  | 576        | 8979     |
| 48          | 98304       | 5575       | 17        | 120.47         | 79282       | 1821         | 73707    | 196608      | 15316      | 451        | 9.08   | 24400  | 556        | 9084     |
| 49          | 100352      | 5644       | 69<br>62  | 29.68          | 80983       | 1701         | 75339    | 200704      | 10604      | 1288       | 3.18   | 24966  | 1072       | 8362     |
| 51          | 104448      | 6238       | 532       | 3 85           | 82617       | 37/          | 76379    | 204800      | 20129      | 5000       | 7 80   | 26683  | 645        | 6554     |
| 52          | 106496      | 6308       | 70        | 29.26          | 84086       | 1469         | 77778    | 212992      | 20694      | 565        | 7.25   | 27716  | 1033       | 7022     |
| 53          | 108544      | 6422       | 114       | 17.96          | 85234       | 1148         | 78812    | 217088      | 21738      | 1044       | 3.92   | 28361  | 645        | 6623     |
| 54          | 110592      | 6474       | 52        | 39.38          | 86676       | 1442         | 80202    | 221184      | 23246      | 1508       | 2.72   | 29003  | 642        | 5757     |
| 55          | 112640      | 6600       | 126       | 16.25          | 87721       | 1045         | 81121    | 225280      | 25648      | 2402       | 1.71   | 29658  | 655        | 4010     |
| 56          | 114688      | 6651       | 51        | 40.16          | 89002       | 1281         | 82351    | 229376      | 25747      | 99         | 41.37  | 30683  | 1025       | 4936     |
| 57          | 116736      | 6772       | 121       | 16.93          | 90366       | 1364         | 83594    | 233472      | 25848      | 101        | 40.55  | 31396  | 713        | 5548     |
| 58          | 118784      | 6830       | 58        | 35.31          | 91612       | 1246         | 84782    | 237568      | 25977      | 129        | 31.75  | 32107  | 711        | 6130     |
| 59          | 120832      | 6939       | 109       | 18.79          | 92776       | 1164         | 85837    | 241664      | 26999      | 1022       | 4.01   | 32867  | 760        | 5868     |
| 60          | 122880      | 7058       | 119       | 17.21          | 94445       | 1669         | 87387    | 245760      | 29680      | 2681       | 1.53   | 33905  | 1038       | 4225     |
| 61          | 124928      | 7220       | 162       | 22.04          | 95/69       | 2402         | 00000    | 249856      | 30/13      | 2201       | 3.97   | 34018  | 713        | 3905     |
| 63          | 129024      | 7292       | 121       | 20.44<br>16 93 | 99681       | 2403<br>1509 | 97268    | 253952      | 32869      | 1427       | 2 87   | 36025  | 706        | 3156     |
| 64          | 131072      | 7480       | 67        | 30.57          | 100068      | 387          | 92588    | 262144      | 33932      | 1063       | 3.85   | 37373  | 1348       | 3441     |
| 65          | 133120      | 7831       | 351       | 5.83           | 102615      | 2547         | 94784    | 266240      | 37561      | 3629       | 1.13   | 38356  | 983        | 795      |
| 66          | 135168      | 7893       | 62        | 33.03          | 103905      | 1290         | 96012    | 270336      | 38386      | 825        | 4.96   | 38901  | 545        | 515      |
| 67          | 137216      | 8028       | 135       | 15.17          | 105035      | 1130         | 97007    | 274432      | 39160      | 774        | 5.29   | 39877  | 976        | 717      |
| 68          | 139264      | 8075       | 47        | 43.57          | 107144      | 2109         | 99069    | 278528      | 39948      | 788        | 5.20   | 40968  | 1091       | 1020     |
| 69          | 141312      | 8217       | 142       | 14.42          | 108010      | 866          | 99793    | 282624      | 41883      | 1935       | 2.12   | 42232  | 1264       | 349      |
| 70          | 143360      | 8236       | 19        | 107.79         | 110473      | 2463         | 102237   | 286720      | 42935      | 1052       | 3.89   | 43136  | 904        | 201      |
| 71          | 145408      | 8385       | 149       | 13.74          | 110916      | 443          | 102531   | 290816      | 43219      | 284        | 14.42  | 43861  | 725        | 642      |

| Block Size |             |            |          | 2048   |             |            |          |             | 1          |            | 4096   |        | 1            |          |
|------------|-------------|------------|----------|--------|-------------|------------|----------|-------------|------------|------------|--------|--------|--------------|----------|
|            | kb          | at Service | Delta    | Speed  |             |            |          | kb          | at Service |            | Speed  | at GUI |              |          |
| Block #    | transferred | (ms)       | (ms)     | (kb/s) | at GUI (ms) | Delta (ms) | Lag (ms) | transferred | (ms)       | Delta (ms) | (kb/s) | (ms)   | Delta (ms)   | Lag (ms) |
| 72         | 14/456      | 8541       | 156      | 13.13  | 112/8/      | 18/1       | 104246   | 294912      | 44029      | 810        | 5.06   | 44769  | 908          | 740      |
| 73         | 149504      | 8711       | 170      | 12.05  | 114822      | 2035       | 100111   | 299008      | 45032      | 1105       | 2.50   | 46002  | 1233         | 370      |
| 74         | 153600      | 8908       | 147      | 13.93  | 117995      | 956        | 109087   | 307200      | 48289      | 1105       | 2.64   | 48320  | 1401         | 31       |
| 76         | 155648      | 8934       | 26       | 78.77  | 120426      | 2431       | 111492   | 311296      | 48414      | 125        | 32.77  | 49158  | 838          | 744      |
| 77         | 157696      | 9045       | 111      | 18.45  | 121967      | 1541       | 112922   | 315392      | 49293      | 879        | 4.66   | 49989  | 831          | 696      |
| 78         | 159744      | 9129       | 84       | 24.38  | 123865      | 1898       | 114736   | 319488      | 50341      | 1048       | 3.91   | 50987  | 998          | 646      |
| 79         | 161792      | 9556       | 427      | 4.80   | 125422      | 1557       | 115866   | 323584      | 52250      | 1909       | 2.15   | 52261  | 1274         | 11       |
| 80         | 163840      | 9638       | 82       | 24.98  | 126745      | 1323       | 117107   | 327680      | 53374      | 1124       | 3.64   | 53399  | 1138         | 25       |
| 81         | 165888      | 9747       | 109      | 18.79  | 129044      | 2299       | 119297   | 331776      | 53476      | 102        | 40.16  | 53712  | 313          | 236      |
| 82         | 167936      | 9801       | 54       | 37.93  | 129786      | 742        | 119985   | 335872      | 54401      | 925        | 4.43   | 55002  | 1290         | 601      |
| 83         | 169984      | 9915       | 114      | 17.96  | 131526      | 1740       | 121611   | 339968      | 55649      | 1248       | 3.28   | 56299  | 1297         | 650      |
| 84         | 172032      | 9973       | 58       | 35.31  | 133906      | 2380       | 123933   | 344064      | 56622      | 973        | 4.21   | 57298  | 999          | 676      |
| 85         | 174080      | 10151      | 53       | 10.38  | 135445      | 1260       | 125347   | 348160      | 58986      | 2364       | 1.73   | 58997  | 1099         | 635      |
| 87         | 170120      | 10151      | 109      | 18 79  | 137916      | 1200       | 120554   | 356352      | 60093      | 35<br>1008 | 41.57  | 60591  | 723<br>871   | 498      |
| 88         | 180224      | 10200      | 45       | 45.51  | 140713      | 2797       | 130408   | 360448      | 61079      | 986        | 4.15   | 62047  | 1456         | 968      |
| 89         | 182272      | 10435      | 130      | 15.75  | 142625      | 1912       | 132190   | 364544      | 62441      | 1362       | 3.01   | 63326  | 1279         | 885      |
| 90         | 184320      | 10485      | 50       | 40.96  | 143166      | 541        | 132681   | 368640      | 64479      | 2038       | 2.01   | 64508  | 1182         | 29       |
| 91         | 186368      | 10629      | 144      | 14.22  | 144666      | 1500       | 134037   | 372736      | 64589      | 110        | 37.24  | 65220  | 712          | 631      |
| 92         | 188416      | 10684      | 55       | 37.24  | 146466      | 1800       | 135782   | 376832      | 66538      | 1949       | 2.10   | 67327  | 2107         | 789      |
| 93         | 190464      | 10784      | 100      | 20.48  | 148075      | 1609       | 137291   | 380928      | 67537      | 999        | 4.10   | 68545  | 1218         | 1008     |
| 94         | 192512      | 10832      | 48       | 42.67  | 149925      | 1850       | 139093   | 385024      | 68630      | 1093       | 3.75   | 69926  | 1381         | 1296     |
| 95         | 194560      | 11283      | 451      | 4.54   | 151220      | 1295       | 139937   | 389120      | 71259      | 2629       | 1.56   | 71299  | 1373         | 40       |
| 96         | 196608      | 11354      | 71       | 28.85  | 153178      | 1958       | 141824   | 393216      | 71368      | 109        | 37.58  | 72382  | 1083         | 1014     |
| 97         | 198656      | 11492      | 138      | 14.84  | 154965      | 1787       | 143473   | 397312      | 72424      | 1056       | 3.88   | 74058  | 1676         | 1634     |
| 98         | 200704      | 11538      | 46       | 44.52  | 158/20      | 1/61       | 145188   | 401408      | 74130      | 1/12       | 2.39   | 75253  | 1195         | 1117     |
| 99<br>100  | 202732      | 11002      | 60       | 34 13  | 150425      | 1783       | 140701   | 403504      | 78236      | 2647       | 1 55   | 78257  | 1759         | 21       |
| 100        | 206848      | 11848      | 126      | 16.25  | 161736      | 1530       | 149888   | 413696      | 78337      | 101        | 40.55  | 79157  | 900          | 820      |
| 102        | 208896      | 11884      | 36       | 56.89  | 163629      | 1893       | 151745   | 417792      | 79915      | 1578       | 2.60   | 80547  | 1390         | 632      |
| 103        | 210944      | 12016      | 132      | 15.52  | 165373      | 1744       | 153357   | 421888      | 81126      | 1211       | 3.38   | 82617  | 2070         | 1491     |
| 104        | 212992      | 12064      | 48       | 42.67  | 167405      | 2032       | 155341   | 425984      | 82706      | 1580       | 2.59   | 83818  | 1201         | 1112     |
| 105        | 215040      | 12198      | 134      | 15.28  | 170285      | 2880       | 158087   | 430080      | 85281      | 2575       | 1.59   | 85291  | 1473         | 10       |
| 106        | 217088      | 12260      | 62       | 33.03  | 171585      | 1300       | 159325   | 434176      | 85364      | 83         | 49.35  | 86357  | 1066         | 993      |
| 107        | 219136      | 12371      | 111      | 18.45  | 172668      | 1083       | 160297   | 438272      | 86948      | 1584       | 2.59   | 87908  | 1551         | 960      |
| 108        | 221184      | 12444      | 73       | 28.05  | 174567      | 1899       | 162123   | 442368      | 88289      | 1341       | 3.05   | 89718  | 1810         | 1429     |
| 109        | 223232      | 12908      | 464      | 4.41   | 176486      | 1919       | 163578   | 446464      | 89894      | 1605       | 2.55   | 91026  | 1308         | 1132     |
| 110        | 225280      | 12962      | 111      | 37.93  | 1/8996      | 1709       | 165034   | 450560      | 92530      | 2636       | 26.00  | 92567  | 1541         | 37       |
| 112        | 229376      | 13142      | 69       | 29.68  | 182215      | 1511       | 169073   | 454050      | 94360      | 1673       | 20.05  | 95669  | 1991         | 1309     |
| 113        | 231424      | 13240      | 98       | 20.90  | 184244      | 2029       | 171004   | 462848      | 95697      | 1337       | 3.06   | 97347  | 1678         | 1650     |
| 114        | 233472      | 13328      | 88       | 23.27  | 186024      | 1780       | 172696   | 466944      | 97377      | 1680       | 2.44   | 98438  | 1091         | 1061     |
| 115        | 235520      | 13494      | 166      | 12.34  | 188052      | 2028       | 174558   | 471040      | 100517     | 3140       | 1.30   | 101130 | 2692         | 613      |
| 116        | 237568      | 13531      | 37       | 55.35  | 189765      | 1713       | 176234   | 475136      | 100613     | 96         | 42.67  | 102532 | 1402         | 1919     |
| 117        | 239616      | 13654      | 123      | 16.65  | 191687      | 1922       | 178033   | 479232      | 100742     | 129        | 31.75  | 104018 | 1486         | 3276     |
| 118        | 241664      | 13722      | 68       | 30.12  | 193625      | 1938       | 179903   | 483328      | 100869     | 127        | 32.25  | 105257 | 1239         | 4388     |
| 119        | 243712      | 13848      | 126      | 16.25  | 195654      | 2029       | 181806   | 487424      | 101115     | 246        | 16.65  | 107270 | 2013         | 6155     |
| 120        | 245760      | 13892      | 44       | 40.55  | 19/004      | 2010       | 105//2   | 491520      | 104338     | 3223       | 1.2/   | 110409 | 1108         | 4100     |
| 121        | 249856      | 14141      | 97       | 21 11  | 200230      | 2292       | 188381   | 499712      | 107308     | 1439       | 2.08   | 111768 | 1970         | 3960     |
| 123        | 251904      | 14271      | 130      | 15.75  | 204543      | 2021       | 190272   | 503808      | 107429     | 121        | 33.85  | 113358 | 2090         | 5929     |
| 124        | 253952      | 14619      | 348      | 5.89   | 206025      | 1482       | 191406   | 507904      | 109884     | 2455       | 1.67   | 115067 | 1709         | 5183     |
| 125        | 256000      | 14739      | 120      | 17.07  | 207816      | 1791       | 193077   | 512000      | 115175     | 5291       | 0.77   | 116268 | 1201         | 1093     |
| 126        | 258048      | 14792      | 53       | 38.64  | 209887      | 2071       | 195095   | 516096      | 115649     | 474        | 8.64   | 118589 | 2321         | 2940     |
| 127        | 260096      | 14917      | 125      | 16.38  | 212209      | 2322       | 197292   | 520192      | 117108     | 1459       | 2.81   | 120352 | 1763         | 3244     |
| 128        | 262144      | 14971      | 54       | 37.93  | 214216      | 2007       | 199245   | 524288      | 118996     | 1888       | 2.17   | 121667 | 1315         | 2671     |
| 129        | 264192      | 15099      | 128      | 16.00  | 216247      | 2031       | 201148   | 528384      | 120476     | 1480       | 2.77   | 123406 | 1739         | 2930     |
| 130        | 200240      | 15155      | 110      | 17 21  | 210323      | 2070       | 205190   | 536576      | 124323     | 1449       | 2.84   | 127087 | 2186         | 1506     |
| 131        | 270336      | 15252      | 49       | 41.80  | 220073      | 3768       | 209423   | 540672      | 127314     | 1547       | 2.65   | 128633 | 1360         | 1319     |
| 132        | 272384      | 15454      | 153      | 13.39  | 224797      | 354        | 209343   | 544768      | 129249     | 1935       | 2.12   | 130097 | 1464         | 848      |
| 134        | 274432      | 15511      | 57       | 35.93  | 227010      | 2213       | 211499   | 548864      | 129376     | 127        | 32.25  | 132928 | 2831         | 3552     |
| 135        | 276480      | 15648      | 137      | 14.95  | 230827      | 3817       | 215179   | 552960      | 134681     | 5305       | 0.77   | 134693 | 1765         | 12       |
| 136        | 278528      | 15693      | 45       | 45.51  | 231678      | 851        | 215985   | 557056      | 134832     | 151        | 27.13  | 136925 | 2232         | 2093     |
| 137        | 280576      | 15811      | 118      | 17.36  | 234107      | 2429       | 218296   | 561152      | 136952     | 2120       | 1.93   | 138166 | 1241         | 1214     |
| 138        | 282624      | 15851      | 40       | 51.20  | 236132      | 2025       | 220281   | 565248      | 137114     | 162        | 25.28  | 139427 | 1261         | 2313     |
| 139        | 284672      | 16194      | 343      | 5.97   | 238306      | 2174       | 222112   | 569344      | 138748     | 1634       | 2.51   | 141297 | 1870         | 2549     |
| 140        | 286720      | 16246      | 52       | 39.38  | 240524      | 2218       | 224278   | 573440      | 144338     | 5590       | 0.73   | 144375 | 3078         | 37       |
| 141        | 288768      | 16346      | 100      | 20.48  | 242445      | 1921       | 226099   | 577536      | 144463     | 125        | 32.77  | 145278 | 903          | 815      |
| 142        | 290816      | 16486      | 72<br>68 | 20.44  | 244049      | 2204       | 220231   | 585729      | 146100     | 1201       | 2.50   | 140607 | 1529<br>2111 | 2680     |
| 144        | 294912      | 16572      | 86       | 23.81  | 249176      | 2170       | 232604   | 589824      | 148242     | 2013       | 2.03   | 150877 | 1959         | 2635     |

| Block Size |             |            |          | 2048   | -           |            |          |             | -          |            | 4096   |        |            |          |
|------------|-------------|------------|----------|--------|-------------|------------|----------|-------------|------------|------------|--------|--------|------------|----------|
|            | kb          | at Service | Delta    | Speed  |             |            |          | kb          | at Service |            | Speed  | at GUI |            |          |
| Block #    | transferred | (ms)       | (ms)     | (kb/s) | at GUI (ms) | Delta (ms) | Lag (ms) | transferred | (ms)       | Delta (ms) | (kb/s) | (ms)   | Delta (ms) | Lag (ms) |
| 145        | 296960      | 16682      | 110      | 18.62  | 251553      | 2377       | 234871   | 593920      | 153642     | 5400       | 0.76   | 153652 | 2775       | 10       |
| 146        | 299008      | 16761      | 79       | 25.92  | 253766      | 2213       | 237005   | 598016      | 153747     | 105        | 39.01  | 154682 | 1030       | 935      |
| 147        | 301056      | 16016      | 108      | 18.96  | 255950      | 2190       | 239087   | 606208      | 155848     | 1808       | 2.19   | 150/98 | 2116       | 2275     |
| 140        | 305152      | 17049      | 133      | 15 40  | 261363      | 2576       | 241071   | 610304      | 158646     | 233        | 1 46   | 160202 | 1079       | 1556     |
| 150        | 307200      | 17095      | 46       | 44.52  | 263237      | 1874       | 246142   | 614400      | 163624     | 4978       | 0.82   | 163676 | 3474       | 52       |
| 151        | 309248      | 17206      | 111      | 18.45  | 266085      | 2848       | 248879   | 618496      | 163770     | 146        | 28.05  | 165911 | 2235       | 2141     |
| 152        | 311296      | 17256      | 50       | 40.96  | 268485      | 2400       | 251229   | 622592      | 165618     | 1848       | 2.22   | 167871 | 1960       | 2253     |
| 153        | 313344      | 17699      | 443      | 4.62   | 270535      | 2050       | 252836   | 626688      | 166061     | 443        | 9.25   | 168763 | 892        | 2702     |
| 154        | 315392      | 17725      | 26       | 78.77  | 273307      | 2772       | 255582   | 630784      | 167943     | 1882       | 2.18   | 171038 | 2275       | 3095     |
| 155        | 317440      | 17880      | 155      | 13.21  | 275588      | 2281       | 257708   | 634880      | 172052     | 4109       | 1.00   | 172897 | 1859       | 845      |
| 156        | 319488      | 17972      | 92       | 22.26  | 278594      | 3006       | 260622   | 638976      | 174093     | 2041       | 2.01   | 175127 | 2230       | 1034     |
| 157        | 321536      | 18142      | 170      | 12.05  | 280545      | 1951       | 262403   | 643072      | 174830     | 737        | 5.56   | 177918 | 2791       | 3088     |
| 158        | 323584      | 18192      | 50       | 40.96  | 283245      | 2700       | 265053   | 647168      | 176296     | 1466       | 2.79   | 178817 | 899        | 2521     |
| 159        | 325632      | 18430      | 238      | 8.61   | 285605      | 2360       | 267175   | 651264      | 178189     | 1893       | 2.16   | 180997 | 2180       | 2808     |
| 160        | 327680      | 18501      | 71       | 28.85  | 287745      | 2140       | 269244   | 655360      | 182513     | 4324       | 0.95   | 183287 | 2290       | 774      |
| 161        | 329728      | 18592      | 91<br>79 | 22.51  | 291062      | 2152       | 272470   | 663552      | 185763     | 1950       | 2.12   | 188006 | 2151       | 2243     |
| 162        | 333824      | 18798      | 127      | 16 13  | 295956      | 2152       | 274343   | 667648      | 186738     | 975        | 4 20   | 190078 | 2000       | 3340     |
| 164        | 335872      | 18858      | 60       | 34.13  | 298198      | 2742       | 279340   | 671744      | 186888     | 150        | 27.31  | 193328 | 3250       | 6440     |
| 165        | 337920      | 18979      | 121      | 16.93  | 300865      | 2667       | 281886   | 675840      | 189047     | 2159       | 1.90   | 195714 | 2386       | 6667     |
| 166        | 339968      | 18995      | 16       | 128.00 | 303495      | 2630       | 284500   | 679936      | 191292     | 2245       | 1.82   | 198065 | 2351       | 6773     |
| 167        | 342016      | 19414      | 419      | 4.89   | 305515      | 2020       | 286101   | 684032      | 193312     | 2020       | 2.03   | 200207 | 2142       | 6895     |
| 168        | 344064      | 19450      | 36       | 56.89  | 307928      | 2413       | 288478   | 688128      | 193468     | 156        | 26.26  | 201239 | 1032       | 7771     |
| 169        | 346112      | 19607      | 157      | 13.04  | 310580      | 2652       | 290973   | 692224      | 195927     | 2459       | 1.67   | 203785 | 2546       | 7858     |
| 170        | 348160      | 19700      | 93       | 22.02  | 313205      | 2625       | 293505   | 696320      | 200383     | 4456       | 0.92   | 206281 | 2496       | 5898     |
| 171        | 350208      | 19827      | 127      | 16.13  | 315725      | 2520       | 295898   | 700416      | 201085     | 702        | 5.83   | 207780 | 1499       | 6695     |
| 172        | 352256      | 19883      | 56       | 36.57  | 318228      | 2503       | 298345   | 704512      | 202809     | 1724       | 2.38   | 210119 | 2339       | 7310     |
| 173        | 354304      | 20001      | 118      | 17.36  | 321484      | 3256       | 301483   | 708608      | 205065     | 2256       | 1.82   | 212628 | 2509       | 7563     |
| 174        | 356352      | 20059      | 58       | 35.31  | 323805      | 2321       | 303746   | 712704      | 207017     | 1952       | 2.10   | 214382 | 1754       | 7365     |
| 175        | 358400      | 20169      | 110      | 18.62  | 326544      | 2739       | 306375   | 716800      | 211733     | 4716       | 0.87   | 217630 | 3248       | 5897     |
| 170        | 300448      | 20222      | 110      | 17.26  | 328970      | 2432       | 212415   | 720890      | 213703     | 1970       | 2.08   | 219547 | 2517       | 0010     |
| 178        | 364544      | 20340      | 61       | 33 57  | 335388      | 2633       | 314987   | 724552      | 215654     | 2341       | 1 75   | 222804 | 2405       | 9010     |
| 170        | 366592      | 20529      | 128      | 16.00  | 337995      | 2605       | 317466   | 733184      | 217888     | 1693       | 2.42   | 227900 | 2403       | 10012    |
| 180        | 368640      | 20565      | 36       | 56.89  | 341128      | 3133       | 320563   | 737280      | 223173     | 5285       | 0.78   | 228983 | 1083       | 5810     |
| 181        | 370688      | 20698      | 133      | 15.40  | 343684      | 2556       | 322986   | 741376      | 225279     | 2106       | 1.94   | 232691 | 3708       | 7412     |
| 182        | 372736      | 20733      | 35       | 58.51  | 346150      | 2466       | 325417   | 745472      | 225454     | 175        | 23.41  | 235249 | 2558       | 9795     |
| 183        | 374784      | 21240      | 507      | 4.04   | 351436      | 5286       | 330196   | 749568      | 227954     | 2500       | 1.64   | 236437 | 1188       | 8483     |
| 184        | 376832      | 21303      | 63       | 32.51  | 352094      | 658        | 330791   | 753664      | 228158     | 204        | 20.08  | 239966 | 3529       | 11808    |
| 185        | 378880      | 21450      | 147      | 13.93  | 354985      | 2891       | 333535   | 757760      | 235313     | 7155       | 0.57   | 241090 | 1124       | 5777     |
| 186        | 380928      | 21525      | 75       | 27.31  | 357706      | 2721       | 336181   | 761856      | 235407     | 94         | 43.57  | 243224 | 2134       | 7817     |
| 187        | 382976      | 21634      | 109      | 18.79  | 360586      | 2880       | 338952   | 765952      | 237878     | 2471       | 1.66   | 245959 | 2735       | 8081     |
| 188        | 385024      | 21703      | 69       | 29.68  | 363201      | 2615       | 341498   | 770048      | 239986     | 2108       | 1.94   | 248627 | 2668       | 8641     |
| 189        | 38/0/2      | 21823      | 120      | 17.07  | 366158      | 2957       | 344335   | 774144      | 240134     | 148        | 27.68  | 251077 | 2450       | 10943    |
| 190        | 201169      | 21000      | 124      | 16 52  | 271045      | 2919       | 24/192   | 7/6240      | 245107     | 4975       | 1.60   | 255205 | 2002       | 10156    |
| 191        | 393216      | 22005      | 66       | 31.03  | 374496      | 2551       | 352421   | 786432      | 247351     | 2424       | 17 21  | 261335 | 3068       | 13566    |
| 193        | 395264      | 22189      | 114      | 17.96  | 377525      | 3029       | 355336   | 790528      | 249810     | 2041       | 2.01   | 264281 | 2946       | 14471    |
| 194        | 397312      | 22225      | 36       | 56.89  | 381772      | 4247       | 359547   | 794624      | 252477     | 2667       | 1.54   | 266378 | 2097       | 13901    |
| 195        | 399360      | 22358      | 133      | 15.40  | 383865      | 2093       | 361507   | 798720      | 258468     | 5991       | 0.68   | 269899 | 3521       | 11431    |
| 196        | 401408      | 22418      | 60       | 34.13  | 386211      | 2346       | 363793   | 802816      | 259202     | 734        | 5.58   | 271704 | 1805       | 12502    |
| 197        | 403456      | 22919      | 501      | 4.09   | 390772      | 4561       | 367853   | 806912      | 261669     | 2467       | 1.66   | 275580 | 3876       | 13911    |
| 198        | 405504      | 22997      | 78       | 26.26  | 392128      | 1356       | 369131   | 811008      | 262237     | 568        | 7.21   | 278078 | 2498       | 15841    |
| 199        | 407552      | 23095      | 98       | 20.90  | 395355      | 3227       | 372260   | 815104      | 265044     | 2807       | 1.46   | 279428 | 1350       | 14384    |
| 200        | 409600      | 23155      | 60       | 34.13  | 398584      | 3229       | 375429   | 819200      | 270145     | 5101       | 0.80   | 283774 | 4346       | 13629    |
| 201        | 411648      | 23255      | 100      | 20.48  | 401195      | 2611       | 377940   | 823296      | 271535     | 1390       | 2.95   | 286640 | 2866       | 15105    |
| 202        | 413696      | 23323      | 170      | 30.12  | 404652      | 3457       | 381329   | 82/392      | 272950     | 1415       | 2.89   | 289316 | 26/6       | 16366    |
| 203        | 413744      | 23502      | 175      | 20.12  | 400873      | 2223       | 386002   | 93559/      | 275042     | 128        | 32.00  | 292072 | 1207       | 18/00    |
| 204        | 419840      | 23570      | 95       | 21 56  | 413742      | 3270       | 390077   | 839680      | 281083     | 5313       | 0 77   | 297118 | 2849       | 16035    |
| 205        | 421888      | 23735      | 70       | 29.26  | 416275      | 2533       | 392540   | 843776      | 283810     | 2727       | 1.50   | 299558 | 2440       | 15748    |
| 207        | 423936      | 23861      | 126      | 16.25  | 419713      | 3438       | 395852   | 847872      | 283962     | 152        | 26.95  | 302268 | 2710       | 18306    |
| 208        | 425984      | 23924      | 63       | 32.51  | 422355      | 2642       | 398431   | 851968      | 285768     | 1806       | 2.27   | 307082 | 4814       | 21314    |
| 209        | 428032      | 24015      | 91       | 22.51  | 425495      | 3140       | 401480   | 856064      | 286861     | 1093       | 3.75   | 308246 | 1164       | 21385    |
| 210        | 430080      | 24091      | 76       | 26.95  | 427997      | 2502       | 403906   | 860160      | 293319     | 6458       | 0.63   | 311350 | 3104       | 18031    |
| 211        | 432128      | 24202      | 111      | 18.45  | 430971      | 2974       | 406769   | 864256      | 293471     | 152        | 26.95  | 313738 | 2388       | 20267    |
| 212        | 434176      | 24579      | 377      | 5.43   | 434933      | 3962       | 410354   | 868352      | 296041     | 2570       | 1.59   | 316408 | 2670       | 20367    |
| 213        | 436224      | 24687      | 108      | 18.96  | 437475      | 2542       | 412788   | 872448      | 296607     | 566        | 7.24   | 319081 | 2673       | 22474    |
| 214        | 438272      | 24759      | 72       | 28.44  | 440895      | 3420       | 416136   | 876544      | 298912     | 2305       | 1.78   | 321847 | 2766       | 22935    |
| 215        | 440320      | 24854      | 95       | 21.56  | 444035      | 3140       | 419181   | 880640      | 304029     | 5117       | 0.80   | 326898 | 5051       | 22869    |
| 216        | 442368      | 24918      | 132      | 32.00  | 44/325      | 3290       | 422407   | 884736      | 304888     | 1993       | 4.77   | 32/721 | 823        | 22833    |
| 21/        | 444416      | 25050      | 152      | 10.02  | 450095      | 2770       | 420045   | 000032      | 506770     | 1002       | 2.18   | 550243 | 2522       | 234/3    |

| Block Size |             |            |       | 2048    |             |            |          |             |            |            | 4096   |        |            |          |
|------------|-------------|------------|-------|---------|-------------|------------|----------|-------------|------------|------------|--------|--------|------------|----------|
|            | kb          | at Service | Delta | Speed   |             |            |          | kb          | at Service |            | Speed  | at GUI |            |          |
| Block #    | transferred | (ms)       | (ms)  | (kb/s)  | at GUI (ms) | Delta (ms) | Lag (ms) | transferred | (ms)       | Delta (ms) | (kb/s) | (ms)   | Delta (ms) | Lag (ms) |
| 218        | 446464      | 25092      | 42    | 48.76   | 453205      | 3110       | 428113   | 892928      | 306903     | 133        | 30.80  | 332989 | 2746       | 26086    |
| 219        | 448512      | 25243      | 151   | 13.56   | 456816      | 3611       | 431573   | 897024      | 307019     | 116        | 35.31  | 337637 | 4648       | 30618    |
| 220        | 450560      | 25351      | 108   | 18.96   | 460045      | 3229       | 434694   | 901120      | 309967     | 2948       | 1.39   | 338840 | 1203       | 28873    |
| 221        | 452608      | 25455      | 104   | 19.69   | 462689      | 2644       | 437234   | 905216      | 312817     | 2850       | 1.44   | 341984 | 3144       | 29167    |
| 222        | 454656      | 25513      | 58    | 35.31   | 465885      | 3196       | 440372   | 909312      | 313019     | 202        | 20.28  | 345157 | 3173       | 32138    |
| 223        | 456704      | 25643      | 130   | 15.75   | 469571      | 3686       | 443928   | 913408      | 315398     | 2379       | 1.72   | 347785 | 2628       | 32387    |
| 224        | 458752      | 25700      | 57    | 35.93   | 473372      | 3801       | 447672   | 917504      | 315537     | 139        | 29.47  | 350837 | 3052       | 35300    |
| 225        | 460800      | 25812      | 112   | 18.29   | 476346      | 2974       | 450534   | 921600      | 321227     | 5690       | 0.72   | 353617 | 2780       | 32390    |
| 226        | 462848      | 25879      | 67    | 30.57   | 479515      | 3169       | 453636   | 925696      | 322073     | 846        | 4.84   | 356685 | 3068       | 34612    |
| 227        | 464896      | 26318      | 439   | 4.67    | 482865      | 3350       | 456547   | 929792      | 324133     | 2060       | 1.99   | 359987 | 3302       | 35854    |
| 228        | 466944      | 26363      | 45    | 45.51   | 486269      | 3404       | 459906   | 933888      | 326924     | 2791       | 1.47   | 362358 | 2371       | 35434    |
| 229        | 468992      | 26488      | 125   | 16.38   | 489435      | 3166       | 462947   | 937984      | 327074     | 150        | 27.31  | 364782 | 2424       | 37708    |
| 230        | 471040      | 26540      | 52    | 39.38   | 492435      | 3000       | 465895   | 942080      | 332426     | 5352       | 0.77   | 367967 | 3185       | 35541    |
| 231        | 473088      | 26669      | 129   | 15.88   | 495955      | 3520       | 469286   | 946176      | 333575     | 1149       | 3.56   | 371077 | 3110       | 37502    |
| 232        | 475136      | 26738      | 69    | 29.68   | 499924      | 3969       | 473186   | 950272      | 335379     | 1804       | 2.27   | 374397 | 3320       | 39018    |
| 233        | 477184      | 26917      | 179   | 11.44   | 502816      | 2892       | 475899   | 954368      | 338211     | 2832       | 1.45   | 376818 | 2421       | 38607    |
| 234        | 479232      | 26990      | 73    | 28.05   | 506205      | 3389       | 479215   | 958464      | 338329     | 118        | 34.71  | 379605 | 2787       | 41276    |
| 235        | 481280      | 27098      | 108   | 18.96   | 509945      | 3740       | 482847   | 962560      | 343916     | 5587       | 0.73   | 382101 | 2496       | 38185    |
| 236        | 483328      | 27168      | 70    | 29.26   | 513255      | 3310       | 486087   | 966656      | 344332     | 416        | 9.85   | 385072 | 2971       | 40740    |
| 237        | 485376      | 27255      | 87    | 23.54   | 519505      | 6250       | 492250   | 970752      | 346838     | 2506       | 1.63   | 388069 | 2997       | 41231    |
| 238        | 487424      | 27341      | 86    | 23.81   | 520146      | 641        | 492805   | 974848      | 347541     | 703        | 5.83   | 390981 | 2912       | 43440    |
| 239        | 489472      | 27442      | 101   | 20.28   | 523428      | 3282       | 495986   | 978944      | 349869     | 2328       | 1.76   | 393922 | 2941       | 44053    |
| 240        | 491520      | 27502      | 60    | 34.13   | 528689      | 5261       | 501187   | 983040      | 355645     | 5776       | 0.71   | 396863 | 2941       | 41218    |
| 241        | 493568      | 27935      | 433   | 4.73    | 532482      | 3793       | 504547   | 987136      | 355772     | 127        | 32.25  | 399892 | 3029       | 44120    |
| 242        | 495616      | 28002      | 67    | 30.57   | 535775      | 3293       | 507773   | 991232      | 358316     | 2544       | 1.61   | 403727 | 3835       | 45411    |
| 243        | 497664      | 28120      | 118   | 17.36   | 539056      | 3281       | 510936   | 995328      | 358632     | 316        | 12.96  | 406916 | 3189       | 48284    |
| 244        | 499712      | 28182      | 62    | 33.03   | 542506      | 3450       | 514324   | 999424      | 361272     | 2640       | 1.55   | 409197 | 2281       | 47925    |
| 245        | 501760      | 28280      | 98    | 20.90   | 546665      | 4159       | 518385   | 1003520     | 367195     | 5923       | 0.69   | 411886 | 2689       | 44691    |
| 246        | 503808      | 28355      | 75    | 27.31   | 550436      | 3771       | 522081   | 1007616     | 367286     | 91         | 45.01  | 414920 | 3034       | 47634    |
| 247        | 505856      | 28609      | 254   | 8.06    | 553806      | 3370       | 525197   | 1011712     | 369998     | 2712       | 1.51   | 418025 | 3105       | 48027    |
| 248        | 507904      | 28677      | 68    | 30.12   | 557796      | 3990       | 529119   | 1015808     | 370358     | 360        | 11.38  | 420944 | 2919       | 50586    |
| 249        | 509952      | 28778      | 101   | 20.28   | 561902      | 4106       | 533124   | 1019904     | 373382     | 3024       | 1.35   | 424020 | 3076       | 50638    |
| 250        | 512000      | 28848      | 70    | 29.26   | 564989      | 3087       | 536141   | 1020249     | 373426     | 44         | 7.84   | 427047 | 3027       | 53621    |
| 251        | 514048      | 28952      | 104   | 19.69   | 568546      | 3557       | 539594   |             |            |            |        |        |            |          |
| 252        | 516096      | 29000      | 48    | 42.67   | 572286      | 3740       | 543286   |             |            |            |        |        |            |          |
| 253        | 518144      | 29137      | 137   | 14.95   | 575935      | 3649       | 546798   |             |            |            |        |        |            |          |
| 254        | 520192      | 29173      | 36    | 56.89   | 579745      | 3810       | 550572   |             |            |            |        |        |            |          |
| 255        | 522240      | 29593      | 420   | 4.88    | 583395      | 3650       | 553802   |             |            |            |        |        |            |          |
| 256        | 524288      | 29640      | 47    | 43.57   | 587076      | 3681       | 557436   |             |            |            |        |        |            |          |
| 257        | 526336      | 29730      | 90    | 22.76   | 591738      | 4662       | 562008   |             |            |            |        |        |            |          |
| 258        | 528384      | 29809      | 79    | 25.92   | 595202      | 3464       | 565393   |             |            |            |        |        |            |          |
| 259        | 530432      | 29923      | 114   | 17.96   | 598825      | 3623       | 568902   |             |            |            |        |        |            |          |
| 260        | 532480      | 29965      | 42    | 48.76   | 602375      | 3550       | 572410   |             |            |            |        |        |            |          |
| 261        | 534528      | 30100      | 135   | 15.17   | 606215      | 3840       | 576115   |             |            |            |        |        |            |          |
| 262        | 536576      | 30169      | 69    | 29.68   | 609876      | 3661       | 579707   |             |            |            |        |        |            |          |
| 263        | 538624      | 30358      | 189   | 10.84   | 613525      | 3649       | 583167   |             |            |            |        |        |            |          |
| 264        | 540672      | 30394      | 36    | 56.89   | 617605      | 4080       | 587211   |             |            |            |        |        |            |          |
| 265        | 542720      | 30542      | 148   | 13.84   | 621295      | 3690       | 590753   |             |            |            |        |        |            |          |
| 266        | 544768      | 30591      | 49    | 41.80   | 624875      | 3580       | 594284   |             |            |            |        |        |            |          |
| 267        | 546816      | 30727      | 136   | 15.06   | 628556      | 3681       | 597829   |             |            |            |        |        |            |          |
| 268        | 548864      | 30764      | 37    | 55.35   | 632455      | 3899       | 601691   |             |            |            |        |        |            |          |
| 269        | 550912      | 30882      | 118   | 17.36   | 636068      | 3613       | 605186   |             |            |            |        |        |            |          |
| 270        | 552960      | 30965      | 83    | 24.67   | 640395      | 4327       | 609430   |             |            |            |        |        |            |          |
| 271        | 555008      | 31391      | 426   | 4.81    | 643975      | 3580       | 612584   |             |            |            |        |        |            |          |
| 272        | 557056      | 31571      | 180   | 11.38   | 64/596      | 3621       | 616025   |             |            |            |        |        |            |          |
| 273        | 559104      | 31003      | 92    | 22.26   | 051547      | 3951       | 619884   |             |            |            |        |        |            |          |
| 274        | 561152      | 31696      | 33    | 62.06   | 655438      | 3891       | 623742   |             |            |            |        |        |            |          |
| 275        | 563200      | 31822      | 126   | 16.25   | 659975      | 4537       | 628153   |             |            |            |        |        |            |          |
| 276        | 565248      | 31891      | 69    | 29.68   | 663648      | 3673       | 631/5/   |             |            |            |        |        |            |          |
| 277        | 56/296      | 31999      | 108   | 18.96   | 671525      | 4167       | 635810   |             |            |            |        |        |            |          |
| 278        | 569344      | 32088      | 89    | 23.01   | 0/1525      | 3/10       | 639437   |             |            |            |        |        |            |          |
| 279        | 5/1392      | 32207      | 119   | 17.21   | 670003      | 3939       | 643257   |             |            |            |        |        |            |          |
| 280        | 573440      | 32243      | 30    | 10.09   | 0/9902      | 4438       | 04/059   |             |            |            |        |        |            |          |
| 281        | 575488      | 32353      | 110   | 18.62   | 687032      | 4100       | 051649   |             |            |            |        |        |            |          |
| 282        | 57/536      | 32427      | 110   | 10 60   | 601305      | 3920       | 655495   |             |            |            |        |        |            |          |
| 283        | 579584      | 3253/      | 110   | 10.02   | 091295      | 33/3       | 667860   |             |            |            |        |        |            |          |
| 284        | 581632      | 32011      | /4    | 27.08   | 695495      | 4200       | 666243   |             |            |            |        |        |            |          |
| 285        | 583680      | 33094      | 483   | 4.24    | 702525      | 5841       | 670261   |             |            |            |        |        |            |          |
| 286        | 585/28      | 331/1      | 110   | 20.60   | 703535      | 4199       | 67364    |             |            |            |        |        |            |          |
| 28/        | 50///6      | 33289      | 27    | 17.30   | 711005      | 3042       | 0/3888   |             |            |            |        |        |            |          |
| 288        | 589824      | 33316      | 170   | 11 5.85 | 716300      | 4/18       | 6/85/9   |             |            |            |        |        |            |          |
| 289        | 5918/2      | 33494      | 1/8   | 22 57   | / 10399     | 4504       | COOF 4   |             |            |            |        |        |            |          |
| 290        | 593920      | 53550      | 50    | 30.57   | 123404      | 7005       | 069854   |             |            |            |        |        |            |          |

| Block Size |             |            |       | 2048   |             |            |          |             |            |            | 4096   |        |            |          |
|------------|-------------|------------|-------|--------|-------------|------------|----------|-------------|------------|------------|--------|--------|------------|----------|
|            | kb          | at Service | Delta | Speed  |             |            |          | kb          | at Service |            | Speed  | at GUI |            |          |
| Block #    | transferred | (ms)       | (ms)  | (kb/s) | at GUI (ms) | Delta (ms) | Lag (ms) | transferred | (ms)       | Delta (ms) | (kb/s) | (ms)   | Delta (ms) | Lag (ms) |
| 291        | 595968      | 33674      | 124   | 16.52  | 724086      | 682        | 690412   |             |            |            |        |        |            |          |
| 202        | 598016      | 22722      | 58    | 25.21  | 720234      | 51/18      | 695502   |             |            |            |        |        |            |          |
| 202        | 558010      | 337.52     | 110   | 47.04  | 723234      | 24.62      | 095502   |             |            |            |        |        |            |          |
| 293        | 600064      | 33851      | 119   | 17.21  | /32396      | 3162       | 698545   |             |            |            |        |        |            |          |
| 294        | 602112      | 33895      | 44    | 46.55  | 736126      | 3730       | 702231   |             |            |            |        |        |            |          |
| 295        | 604160      | 34026      | 131   | 15.63  | 741012      | 4886       | 706986   |             |            |            |        |        |            |          |
| 296        | 606208      | 34083      | 57    | 35.93  | 744616      | 3604       | 710533   |             |            |            |        |        |            |          |
| 297        | 608256      | 34218      | 135   | 15.17  | 749336      | 4720       | 715118   |             |            |            |        |        |            |          |
| 298        | 610304      | 34255      | 37    | 55.35  | 753752      | 4416       | 719497   |             |            |            |        |        |            |          |
| 200        | 610301      | 24752      | 407   | 4.12   | 753732      | 25.25      | 723137   |             |            |            |        |        |            |          |
| 255        | 012332      | 34732      | 497   | 4.12   | 737277      | 5525       | 722323   |             |            |            |        |        |            |          |
| 300        | 614400      | 34823      | /1    | 28.85  | /613/6      | 4099       | /26553   |             |            |            |        |        |            |          |
| 301        | 616448      | 34905      | 82    | 24.98  | 765885      | 4509       | 730980   |             |            |            |        |        |            |          |
| 302        | 618496      | 34992      | 87    | 23.54  | 770436      | 4551       | 735444   |             |            |            |        |        |            |          |
| 303        | 620544      | 35089      | 97    | 21.11  | 773956      | 3520       | 738867   |             |            |            |        |        |            |          |
| 304        | 622592      | 35172      | 83    | 24.67  | 778506      | 4550       | 743334   |             |            |            |        |        |            |          |
| 305        | 624640      | 35280      | 108   | 18.96  | 783190      | 4684       | 747910   |             |            |            |        |        |            |          |
| 200        | 621010      | 25245      | 100   | 21.50  | 786035      | 2745       | 751500   |             |            |            |        |        |            |          |
| 306        | 626688      | 35345      | 65    | 31.51  | /86935      | 3745       | 751590   |             |            |            |        |        |            |          |
| 307        | 628736      | 35477      | 132   | 15.52  | 791067      | 4132       | 755590   |             |            |            |        |        |            |          |
| 308        | 630784      | 35496      | 19    | 107.79 | 795255      | 4188       | 759759   |             |            |            |        |        |            |          |
| 309        | 632832      | 35643      | 147   | 13.93  | 799862      | 4607       | 764219   |             |            |            |        |        |            |          |
| 310        | 634880      | 35719      | 76    | 26.95  | 804142      | 4280       | 768423   |             |            |            |        |        |            |          |
| 311        | 636928      | 35814      | 95    | 21.56  | 808666      | 4524       | 772852   |             |            |            |        |        |            |          |
| 312        | 638976      | 35882      | 60    | 29.68  | 81327/      | 4608       | 777201   |             |            |            |        |        |            |          |
| 312        | 644024      | 35000      | 110   | 17.00  | 017225      | -000       | 704000   |             |            |            |        |        |            |          |
| 313        | 641024      | 32999      | 116   | 17.66  | 81/235      | 3961       | /81236   |             |            |            |        |        |            |          |
| 314        | 643072      | 36413      | 414   | 4.95   | 821536      | 4301       | 785123   |             |            |            |        |        |            |          |
| 315        | 645120      | 36547      | 134   | 15.28  | 825655      | 4119       | 789108   |             |            |            |        |        |            |          |
| 316        | 647168      | 36596      | 49    | 41.80  | 830754      | 5099       | 794158   |             |            |            |        |        |            |          |
| 317        | 649216      | 36716      | 120   | 17.07  | 835444      | 4690       | 798728   |             |            |            |        |        |            |          |
| 318        | 651264      | 36772      | 56    | 36.57  | 839605      | 4161       | 802833   |             |            |            |        |        |            |          |
| 319        | 653312      | 36896      | 124   | 16 52  | 843656      | 4051       | 806760   |             |            |            |        |        |            |          |
| 220        | 655512      | 20050      | 124   | 22.54  | 043030      | 4001       | 000700   |             |            |            |        |        |            |          |
| 320        | 655360      | 36959      | 63    | 32.51  | 847875      | 4219       | 810916   |             |            |            |        |        |            |          |
| 321        | 657408      | 37068      | 109   | 18.79  | 852475      | 4600       | 815407   |             |            |            |        |        |            |          |
| 322        | 659456      | 37123      | 55    | 37.24  | 856885      | 4410       | 819762   |             |            |            |        |        |            |          |
| 323        | 661504      | 37238      | 115   | 17.81  | 861582      | 4697       | 824344   |             |            |            |        |        |            |          |
| 324        | 663552      | 37285      | 47    | 43.57  | 865715      | 4133       | 828430   |             |            |            |        |        |            |          |
| 325        | 665600      | 37427      | 142   | 14.42  | 870485      | 4770       | 833058   |             |            |            |        |        |            |          |
| 326        | 667648      | 37443      | 16    | 128.00 | 875362      | 1877       | 837010   |             |            |            |        |        |            |          |
| 227        | 667646      | 27596      | 142   | 14.22  | 880008      | 4077       | 842422   |             |            |            |        |        |            |          |
| 327        | 669696      | 37586      | 143   | 14.32  | 880008      | 4646       | 842422   |             |            |            |        |        |            |          |
| 328        | 671744      | 37641      | 55    | 37.24  | 883891      | 3883       | 846250   |             |            |            |        |        |            |          |
| 329        | 673792      | 37844      | 203   | 10.09  | 888753      | 4862       | 850909   |             |            |            |        |        |            |          |
| 330        | 675840      | 37881      | 37    | 55.35  | 893575      | 4822       | 855694   |             |            |            |        |        |            |          |
| 331        | 677888      | 38002      | 121   | 16.93  | 897535      | 3960       | 859533   |             |            |            |        |        |            |          |
| 332        | 679936      | 38064      | 62    | 33.03  | 901955      | 4420       | 863891   |             |            |            |        |        |            |          |
| 333        | 681984      | 38164      | 100   | 20.48  | 906695      | 4740       | 868531   |             |            |            |        |        |            |          |
| 334        | 684032      | 38231      | 67    | 20.57  | 011335      | 4640       | 873104   |             |            |            |        |        |            |          |
| 225        | 684032      | 30251      | 07    | 30.57  | 911999      | 4040       | 073104   |             |            |            |        |        |            |          |
| 555        | 080080      | 38290      | 05    | 51.51  | 916004      | 4009       | 877708   |             |            |            |        |        |            |          |
| 336        | 688128      | 38333      | 37    | 55.35  | 920625      | 4621       | 882292   |             |            |            |        |        |            |          |
| 337        | 690176      | 38459      | 126   | 16.25  | 924768      | 4143       | 886309   |             |            |            |        |        |            |          |
| 338        | 692224      | 38475      | 16    | 128.00 | 930485      | 5717       | 892010   |             |            |            |        |        |            |          |
| 339        | 694272      | 38587      | 112   | 18.29  | 934385      | 3900       | 895798   |             |            |            |        |        |            |          |
| 340        | 696320      | 38621      | 34    | 60.24  | 939245      | 4860       | 900624   |             |            |            |        |        |            |          |
| 341        | 698368      | 38782      | 161   | 12.72  | 943832      | 4587       | 905050   |             |            |            |        |        |            |          |
| 342        | 700416      | 38864      | 82    | 24 98  | 948356      | 4524       | 909492   |             |            |            |        |        |            |          |
| 343        | 702464      | 20204      | 136   | 4 70   | 952965      | 4600       | Q12665   |             |            |            |        |        |            |          |
| 243        | 702404      | 33300      | 450   | 4.70   | 05707       | 4009       | 212002   |             |            |            |        |        |            |          |
| 344        | 704512      | 39379      | 79    | 25.92  | 95/3/7      | 4412       | 91/998   |             |            |            |        |        |            |          |
| 345        | 706560      | 39475      | 96    | 21.33  | 962475      | 5098       | 923000   |             |            |            |        |        |            |          |
| 346        | 708608      | 39532      | 57    | 35.93  | 970984      | 8509       | 931452   |             |            |            |        |        |            |          |
| 347        | 710656      | 39634      | 102   | 20.08  | 971510      | 526        | 931876   |             |            |            |        |        |            |          |
| 348        | 712704      | 39698      | 64    | 32.00  | 977425      | 5915       | 937727   |             |            |            |        |        |            |          |
| 349        | 714752      | 39795      | 97    | 21.11  | 982102      | 4677       | 942307   |             |            |            |        |        |            |          |
| 350        | 716800      | 39888      | 93    | 22 02  | 986823      | 4721       | 946935   |             |            |            |        |        |            |          |
| 251        | 7100/0      | 2007/      | 02    | 22.02  | 001070      | 1510       | 001000   |             |            |            |        |        |            |          |
| 351        | 720000      | 40002      |       | 25.01  | 006446      | 4349       | 321230   |             |            |            |        |        |            |          |
| 352        | 720896      | 40032      | 58    | 35.31  | 996116      | 4/44       | 956084   |             |            |            |        |        |            |          |
| 353        | 722944      | 40155      | 123   | 16.65  | 1000356     | 4240       | 960201   |             |            |            |        |        |            |          |
| 354        | 724992      | 40220      | 65    | 31.51  | 1005288     | 4932       | 965068   |             |            |            |        |        |            |          |
| 355        | 727040      | 40326      | 106   | 19.32  | 1011442     | 6154       | 971116   |             |            |            |        |        |            |          |
| 356        | 729088      | 40382      | 56    | 36.57  | 1015439     | 3997       | 975057   |             |            |            |        |        |            |          |
| 357        | 731136      | 40494      | 112   | 18.29  | 1020746     | 5307       | 980252   |             |            |            |        |        |            |          |
| 358        | 733184      | 40556      | 62    | 33.03  | 1025095     | 4349       | 984539   |             |            |            |        |        |            |          |
| 350        | 705004      | 40550      | 157   | 1 10   | 1020702     | 4545       | 00700    |             |            |            |        |        |            |          |
| 359        | 755252      | 41013      | 437   | 4.46   | 1023/33     | 4098       | 200/00   |             |            |            |        |        |            |          |
| 360        | /3/280      | 41128      | 115   | 17.81  | 1034415     | 4622       | 993287   |             |            |            |        |        |            |          |
| 361        | 739328      | 41254      | 126   | 16.25  | 1039400     | 4985       | 998146   |             |            |            |        |        |            |          |
| 362        | 741376      | 41319      | 65    | 31.51  | 1045328     | 5928       | 1004009  |             |            |            |        |        |            |          |
| 363        | 743424      | 41441      | 122   | 16.79  | 1050552     | 5224       | 1009111  |             |            |            |        |        |            |          |

| Block Size |             |            |       | 2048   |             |              |          |             |            |            | 4096   |        |            |          |
|------------|-------------|------------|-------|--------|-------------|--------------|----------|-------------|------------|------------|--------|--------|------------|----------|
|            | kb          | at Service | Delta | Speed  |             |              |          | kb          | at Service |            | Speed  | at GUI |            |          |
| Block #    | transferred | (ms)       | (ms)  | (kb/s) | at GUI (ms) | Delta (ms)   | Lag (ms) | transferred | (ms)       | Delta (ms) | (kb/s) | (ms)   | Delta (ms) | Lag (ms) |
| 364        | 745472      | 41492      | 51    | 40.16  | 1054876     | 4324         | 1013384  |             |            |            |        |        |            |          |
| 365        | 747520      | 41610      | 118   | 17 36  | 1059556     | 4680         | 1017946  |             |            |            |        |        |            |          |
| 266        | 747520      | 41616      |       | 21.02  | 10535350    | 4000         | 1022670  |             |            |            |        |        |            |          |
| 200        | 749508      | 41070      | 00    | 31.05  | 1004540     | 4750         | 1022070  |             |            |            |        |        |            |          |
| 507        | /51010      | 41/74      | 96    | 20.90  | 1009575     | 5229         | 1027801  |             |            |            |        |        |            |          |
| 368        | 753664      | 41853      | 79    | 25.92  | 1074506     | 4931         | 1032653  |             |            |            |        |        |            |          |
| 369        | 755712      | 41970      | 117   | 17.50  | 1079383     | 4877         | 1037413  |             |            |            |        |        |            |          |
| 370        | 757760      | 42031      | 61    | 33.57  | 1084125     | 4742         | 1042094  |             |            |            |        |        |            |          |
| 371        | 759808      | 42106      | 75    | 27.31  | 1089319     | 5194         | 1047213  |             |            |            |        |        |            |          |
| 372        | 761856      | 42199      | 93    | 22.02  | 1094291     | 4972         | 1052092  |             |            |            |        |        |            |          |
| 373        | 763904      | 42609      | 410   | 5.00   | 1100116     | 5825         | 1057507  |             |            |            |        |        |            |          |
| 374        | 765952      | 42681      | 72    | 28.44  | 1105046     | 4930         | 1062365  |             |            |            |        |        |            |          |
| 375        | 768000      | 42821      | 140   | 14 63  | 1110027     | 4981         | 1067206  |             |            |            |        |        |            |          |
| 376        | 770048      | 42885      | 64    | 32.00  | 1115146     | 5119         | 1072261  |             |            |            |        |        |            |          |
| 370        | 770048      | 42005      | 150   | 12.00  | 1110000     | 4754         | 1072201  |             |            |            |        |        |            |          |
| 377        | 772090      | 43044      | 139   | 12.00  | 1119900     | 47.54        | 1070850  |             |            |            |        |        |            |          |
| 378        | //4144      | 43113      | 69    | 29.68  | 1125269     | 5369         | 1082156  |             |            |            |        |        |            |          |
| 379        | 776192      | 43222      | 109   | 18.79  | 1131149     | 5880         | 1087927  |             |            |            |        |        |            |          |
| 380        | 778240      | 43297      | 75    | 27.31  | 1136496     | 5347         | 1093199  |             |            |            |        |        |            |          |
| 381        | 780288      | 43416      | 119   | 17.21  | 1141160     | 4664         | 1097744  |             |            |            |        |        |            |          |
| 382        | 782336      | 43511      | 95    | 21.56  | 1146282     | 5122         | 1102771  |             |            |            |        |        |            |          |
| 383        | 784384      | 43605      | 94    | 21.79  | 1151566     | 5284         | 1107961  |             |            |            |        |        |            |          |
| 384        | 786432      | 43671      | 66    | 31.03  | 1156737     | 5171         | 1113066  |             |            |            |        |        |            |          |
| 385        | 788480      | 43784      | 113   | 18.12  | 1162647     | 5910         | 1118863  |             |            |            |        |        |            |          |
| 386        | 790528      | 43851      | 67    | 30.57  | 1167936     | 5289         | 1124085  |             |            |            |        |        |            |          |
| 387        | 792576      | 44251      | 4∩∩   | 5 12   | 1172631     | 4695         | 1128380  |             |            |            |        |        |            |          |
| 200        | 704624      | AND10      | 400   | 22.02  | 1179706     | 4033<br>607F | 1124300  |             |            |            |        |        |            |          |
| 368        | 794624      | 44515      | 02    | 35.03  | 110000      | 0075         | 1154593  |             |            |            |        |        |            |          |
| 389        | /966/2      | 44448      | 135   | 15.17  | 11833//     | 4671         | 1138929  |             |            |            |        |        |            |          |
| 390        | 798720      | 44485      | 37    | 55.35  | 1189287     | 5910         | 1144802  |             |            |            |        |        |            |          |
| 391        | 800768      | 44662      | 177   | 11.57  | 1194822     | 5535         | 1150160  |             |            |            |        |        |            |          |
| 392        | 802816      | 44722      | 60    | 34.13  | 1199946     | 5124         | 1155224  |             |            |            |        |        |            |          |
| 393        | 804864      | 44917      | 195   | 10.50  | 1205486     | 5540         | 1160569  |             |            |            |        |        |            |          |
| 394        | 806912      | 44977      | 60    | 34.13  | 1210250     | 4764         | 1165273  |             |            |            |        |        |            |          |
| 395        | 808960      | 45063      | 86    | 23.81  | 1215883     | 5633         | 1170820  |             |            |            |        |        |            |          |
| 396        | 811008      | 45150      | 87    | 23.54  | 1221489     | 5606         | 1176339  |             |            |            |        |        |            |          |
| 397        | 813056      | 45257      | 107   | 19 14  | 1227056     | 5567         | 1181799  |             |            |            |        |        |            |          |
| 308        | 815104      | 45321      | 64    | 32.00  | 1222000     | 5182         | 1186018  |             |            |            |        |        |            |          |
| 200        | 017152      | 45521      | 04    | 32.00  | 1232233     | 5105         | 1100510  |             |            |            |        |        |            |          |
| 399        | 81/152      | 45414      | 93    | 22.02  | 1237490     | 5251         | 1192076  |             |            |            |        |        |            |          |
| 400        | 819200      | 45482      | 68    | 30.12  | 1243312     | 5822         | 1197830  |             |            |            |        |        |            |          |
| 401        | 821248      | 45607      | 125   | 16.38  | 1248917     | 5605         | 1203310  |             |            |            |        |        |            |          |
| 402        | 823296      | 45645      | 38    | 53.89  | 1254739     | 5822         | 1209094  |             |            |            |        |        |            |          |
| 403        | 825344      | 46014      | 369   | 5.55   | 1259884     | 5145         | 1213870  |             |            |            |        |        |            |          |
| 404        | 827392      | 46070      | 56    | 36.57  | 1265559     | 5675         | 1219489  |             |            |            |        |        |            |          |
| 405        | 829440      | 46221      | 151   | 13.56  | 1270804     | 5245         | 1224583  |             |            |            |        |        |            |          |
| 406        | 831488      | 46282      | 61    | 33.57  | 1276473     | 5669         | 1230191  |             |            |            |        |        |            |          |
| 407        | 833536      | 46372      | 90    | 22.76  | 1282095     | 5622         | 1235723  |             |            |            |        |        |            |          |
| 408        | 835584      | 46442      | 70    | 29.26  | 1287884     | 5789         | 1241442  |             |            |            |        |        |            |          |
| 409        | 837632      | 46566      | 124   | 16.52  | 1293026     | 5142         | 1246460  |             |            |            |        |        |            |          |
| 410        | 839680      | 46638      | 72    | 28 44  | 1298445     | 5419         | 1251807  |             |            |            |        |        |            |          |
| /11        | 841728      | 46768      | 130   | 15 75  | 1303666     | 5221         | 1256808  |             |            |            |        |        |            |          |
| 411        | 942720      | 40700      | 130   | 36 67  | 1200004     | 6210         | 1220030  |             |            |            |        |        |            |          |
| 412        | 045770      | 40824      | 00    | 30.57  | 124 4000    | 0218         | 1203000  |             |            |            |        |        |            |          |
| 413        | 845824      | 46973      | 149   | 13.74  | 1314886     | 5002         | 126/913  |             |            |            |        |        |            |          |
| 414        | 847872      | 4/039      | 66    | 31.03  | 1325526     | 10640        | 12/8487  |             |            |            |        |        |            |          |
| 415        | 849920      | 47155      | 116   | 17.66  | 1326306     | 780          | 1279151  |             |            |            |        |        |            |          |
| 416        | 851968      | 47203      | 48    | 42.67  | 1331806     | 5500         | 1284603  |             |            |            |        |        |            |          |
| 417        | 854016      | 47649      | 446   | 4.59   | 1336707     | 4901         | 1289058  |             |            |            |        |        |            |          |
| 418        | 856064      | 47676      | 27    | 75.85  | 1343122     | 6415         | 1295446  |             |            |            |        |        |            |          |
| 419        | 858112      | 47827      | 151   | 13.56  | 1347875     | 4753         | 1300048  |             |            |            |        |        |            |          |
| 420        | 860160      | 47889      | 62    | 33.03  | 1353150     | 5275         | 1305261  |             |            |            |        |        |            |          |
| 421        | 862208      | 48002      | 113   | 18.12  | 1358965     | 5815         | 1310963  |             |            |            |        |        |            |          |
| 422        | 864256      | 48054      | 52    | 39.38  | 1364362     | 5397         | 1316308  |             |            |            |        |        |            |          |
| 423        | 866304      | 48192      | 138   | 14.84  | 1370546     | 6184         | 1322354  |             |            |            |        |        |            |          |
| 474        | 868352      | 48250      | 58    | 35 31  | 1376406     | 5860         | 1328156  |             |            |            |        |        |            |          |
| 424        | 870400      | 18282      | 122   | 15 /0  | 1281220     | 1832         | 1327956  |             |            |            |        |        |            |          |
| 425        | 973440      | 40303      | 100   | 24.74  | 1200074     | 4033         | 100500   |             |            |            |        |        |            |          |
| 426        | 072448      | 46442      | 59    | 54./1  | 13009/4     | 5/35         | 1538532  |             |            |            |        |        |            |          |
| 427        | 874496      | 48562      | 120   | 17.07  | 1392231     | 5257         | 1343669  |             |            |            |        |        |            |          |
| 428        | 876544      | 48638      | 76    | 26.95  | 1397599     | 5368         | 1348961  |             |            |            |        |        |            |          |
| 429        | 878592      | 48730      | 92    | 22.26  | 1403596     | 5997         | 1354866  |             |            |            |        |        |            |          |
| 430        | 880640      | 48818      | 88    | 23.27  | 1409346     | 5750         | 1360528  |             |            |            |        |        |            |          |
| 431        | 882688      | 49816      | 998   | 2.05   | 1414743     | 5397         | 1364927  |             |            |            |        |        |            |          |
| 432        | 884736      | 51007      | 1191  | 1.72   | 1420914     | 6171         | 1369907  |             |            |            |        |        |            |          |
| 433        | 886784      | 51245      | 238   | 8.61   | 1425946     | 5032         | 1374701  |             |            |            |        |        |            |          |
| 434        | 888832      | 51354      | 109   | 18.79  | 1432066     | 6120         | 1380712  |             |            |            |        |        |            |          |
| /35        | 890880      | 51510      | 156   | 13 12  | 1437278     | 5212         | 1385769  |             |            |            |        |        |            |          |
| 435        | 200000      | E1606      | 100   | 21 22  | 1//2201     | 5212         | 1201605  |             |            |            |        |        |            |          |
| 436        | 692928      | 21000      | 96    | 21.33  | 1443301     | 0023         | 1231032  |             |            |            |        |        |            |          |

| Block Size |             |            |         | 2048   |             |            |             |             |            |            | 4096   |        |            |          |
|------------|-------------|------------|---------|--------|-------------|------------|-------------|-------------|------------|------------|--------|--------|------------|----------|
|            | kb          | at Service | Delta   | Speed  |             |            |             | kb          | at Service |            | Speed  | at GUI |            |          |
| Block #    | transferred | (ms)       | (ms)    | (kb/s) | at GUI (ms) | Delta (ms) | Lag (ms)    | transferred | (ms)       | Delta (ms) | (kb/s) | (ms)   | Delta (ms) | Lag (ms) |
| 437        | 894976      | 51760      | 154     | 13.30  | 1449396     | 6095       | 1397636     |             |            |            |        |        |            |          |
| 438        | 897024      | 51824      | 64      | 32.00  | 1454476     | 5080       | 1402652     |             |            |            |        |        |            |          |
| 439        | 899072      | 51982      | 158     | 12.96  | 1460908     | 6432       | 1408926     |             |            |            |        |        |            |          |
| 440        | 901120      | 52765      | 783     | 2.62   | 1466066     | 5158       | 1413301     |             |            |            |        |        |            |          |
| 441        | 903168      | 53127      | 362     | 5.66   | 1471911     | 5845       | 1418784     |             |            |            |        |        |            |          |
| 441        | 005216      | 52212      | 902     | 24.00  | 1471511     | 5640       | 1410704     |             |            |            |        |        |            |          |
| 442        | 903210      | 53212      | 225     | 24.03  | 1477500     | 5049       | 1424346     |             |            |            |        |        |            |          |
| 445        | 907204      | 53447      | 233     | 26.57  | 1405521     | 5901       | 1430074     |             |            |            |        |        |            |          |
| 444        | 909312      | 53505      | 00      | 30.57  | 1489460     | 5939       | 1435957     |             |            |            |        |        |            |          |
| 445        | 911360      | 53624      | 121     | 16.93  | 1495516     | 6056       | 1441892     |             |            |            |        |        |            |          |
| 446        | 913408      | 53672      | 48      | 42.67  | 1501515     | 5999       | 1447843     |             |            |            |        |        |            |          |
| 447        | 915456      | 53792      | 120     | 17.07  | 1506616     | 5101       | 1452824     |             |            |            |        |        |            |          |
| 448        | 917504      | 54123      | 331     | 6.19   | 1512553     | 5937       | 1458430     |             |            |            |        |        |            |          |
| 449        | 919552      | 54232      | 109     | 18.79  | 1518894     | 6341       | 1464662     |             |            |            |        |        |            |          |
| 450        | 921600      | 54291      | 59      | 34.71  | 1524190     | 5296       | 1469899     |             |            |            |        |        |            |          |
| 451        | 923648      | 54400      | 109     | 18.79  | 1530091     | 5901       | 1475691     |             |            |            |        |        |            |          |
| 452        | 925696      | 54463      | 63      | 32.51  | 1535728     | 5637       | 1481265     |             |            |            |        |        |            |          |
| 453        | 927744      | 54580      | 117     | 17.50  | 1541882     | 6154       | 1487302     |             |            |            |        |        |            |          |
| 454        | 929792      | 54623      | 43      | 47.63  | 1547926     | 6044       | 1493303     |             |            |            |        |        |            |          |
| 455        | 931840      | 54741      | 118     | 17.36  | 1554289     | 6363       | 1499548     |             |            |            |        |        |            |          |
| 456        | 933888      | 55873      | 1132    | 1.81   | 1560275     | 5986       | 1504402     |             |            |            |        |        |            |          |
| 457        | 935936      | 55954      | 81      | 25.28  | 1565812     | 5537       | 1509858     |             |            |            |        |        |            |          |
| 458        | 937984      | 55992      | 38      | 53.89  | 1571830     | 6018       | 1515838     |             |            |            |        |        |            |          |
| 459        | 940032      | 56080      | 88      | 23.27  | 1577888     | 6058       | 1521808     |             |            |            |        |        |            |          |
| 460        | 942080      | 56096      | 16      | 128.00 | 1584222     | 6334       | 1528126     |             |            |            |        |        |            |          |
| 461        | 944128      | 56186      | 90      | 22.76  | 1589698     | 5476       | 1533512     |             |            |            |        |        |            |          |
| 462        | 946176      | 56232      | 46      | 44.52  | 1595346     | 5648       | 1539114     |             |            |            |        |        |            |          |
| 462        | 948224      | 565/1      | 300     | 6.63   | 1600718     | 5372       | 1544177     |             |            |            |        |        |            |          |
| 405        | 050224      | 50541      | 505     | 26.60  | 1606724     | 5006       | 15441/7     |             |            |            |        |        |            |          |
| 404        | 950272      | 50018      | 572     | 20.00  | 1612009     | 6194       | 1550100     |             |            |            |        |        |            |          |
| 405        | 952320      | 57190      | 572     | 3.56   | 1012908     | 5570       | 1555/18     |             |            |            |        |        |            |          |
| 466        | 954368      | 5/238      | 48      | 42.67  | 1618486     | 5578       | 1561248     |             |            |            |        |        |            |          |
| 467        | 956416      | 5/30/      | 69      | 29.68  | 1623860     | 5374       | 1566553     |             |            |            |        |        |            |          |
| 468        | 958464      | 57334      | 27      | 75.85  | 1629638     | 5778       | 1572304     |             |            |            |        |        |            |          |
| 469        | 960512      | 57414      | 80      | 25.60  | 1635450     | 5812       | 1578036     |             |            |            |        |        |            |          |
| 470        | 962560      | 57493      | 79      | 25.92  | 1641930     | 6480       | 1584437     |             |            |            |        |        |            |          |
| 471        | 964608      | 57525      | 32      | 64.00  | 1653900     | 11970      | 1596375     |             |            |            |        |        |            |          |
| 472        | 966656      | 57541      | 16      | 128.00 | 1654736     | 836        | 1597195     |             |            |            |        |        |            |          |
| 473        | 968704      | 57658      | 117     | 17.50  | 1660577     | 5841       | 1602919     |             |            |            |        |        |            |          |
| 474        | 970752      | 57674      | 16      | 128.00 | 1666768     | 6191       | 1609094     |             |            |            |        |        |            |          |
| 475        | 972800      | 57722      | 48      | 42.67  | 1673626     | 6858       | 1615904     |             |            |            |        |        |            |          |
| 476        | 974848      | 57739      | 17      | 120.47 | 1679366     | 5740       | 1621627     |             |            |            |        |        |            |          |
| 477        | 976896      | 57768      | 29      | 70.62  | 1685675     | 6309       | 1627907     |             |            |            |        |        |            |          |
| 478        | 978944      | 57784      | 16      | 128.00 | 1691657     | 5982       | 1633873     |             |            |            |        |        |            |          |
| 479        | 980992      | 57818      | 34      | 60.24  | 1698140     | 6483       | 1640322     |             |            |            |        |        |            |          |
| 480        | 983040      | 57834      | 16      | 128.00 | 1705246     | 7106       | 1647412     |             |            |            |        |        |            |          |
| 481        | 985088      | 60572      | 2738    | 0.75   | 1711449     | 6203       | 1650877     |             |            |            |        |        |            |          |
| 482        | 987136      | 60594      | 22      | 93.09  | 1717447     | 5998       | 1656853     |             |            |            |        |        |            |          |
| 483        | 989184      | 61341      | 747     | 2.74   | 1723931     | 6484       | 1662590     |             |            |            |        |        |            |          |
| 484        | 991232      | 61872      | 531     | 3.86   | 1730284     | 6353       | 1668412     |             | 1          |            |        |        |            |          |
| 485        | 993280      | 62803      | 931     | 2.20   | 1736977     | 6693       | 1674174     |             |            |            |        |        |            |          |
| 486        | 995328      | 62839      | 36      | 56.89  | 1743514     | 6537       | 1680675     |             |            |            |        |        |            |          |
| 487        | 997376      | 63692      | 853     | 2.40   | 1749744     | 6230       | 1686052     |             |            |            |        |        |            |          |
| 488        | 999424      | 63860      | 168     | 12 19  | 1756596     | 6852       | 1692736     |             |            |            |        |        |            |          |
| 489        | 1001472     | 64660      | 800     | 2 56   | 1762894     | 6298       | 1698234     |             |            |            |        |        |            |          |
| /00        | 1003520     | 64795      | 135     | 15 17  | 1769076     | 6182       | 1704281     |             |            |            |        |        |            |          |
| 430        | 1005520     | 6/202      | 100     | 20.00  | 17756/0     | 6572       | 1710754     |             |            |            |        |        |            |          |
| 401        | 1007616     | 66101      | 1220    | 1 47   | 1723131     | 6107       | 1712010     |             |            |            |        |        |            |          |
| 492        | 10000004    | 00121      | 1220    | 24 54  | 1700127     | 7002       | 1722054     |             |            |            |        |        |            |          |
| 493        | 1014742     | 00180      | 03      | 31.51  | 1705707     | 7006       | 1720000     |             |            |            |        |        |            |          |
| 494        | 1011/12     | 6/118      | 932     | 2.20   | 1/95/87     | 6650       | 1/28669     |             |            |            |        |        |            |          |
| 495        | 1013760     | 6/179      | 61      | 33.57  | 1802206     | 6419       | 1/35027     |             |            |            |        |        |            |          |
| 496        | 1015808     | 68113      | 934     | 2.19   | 1808039     | 5833       | 1739926     |             |            |            |        |        |            |          |
| 497        | 1017856     | 68188      | 75      | 27.31  | 1814793     | 6754       | 1746605     |             |            |            |        |        |            |          |
| 498        | 1019904     | 68204      | 16      | 128.00 | 1821710     | 6917       | 1753506     |             |            |            |        |        |            |          |
| 499        | 1021952     | 68775      | 571     | 3.59   | 1827886     | 6176       | 1759111     |             |            |            |        |        |            |          |
| Average    |             |            | 233.579 | 32.073 |             | 5913.958   | 1479842.726 |             |            | 1487.753   | 12.726 |        | 1701.382   | 9642.753 |
| Std Deriv  |             |            | 392.935 | 32.505 |             | 1204.687   | 156221.401  |             |            | 1526.210   | 16.352 |        | 1706.028   | 9681.196 |

### **Bibliography**

- [art03] Strategy analytics: Camera phones outsell digital still cameras worldwide; nec, panasonic and nokia lead 25 million unit market. *Business Wire*, September 2003.
- [BLB07] Petros Belimpasakis, Juha-Pekka Luoma, and Mihaly Börzsei. Content sharing middleware for mobile devices. In MOBILWARE '08: Proceedings of the 1st international conference on MOBILe Wireless MiddleWARE, Operating Systems, and Applications, pages 1–8, ICST, Brussels, Belgium, Belgium, 2007. Nokia Research Center, Tampere, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).
- [Clo] Johan Cloetens. Cyrket onair (wifi disk). Online. Cited: Jul 13 2009, URL: http://www.cyrket.com/package/com.bw.onair.
- [CSA09] Diana Cionoiu and Peter Saint-Andre. Jingle Early Media. XEP-0269 (Experimental Standard), May 2009. Version 0.1, URL: http://xmpp.org/ extensions/xep-0269.html.
- [DDD07] C. Daboo, B. Desruisseaux, and L. Dusseault. Calendaring Extensions to WebDAV (CalDAV). RFC 4791 (Proposed Standard), March 2007. URL: http://www.ietf.org/rfc/rfc4791.txt.
- [DS09] Benjamin Söllner Dirk Hering Alexander Schill Daniel Schuster, Thomas Springer. Mobilisbuddy - integration sozialer netzwerke in umgebungs-basierte dienste auf mobilen endgeräten. In Proceedings of GeNeMe 2009. Gemeinschaft für Neue Medien, TUD Print, 2009.
- [Dus07] L. Dusseault. HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV). RFC 4918 (Proposed Standard), June 2007. URL: http://www.ietf.org/rfc/rfc4918.txt.
- [EHM<sup>+</sup>07] Ryan Eatmon, Joe Hildebrand, Jeremie Miller, Thomas Muldowney, and Peter Saint-Andre. Data Forms. XEP-0004 (Final Standard), September 2007. Version 2.9, URL: http://xmpp.org/extensions/xep-0004.html.
- [Gdh07] J. Gregorio and B. de hOra. The Atom Publishing Protocol. RFC 5023 (Proposed Standard), October 2007. URL: http://www.ietf.org/rfc/ rfc5023.txt.
- [GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. *Design patterns: elements of reusable object-oriented software.* Addison-Wesley Reading, 1995.



| [Gooa]               | Google Inc. Developer Guide - Protocol Buffers. Cited: Jul 13 2009, URL: http://code.google.com/intl/de-DE/apis/protocolbuffers/docs/overview.html.                                                         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Goob]               | Google Inc. Google Calendar CalDAV support. Cited: Jul 12 2009, URL: http://www.google.com/support/calendar/bin/answer.py? hl=en&answer=99355.                                                              |
| [Her09]              | Dirk Hering. Entwicklung eines Dienstes für Real-time Collaborative Editing für die Mobilis-Plattform. PhD thesis, September 2009.                                                                          |
| $[\mathrm{HFV^{+}}]$ | Dirk Hering, Christopher Friedrich, Lukas Vierhaus, Martin Werner, and Benjamin Söllner. Androidbuddy - Komplexpraktikum.                                                                                   |
| [HMESA08]            | Joe Hildebrand, Peter Millard, Ryan Eatmon, and Peter Saint-Andre. Service Discovery. XEP-0030 (Final Standard), June 2008. Version 2.4, URL: http://xmpp.org/extensions/xep-0030.html.                     |
| [Joh05]              | Leif Johansson. XMPP as MOM. Online (Presentation), April 2005. Cited:<br>Jul 11 2009, URL: http://www.gnomis.org/presentasjoner/oso2005/<br>xmpp.pdf.                                                      |
| [Kor08a]             | István Koren. Conceptual Design of a mobile collaborative Platform based<br>on Android and XMPP. PhD thesis, September 2008.                                                                                |
| [Kor08b]             | István Koren. Conceptual Design of a mobile collaborative Platform based<br>on Android and XMPP. PhD thesis, September 2008.                                                                                |
| [KSA09]              | Justin Karneges and Peter Saint-Andre. In-Band Bytestreams. XEP-0047 (Draft Standard), March 2009. Version 1.2, URL: http://xmpp.org/extensions/xep-0047.html.                                              |
| [Lau]                | Eric Laurier. Why people say where they are during mobile phone calls.                                                                                                                                      |
| [LBSA+09]            | Scott Ludwig, Joe Beda, Peter Saint-Andre, Robert McQueen, Sean Egan, and Joe Hildebrand. Jingle. XEP-0166 (Draft Standard), June 2009. Version 1.0, URL: http://xmpp.org/extensions/xep-0166.html.         |
| [LSAE+06]            | Scott Ludwig, Peter Saint-Andre, Sean Egan, Robert McQueen, and Diana<br>Cionoiu. Jingle RTP Sessions. XEP-0167 (Draft Standard), June 2006.<br>Version 1.0, URL: http://xmpp.org/extensions/xep-0167.html. |
| [LT09]               | Soren Lassen and Sam Thorogood. Google wave federation architecture.<br>Google Inc., Google Inc., 2009. Cited: Jul 12 2009, URL: http://www.<br>waveprotocol.org/whitepapers/google-wave-architecture.      |
| [Mac07]              | Henrik Machela. Entwicklung einer Infrastruktur für synchrone Groupware<br>auf Basis von Jabber Instant Messaging und Presence. PhD thesis, 5 2007.                                                         |

- [MBLH06] Marcin Matuszewski, Nicklas Beijar, Juuso Lehtinen, and Tuomo Hyyryläinen. Mobile peer-to-peer content sharing application. In 3rd IEEE Consumer Communications and Networking Conference, 2006. CCNC 2006., number 2, pages 1324–1325. Nokia Research Center, Tampere and Helsinki University of Technology, IEEE (Institute of Electrical and Electronics Engineers), 2006.
- [MM05] Matthew Miller and Thomas Muldowney. Publishing Stream Initiation Requests. XEP-0137 (Draft Standard), September 2005. Version 1.0, URL: http://xmpp.org/extensions/xep-0137.html.
- [MME04a] Thomas Muldowney, Matthew Miller, and Ryan Eatmon. SI File Transfer. XEP-0096 (Draft Standard), April 2004. Version 1.1, URL: http://xmpp. org/extensions/xep-0096.html.
- [MME04b] Thomas Muldowney, Matthew Miller, and Ryan Eatmon. Stream Initiation. XEP-0095 (Draft Standard), April 2004. Version 1.1, URL: http://xmpp. org/extensions/xep-0095.html.
- [MSAM08] Peter Millard, Peter Saint-Andre, and Ralph Meijer. Publish-Subscribe. XEP-0060 (Draft Standard), September 2008. Version 1.12, URL: http: //xmpp.org/extensions/xep-0060.html.
- [PSA08] Sean Egan Peter Saint-Andre. Jingle DTMF. XEP-0181 (Experimental Standard), September 2008. Version 0.11, URL: http://xmpp.org/extensions/ xep-0181.html.
- [Ros07] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols. RFC Draft, October 2007. Version 19, Expired on May 1, 2008, URL: http: //tools.ietf.org/html/draft-ietf-mmusic-ice-19.
- [RSC<sup>+</sup>02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261 (Proposed Standard), June 2002. Updated by RFCs 3265, 3853, 4320, 4916, 5393, URL: http://www.ietf.org/rfc/rfc3261.txt.
- [SA04a] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. RFC 3920 (Proposed Standard), October 2004. URL: http://www.ietf. org/rfc/rfc3920.txt.
- [SA04b] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence. RFC 3921 (Proposed Standard), October 2004. URL: http://www.ietf.org/rfc/rfc3921.txt.
- [SA06]Peter Saint-Andre. Out of Band Data. XEP-0066 (Draft Standard), August<br/>2006. Version 1.5, URL: http://xmpp.org/extensions/xep-0066.html.
- [SA09a] Peter Saint-Andre. Codecs for Jingle RTP Sessions. XEP-0266 (Experimental Standard), April 2009. Version 0.2, URL: http://xmpp.org/ extensions/xep-0266.html.



- [SA09b] Peter Saint-Andre. Jingle File Transfer. XEP-0234 (Experimental Standard), February 2009. Version 0.9, URL: http://xmpp.org/extensions/ xep-0234.html.
- [SA09c] Peter Saint-Andre. Jingle In-Band Bytestreams Transport. XEP-0261 (Experimental Standard), March 2009. Version 0.2, URL: http://xmpp.org/extensions/xep-0261.html.
- [SAM09] Peter Saint-Andre and Dirk Meyer. Jingle SOCKS5 Bytestreams Transport Method. XEP-0260 (Experimental Standard), March 2009. Version 0.2, URL: http://xmpp.org/extensions/xep-0260.html.
- [SMSA07] Dave Smith, Matthew Miller, and Peter Saint-Andre. SOCKS5 Bytestreams. XEP-0065 (Draft Standard), May 2007. Version 1.7, URL: http://xmpp. org/extensions/xep-0065.html.
- [Ste02] Greg Stein. Use Of WebDAV in Subversion. Online, January 2002. Cited: Jul 12 2009, URL: http://subversion.tigris.org/webdav-usage.html.
- [SVPN04] Risto Sarvas, Mikko Viikari, Juha Pesonen, and Hanno Nevanlinna. Mobshare: controlled and immediate sharing of mobile images. In MULTI-MEDIA '04: Proceedings of the 12th annual ACM international conference on Multimedia, pages 724–731, New York, NY, USA, 2004. ACM. URL: http://doi.acm.org/10.1145/1027527.1027690, ISBN: 1-58113-893-8.
- [TSLA06] Jarkko Tolvanen, Tapio Suihko, Jaakko Lipasti, and N. Asokan. Remote storage for mobile devices. In *First International Conference on Communi*cation System Software and Middleware, 2006. Comsware 2006., pages 1–9. Nokia Research Center, Helsinki, IEEE (Institute of Electrical and Electronics Engineers), August 2006.
- [weba] Application fundamentals / android developers. Online. Cited: Oct 27 2009, URL: http://developer.android.com/guide/topics/ fundamentals.html.
- [webb] Cyrket estrongs file explorer. Online. Cited: Jul 13 2009, URL: http: //www.cyrket.com/package/com.estrongs.android.pop.
- [webc] Designing a remote interface using aidl / android developers. Online. Cited: Oct 27 2009, URL: http://developer.android.com/guide/developing/ tools/aidl.html.
- [webd] Intents and intent filters / android developers. Online. Cited: Oct 27 2009, URL: http://developer.android.com/guide/topics/intents/ intents-filters.html.
- [webe] Rss 2.0 specification. Online. Cited: Jul 12 2009, URL: http://www. rssboard.org/rss-specification.
- [web08] Caldav resources about the protocol and more... Online, 2008. Cited: Jul 12 2009, URL: http://caldav.calconnect.org/.



[web09] Google wave federation protocol. Online, 2009. Cited: Jul 12 2009, URL: http://www.waveprotocol.org/.

## **List of Figures**

| <ol> <li>2.1.</li> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> </ol>                                                    | A basic XMPP architecture scenario                     | 4<br>7<br>10<br>14                                                                    |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------|
| <ol> <li>3.1.</li> <li>3.2.</li> <li>3.3.</li> <li>3.4.</li> <li>3.5.</li> <li>3.6.</li> </ol>                        | Sharing Middleware Simplified Design                   | 22<br>23<br>24<br>25<br>25<br>27                                                      |
| $5.1. \\ 5.2. \\ 5.3. \\ 5.4. \\ 5.5. \\ 5.6. \\ 5.7. \\ 5.8. \\ 5.9. \\ 5.10. \\ 5.11. \\$                           | Multidimensional metadata classification system "cube" | $\begin{array}{c} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 47\\ 48\\ 49\\ 52\\ 54\\ \end{array}$ |
| $\begin{array}{c} 6.1. \\ 6.2. \\ 6.3. \\ 6.4. \\ 6.5. \\ 6.6. \\ 6.7. \\ 6.8. \\ 6.9. \\ 6.10. \\ 6.11. \end{array}$ | The inner architecture of the Mobilis platform         | 58<br>59<br>60<br>61<br>63<br>64<br>65<br>65<br>70<br>72<br>73                        |
| 7.1.                                                                                                                  | Transfer time of a 95833 bytes image                   | 77                                                                                    |



| 7.2. | Transfer time of a 1020249 bytes image                                       | 78 |
|------|------------------------------------------------------------------------------|----|
| 7.3. | Transfer time of a 95833 bytes image                                         | 79 |
| 7.4. | Transfer time of a 1020249 bytes image                                       | 80 |
| 7.5. | Speed of the transfer of a 95833 bytes image                                 | 84 |
| 7.6. | Speed of the transfer of a 1020249 bytes image                               | 85 |
|      |                                                                              |    |
| 8.1. | Media Bridges as a mean for a genaralized social cube based media repository | 89 |
| 8.2. | The Mobilis Media Cloud                                                      | 90 |

## **List of Tables**

| 2.1.                                                               | Overview of presented technologies                                                                                                                                                                                  | 19                   |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <ol> <li>4.1.</li> <li>4.2.</li> <li>4.3.</li> <li>4.4.</li> </ol> | Summary of Functional Requirements       Summary of Device Capabilities         Summary of Device Capabilities       Summary of Device Capabilities         Summary of Human Factors       Summary of Human Factors | 33<br>34<br>35<br>36 |
| 7.1.<br>7.2.                                                       | Maximum Transfer Time and Speed of the test transfers                                                                                                                                                               | 76<br>83             |