

A Software Migration Concept for ASP-based
Web Applications to Java

04. January.2010

Minor Thesis

Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill
Institute of Systems Architecture

Faculty of Computer Science
Technische Universität Dresden

Supervisor: Dipl. Inf. Marius Feldmann

Le Hai Dang
S2980966@inf.tu-dresden.de

Declaration of Academic Honesty

I, Le Hai Dang, declare that this minor thesis on the topic of “A Software Migration

Concept for ASP-based Web Applications to Java” is wholly my own work and

conducted without any assistance from third parties.

Furthermore, I confirm that no sources have been used in the preparation of this thesis

other than those indicated in the thesis itself.

Dresden, 04. January.2010

Signature

 I

Table of Contents

LIST OF TABLES AND FIGURES ... III

ABSTRACT .. 1

1 INTRODUCTION... 2

1.1 HETEROGENEOUS IT-INFRASTRUCTURES IN COMPANIES.. 2
1.2 PROBLEMS OF HETEROGENEOUS ENVIRONMENTS .. 3
1.3 APPLICATION CLASS: CUSTOM BUSINESS WEB APPLICATIONS.. 4
1.4 PRIMARY REQUIREMENTS... 5
1.5 AVAILABLE M IGRATION STRATEGIES AND RELATED M IGRATION WORKS .. 6
1.6 MOTIVATION AND GOALS... 7

2 USE CASE: ROBERT BOSCH CORPORATION.. 8

2.1 SITUATION AND THE M IGRATION TASK .. 8
2.2 SECONDARY REQUIREMENTS.. 8
2.3 BEST-PRACTICE M IGRATION TASK: TICOS WEB APPLICATION... 9

3 ANALYSIS ON ASP WEB APPLICATIONS.. 11

3.1 SAMPLE CODES... 11
3.2 MVC & PROGRAMMING STYLES IN ASP WEB APPLICATIONS... 13

4 BASICS: TECHNOLOGIES, ARCHITECTURES AND TOOLS 17

4.1 TECHNOLOGIES... 17
4.1.1 ASP – Active Server Pages... 17
4.1.2 JSP – Java Server Pages.. 18
4.1.3 Java Servlet.. 18
4.1.4 Component Object Model .. 18
4.1.5 Web Service.. 19
4.1.6 JAX-WS .. 19
4.1.7 Model View Controller Design Pattern ... 19
4.1.8 Enterprise Service Oriented Architecture – SAP NetWeaver... 20
4.1.9 Portal System ... 20

4.2 MIGRATION TOOLS... 21
4.2.1 NetCoole J-ASP ... 21
4.2.2 COM4J... 24

5 SOFTWARE MIGRATION .. 25

5.1 COMMON DECIDING FACTORS.. 25
5.2 MIGRATION STRATEGIES AND METHODS.. 25

5.2.1 Migration Strategies .. 26
5.2.2 Migration Methods... 27

6 MIGRATION CONCEPT.. 28

6.1 A GENERAL M IGRATION CONCEPT FOR SOFTWARE SYSTEMS.. 28
6.2 THE STAGES OF THE M IGRATION CONCEPT.. 30
6.3 SOFTWARE EVALUATION .. 33
6.4 OBJECT MODELING... 35
6.5 SOFTWARE POST-DOCUMENTATION ... 37
6.6 OBJECT REFINEMENT.. 40

6.6.1 Vertical Migration vs. Horizontal Migration... 41
6.6.2 Model View Controller Structure... 41
6.6.3 Refinement and Design of MVC Components .. 42

 II

6.6.4 Design of Service Interfaces... 55
6.7 SOFTWARE IMPLEMENTATION .. 56

6.7.1 Mapping of ASP files to Structures .. 56
6.7.2 Business Package Class & QueryList class ... 57
6.7.3 Mapping of Model code ... 58
6.7.4 Mapping of Controller code... 60
6.7.5 Mapping of View code.. 63
6.7.6 Implementation of Web Services .. 64
6.7.7 Business Package Dependencies.. 64

6.8 SOFTWARE TESTING... 65
6.9 SOFTWARE INTEGRATION ... 65

7 USE CASE: MIGRATION OF TICOS... 67

7.1 MIGRATION PROCESS... 67
7.2 PROBLEMS AND ADVANTAGES ... 74

8 OUTLOOK.. 76

REFERENCES...A

BIBLIOGRAPHY ...A
WEB REFERENCES..B

 III

List of Tables and Figures

Fig. 1.2.a : Tight coupling of applications in a heterogeneous environment [IBM SOA] 3
Fig. 1.3.a : Classification of Custom Business Web Applications ... 5
Fig. 2.3.a : TICOS application structure... 10
Fig. 3.1.a : Request- Response-objects in ASP... 11
Fig. 3.1.b : ADO.DB example in ASP.. 12
Fig. 3.1.c : COM components in ASP .. 12
Fig. 3.2.a : Mixed MVC-style... 13
Fig. 3.2.b : Separated View via XSLT.. 14
Fig. 3.2.c : Complete MVC separation with COM, ASP and XSLT .. 15
Fig. 3.2.d : MVC-styles in ASP applications.. 16
Fig. 4.2.1.a : createMember.asp.. 22
Fig. 4.2.1.b : createMember.jsp .. 23
Fig. 6.1.a : Migration Concept by Sneed .. 29
Fig. 6.1.b : Incremental Migration Concept ... 30
Fig. 6.3.a : Software Evaluation ... 33
Fig. 6.4.a : Object Modeling... 35
Fig. 6.4.b : Tight coupling between Web applications ... 36
Fig. 6.5.a : Software Post-Documentation.. 37
Fig. 6.5.b : Example of source code documentation... 39
Fig. 6.6.a : Object Refinement.. 40
Fig. 6.6.2.a: MVC structure in Java.. 42
Fig. 6.6.3.a : MVC-styles in ASP applications... 43
Fig. 6.6.3.b : Wrapping of SQL queries – Model component .. 45
Fig. 6.6.3.c : SQL queries in Controller component... 46
Fig. 6.6.3.d : Target Design with encapsulated legacy components... 47
Fig. 6.6.3.e : Object oriented calls on the data model... 48
Fig. 6.6.3.f : SQL statement with subqueries ... 49
Fig. 6.6.3.g : Encapsulation of SQL statements.. 49
Fig. 6.6.3.h : Conversion and Redevelopment.. 50
Fig. 6.6.3.i : View component in ASP.. 51
Fig. 6.6.3.j : View component converted to JSP... 51
Fig. 6.6.3.k : Sample of ASP & XSLT ... 52
Fig. 6.6.3.l : Target Design with separated View ... 53
Fig. 6.6.3.m : Encapsulation of COM business objects.. 54
Fig. 6.6.3.n : Target Design for separated MVC .. 55
Fig. 6.6.4.a : Service Interface design .. 56
Fig. 6.7.1.a : Example of pageflow mapping from ASP to Java... 57
Fig. 6.7.2.a : Example of QueryList class... 58
Fig. 6.7.3.a : Mapping of Business Functions to Java .. 59
Fig. 6.7.4.a : Mapping of built-in ASP objects to Java... 62
Fig. 6.7.4.b : Redirection of data to Views... 63
Fig. 6.7.6.a : JAX-WS Web Service... 64
Fig. 6.9.a : UDDI Model for Web Services.. 66
Fig. 7.a : The legacy TICOS application .. 67
Fig. 7.1.a : TICOS application structure... 68
Fig. 7.1.b : TICOS Worktime management use-case diagram ... 68
Fig. 7.1.c : TICOS data export via files.. 73
Fig. 7.2.a : Deployment of a migrated business package on the SAP Portal .. 75

TU Dresden, Le Hai Dang 1

Abstract

In many of today’s large-scale enterprises, IT-administrations often times find their IT-
infrastructure heavily “departmentalized” [IBM SOA]. This happens primarily, because
enterprises tended to leave their business departments and local IT-administrations to
take care for their own needs, instead of relying on a centrally managed IT-organization.
For that reason local departments ended up creating applications in isolation from the
global context. As a result the IT-infrastructure became heterogeneous and complex, as
applications were coupled in a direct manner, due to the lack of common interfaces. This
situation is called tight coupling of applications, which is a major source of maintenance
and development problems for enterprises.

A modern solution for this situation is the Service Oriented Architecture (SOA), which is
widely implemented in enterprises nowadays. The Service Oriented Architecture is an IT-
infrastructure, which introduces loose coupling to the environment and decouples
applications by providing common interfaces. A group from the set of enterprise
applications consists of Web-based applications, which are used in the intranet
environments to support business departments with customized functionalities. These
Web Applications are often times implemented in ASP 3.0 (or classic ASP) and are built
in a monolithic manner. As a result, Web applications are often times part of the
enterprise’s migration strategy to migrate legacy IT-systems to a modern SOA-based IT-
infrastructure.

Therefore this paper focuses on the migration of the class of intranet-based Web
Applications and presents a migration concept for Web Applications implemented in
ASP, in the context of a migration to a SOA-based IT-infrastructure. Based on a
migration project conducted at Robert Bosch Japan, this paper summarizes analysis,
deciding factors, migration approaches and best practice experiences in a concept, with
the goal to provide a systematic approach to migrate ASP-based Web applications
successfully.

ASP to Java Migration 1 Introduction

TU Dresden, Le Hai Dang 2

1 Introduction

1.1 Heterogeneous IT-Infrastructures in Companies

A significant part of a company’s IT-infrastructure is characterized by management and
controlling systems, which is usually composed of professional ERP software (Enterprise
Resource Planning) and custom applications. These custom applications are tailored to
complement software of the shelf and are often times realized as web applications in the
company’s intranet environment. They can be found in all business departments of
companies and are applied in many different use-cases. In a large-scale company, it is
often the case that the local IT-departments develop customized applications, for different
departments of the regional branch, and thereby do not follow a strict IT-policy
(sometimes due to a lack of a global IT-policy). This often times leads to an overall
heterogeneous IT-infrastructure which consists of monolithic and tightly coupled
applications tightly. Due to this “departmentalized” way of developing software,
applications are built in a monolithic way in an isolated manner, which causes the
applications to lack extensibility and reusability.

Through this constellation many companies struggle to cope with the increasing
maintenance problems and the demands for modern IT services. In order to solve these
problems the companies IT-administrations are changing their IT-infrastructures to a
more homogeneous environment, by using common technologies and common interfaces.
Along with a change to a homogeneous environment, a so called Service Oriented
Architecture is often times established by the companies. Thereby a Service Oriented
Architecture is a widely applied solution to provide extensibility and reusability to the IT-
environment as it is based on the idea of interoperable and reusable services which
encapsulate functionalities of the underlying business applications. Therefore companies
can benefit from such an architecture by:

• Reducing tight coupling of applications via changing middleware connections to
Service interfaces, which introduce loose coupling and decrease maintenance
costs of legacy software

• Reusing Service interfaces to reuse functionalities in order to speed up
development time and lower development costs of applications

• Implementing an Enterprise Service Bus to increase flexibility in the
communication between applications and allow better integration of applications

• Introducing a central presentation platform, such as a portal system, that is based
on the aggregation of contents from business applications and services.

ASP to Java Migration 1.2 Problems of Heterogeneous Environments

TU Dresden, Le Hai Dang 3

1.2 Problems of Heterogeneous Environments

In a “departmentalized” legacy IT-infrastructure the problems lie in the many custom
applications used in the departments. Due to their independent development, they are
heterogeneous and require middleware to be interoperable with each other. The resulting
picture of such an IT-environment resembles a complicated network of heterogeneous
nodes with customized middleware connections. This kind of environment is depicted
below.

Fig. 1.2.a : Tight coupling of applications in a heterogeneous environment [IBM SOA]

What is apparent in such a case is the numerous quantity of middleware used to link
applications together, whereby middleware is required to connect applications with each
other, which are implemented in different technologies (such as Java, ASP, PHP or native
technologies like COM) and operate on different data sources (such as relational
databases, data files, messages) with each other. This introduces strong dependencies to
the applications and result in inflexibility and inextensibility in regard to changes to the
systems. Therefore the maintenance costs for such a constellation is high. Additionally
the potential of redundant and inconsistent data exist, since applications often times store
overlapping set of data locally. Therefore middleware connections have to deal with
different technologies and different data formats in these environments. In fact it is often
the case that information can not be synchronized properly due to the heterogeneous
infrastructure.

Through these reasons companies have begun to modernize their IT and transform their
infrastructure to a SOA-based IT-infrastructure. Consequently as a part of this movement,

ASP to Java Migration 1.3 Application Class: Custom Business Web Applications

TU Dresden, Le Hai Dang 4

the class of Web Applications, which constitutes the majority the described applications,
are also being migrated to a SOA-based platform. In the following the class of these
mentioned Web Applications will be characterized.

1.3 Application Class: Custom Business Web
Applications

As an own category of applications in a company’s IT-environment, Custom Business
Web Applications can be found in the intranet environment of many business
departments. There, they serve many kinds of requirements, ranging from controlling,
resource planning tasks to information or messaging services. Thereby Custom Business
Web Applications are small-sized or middle-sized monolithic Web Applications, which
operate on local data sources or retrieve portions of data from external sources via some
sort of data service. Typically Custom Business Web Applications are implemented in
different (legacy) programming technologies, depending on the expertise available in the
different business departments or local IT-administrations. The common web
technologies used are “classic” ASP, JSP or PHP. Therefore it is difficult for the
companies to come up with a general migration process or concept, because of the
differences in the technologies.

Through the isolated development of Custom Business Web Applications, the software
quality can vary very much, depending on the maturity of the system. The range can span
from applications with poor implementation and documentation quality, e.g. where
typical Model-View-Controller components are mashed up together and documentations
are insufficient, to matured applications, where components are well structured and
documented. Though in reality within a department, there are more small-sized and poor
implemented applications than matured applications. From a technical point of view
Custom Business Web Applications are used by a small quantity of users (usually by
those in the business department) on a regular basis, as for example in time accounting or
project management Web applications. Therefore optimization issues such as load
balancing, availability etc. are less relevant.

From the data-centric point of view, Custom Business Web Applications, typically
operate on local datasources. If ever data must be shared, applications tend to retrieve
portions of data and store them locally for further processing, therefore synchronization
services are mandatory in many applications, although usually less synchronization
services are implemented. Additional third party services can be used such as directory
services (e.g. LDAP) or (Windows) authentication services.

ASP to Java Migration 1.4 Primary Requirements

TU Dresden, Le Hai Dang 5

Classification Custom Business Web Applications

Type - Specialized Web Applications
- Intranet environment
- Small-sized to middle-sized legacy Web Applications

Examples/Fields
of usage

- Controlling (resource planning, time accounting, meeting
room reservation)

- Resource Planning (warehouse management)
- Information and communication services (web translator,

web-based instant messaging, conference chat,
maintenance notification, employee/customer
information)

- knowledge management (wiki, collaboration)
Properties - use of middleware to communicate with other

applications of different technologies
- monolithic
- specialized and redundant data
- non-uniform user interfaces
- decentralized login
- non-uniform login mechanism and identity management

Implementation - Implementation in different programming languages
- commonly ASP, PHP, JSP
- AJAX, COM, ActiveX components

Software
Quality/State

- less usage of common programming conventions
- no (rare) application of MVC model
- usually no object orientation
- poor documentation of code

Fig. 1.3.a : Classification of Custom Business Web Applications

1.4 Primary Requirements

Resulting from the named problems with heterogeneous IT-infrastructure and Custom
Business Web Applications, the primary goals for requirements are:

• Migration of Custom Business Web Applications to a target programming
technology (Java)

This is an IT-policy specific requirement, which goal is to generalize the
programming technology used at business departments in order to provide better
support and resolve heterogeneity of the IT-infrastructure.

• Generation of SOA-based interfaces from business functions

The goal is to provide reusability of business functions and resolve exponential
dependencies between applications. By providing SOA-based interfaces the

ASP to Java Migration 1.5 Available Migration Strategies and Related Migration Works

TU Dresden, Le Hai Dang 6

quantity of middleware/bridges between applications will be reduced and
therefore enables loose coupling between applications.

• Modernization of Custom Business Web Applications to a Model-View-

Controller based structure

As Custom Business Web Applications are implemented by local business
departments, the quality of code is usually not good. As applications should be
reusable, they must be able to cope with future changes, therefore an implicit
modernization along the migration process is required.

1.5 Available Migration Strategies and Related Migr ation
Works

The topic of software modernization is a complicated problem in software engineering,
which has produced different kinds of solutions by the time, especially in case of
software migration of procedural programs to object oriented programs (such as in ASP
to Java). From the perspective of automatism, one can find different approaches ranging
from full- or semi-automatic code-to-code transformation to complete manual
approaches. Works that are based on automatic code-to-code transformation rely on re-
engineering techniques in order to generate dataflow and function call graphs, examples
of works that fall into these categories are [Martin/Müller] [Ping et al.] or [Cimitile et
al.]. Although the solutions named in [Martin/Müller] refer to C-to-Java migration it is
apparent that automatic solutions often times result in unsatisfactory codes that are not
readable for humans. This is also apparent in the direct context of ASP-to-Java migration,
namely in the [J-ASP] tool, which will be introduced in 4.2.1 NetCoole J-ASP. Besides
full automatic solutions, semi-automatic code-to-code transformation tools can be found.
Those tools rely on user interaction in order to retrieve ambiguous information in the re-
engineering process. The aim of such systems is to enhance the quality of the resulting
code. In the work of [Ping et al.] a code-to-code transformation tool for Net.Data* to JSP
was developed, which migrated Net.Data programs to JSP while enhancing the structure
to a Model-View-Controller based design. The tool developed relied on the analysis of
the Net.Data Abstract Syntax Tree (AST) and the mappings of dataflow and function call
graphs, additionally data access via SQL queries are analyzed and dynamic variables are
mapped with the help of dataflow models. The advantages of automatic and semi-
automatic approaches in comparison to manual approaches lie in the fast transformation
of code, however often times the result of those works are unsatisfactory for industrial
standards. In [Sneed] an overview of the reasons and problems in the migration of
procedural programs to object oriented programs is given.

Due to the complexity of the topic and the limitations found in the industry, it is often
times not feasible to follow the research heavy path of automatic or semi-automatic
migration. Therefore a pragmatic goal is often set in companies, which encourages the

* Net.Data is a server-side scripting language developed by IBM

ASP to Java Migration 1.6 Motivation and Goals

TU Dresden, Le Hai Dang 7

development of manual migration concepts. In this manner this paper tries to provide an
extensive migration concept for ASP based Web applications.

However, in the context of Web applications migration concepts, materials and
references are scarce. Through research on the internet the author had to rely on Web
sources in order to gain valuable experiences in Web application migration. Therefore the
information and approaches presented in this paper relies heavily on the experiences of
the author. Related works that have been done to this subject can be found in [Jeenicke]
or [MSDN Migration].

1.6 Motivation and Goals

In the concrete case of a company-wide migration process in the context of a SOA-based
IT-infrastructure, companies must provide a migration procedure for Custom Business
Web Applications. Due to the different technologies used in different departments, it is
not easy for a company to provide a general migration procedure for all technologies and
all application types. Instead the companies must provide local departments and IT-
administration a guideline which is customized for the technologies used within these
departments. Thereby one must take into account, that different departments and IT-
administrations have different fields of expertise, therefore the guideline must define a
systematic decision process to migrate Web applications from one environment to
another.

Since the paper is based on a project conducted at Robert Bosch Japan, where ASP was
the major web technology used, “classic” ASP is chosen as the legacy web technology to
represent the migration of Custom Business Web Applications. Therefore the goal is to
provide a holistic migration concept for ASP-based Web Applications, which discusses
the following problems of migration:

• How to analyze and what factors have to be considered in preparation for a
migration process

• Identification of reusable components in ASP-based Web applications
• What are the problems in the migration of ASP-based Web applications
• What kind of migration methods can be applied to ASP Web applications
• How to modernize the structure of legacy Web applications
• How to migrate towards a SOA-based infrastructure

ASP to Java Migration 2 Use Case: Robert Bosch Corporation

TU Dresden, Le Hai Dang 8

2 Use Case: Robert Bosch Corporation

2.1 Situation and the Migration Task

Due to the heterogeneous IT-infrastructure of the Robert Bosch Corporation, the
company has introduced a custom Service Oriented Architecture, called “Robert Bosch
SOA”, and deployed a portal system called SAP NetWeaver Portal as a central platform
for users to access business applications. In regard to its custom Web applications, the
company’s goal is to migrate those Web applications to a base technology, which is Java,
and integrate the applications with the portal system.

In this paper, a project conducted at Robert Bosch Japan will serve as the best-practice
example for the migration of Web Applications. Since this project was part of a migration
process at Robert Bosch Japan, the goal was to migrate the application called TICOS
(“Task-Information-Charging-Operation-System”) to Java and integrate it with the SAP
NetWeaver Portal. As in the case of Robert Bosch Japan, the local IT department is
responsible for the whole IT administration and controlling of Robert Bosch Japan. The
local IT department develops small- and middle-sized customized Web applications to
support the business processes of the local business departments. Most of the applications
produced are kinds of controlling tools, to supervise projects and account times/costs.
They all are designed as stand-alone applications and have only few interaction interfaces
with each other, such as with COM (Microsoft Component Object Model) interfaces for
ASP Web applications.

However at Robert Bosch Japan applications are mostly connected together at data level
via shared databases or with custom data services, which often times is used to
interchange data with external clients, such as other equivalent departments of different
regions (China, Australia and Europe etc.). Just until recently all these applications were
used in an intranet environment, but due to the company’s IT policy, it had been decided
to migrate and integrate all applications to a new portal environment, in order to allow
users a centralized application access. The goal of the company is to provide central
access to resources and applications by a common architecture in a standardized and
service oriented manner.

2.2 Secondary Requirements

Due to the transformation from the old heterogeneous infrastructure to a new
homogeneous infrastructure and the introduction of Robert Bosch SOA and the SAP
NetWeaver Portal system, the company has defined new IT-policies in regard to the
custom Web applications used at subsidiaries. These requirements include the migration
of Web applications to Java and the exchange of traditional middleware for modern
service oriented Web Service interfaces. Additionally to that, Web applications should be
integrated with the portal system and should provide certain functionalities of the portal
system.

ASP to Java Migration 2.3 Best-Practice Migration Task: TICOS Web Application

TU Dresden, Le Hai Dang 9

Under the term “Minimized Portal Integration” the company has introduced the minimal
requirements for the migration process of custom Web Applications to provide the
minimal set of functionality that all applications must support when integrated into the
company’s portal system, in order to gain the added value of portal systems.

• Single Sign On (SSO) and Identity Management

For applications used in the portal system of Robert Bosch Company, the
company requires additional functions to be implemented. As for improving
efficiency and security, applications integrated into the portal system have to
implement a Single Sign On mechanism.

Single Sign On is a mechanism where users are only required to login once to the
portal system and then be automatically logged into integrated applications
subsequently. Therefore users do not need to care anymore about a great
multitude of passwords and hence work more safely and in an efficient manner.

• Corporate Design

Since the portal system is the company’s presentational platform and in order to
provide a uniform user interface in the web applications, it is necessary to
introduce a common user interface design which is defined in the corporate
design. Therefore, it is required from applications to support the portal’s corporate
design.

• Linking with Portal Navigation

Web applications from different departments and locations are required to be
accessible from a single central platform (SAP NetWeaver Portal). Therefore web
applications must be linked with the portal application in a personalized manner.
The web applications must then be integrated with the portal in a form, which
allows the portal to initialize the Web applications in a personalized manner.

2.3 Best-Practice Migration Task: TICOS Web

Application

TICOS (“Task-Information-Charging-Operation-System”) is a Web-based information
system deployed at the Information Systems department of Robert Bosch Japan and is
used for accounting and charging of IT services. TICOS stores, among other things,
master data, such as project, employee or customer data and manages the accounting,
charging and planning of these resources. Essentially TICOS works with personal data
and manages project workflows. Projects can be created by managers and then planned
with team members. The system provides project planning (work packages, milestones,
resource planning) and time accounting (daily time accounting, time management)
mechanism and presents them in personalizable views. On regular basis TICOS’ business

ASP to Java Migration 2.3 Best-Practice Migration Task: TICOS Web Application

TU Dresden, Le Hai Dang 10

data is exported to external systems for further processing, this is done by an scheduled
service, which retrieves data from the database and exports data to different formats such
as Microsoft Excel Sheet (*.xls) or XML to a shared data server.

From the technical point of view, TICOS is implemented with ASP in combination with
XML, XSL and JavaScript. The application’s structure is inflexible, since TICOS
components mix up Model-View-Controller codes and functionalities are scattered into
many files.

Fig. 2.3.a : TICOS application structure

As described previously the goal was migrate TICOS to the Java platform with
integration to Robert Bosch SOA and portal system. Hence the tasks included analyzing
appropriate migration strategies and conducting migration with focus on the redesign of
functionalities for SOA and implementing required functionalities in order to integrate
with the portal system. Furthermore the system must be redesigned in order to be flexible
for future changes.

ASP to Java Migration 3 Analysis on ASP Web Applications

TU Dresden, Le Hai Dang 11

3 Analysis on ASP Web Applications

In order to provide a migration concept for ASP-based Web applications, an analysis of
the ASP technology and programming styles is necessary. In the next sections samples of
ASP specific techniques will be presented and programming styles will be described.

As mentioned in the previous chapter, ASP is a server-side scripting technology. As such
ASP scripts are interpreted on server-side by a scripting runtime, called “Active Scripting
Engine”. This scripting runtime supports the development of ASP application in different
programming languages, such as VBScript, JScript, with the requirement that each
programming language must be interpreted by an associated Active Scripting Engine
which is implemented as a COM-class. In this paper we will only consider VBScript
types of ASP Web Applications, as the VBScript Active Scripting Engine is the standard
and the most common implementation available on Microsoft IIS server (Internet
Information Services). Since the Active Scripting Engine is itself implemented as a COM
component, it supports COM components to be used in ASP pages. As such ASP has
standard components already implemented by default. In the following the programming
style and usage of COM components in ASP will be presented.

3.1 Sample Codes

Syntactically VBScript is a derivate of Visual Basic (VB) and Visual Basic for
Applications (VBA). The following code snippet will show VBScript and standard
components implemented in VBScript ASP:

Fig. 3.1.a : Request- Response-objects in ASP

A COM object which is regularly used by ASP is ASP ADO (ActiveX Database Object),
which is an ActiveX (COM) object that provides access to database management systems
and comes with the Microsoft IIS server. Therefore data can be queried with SQL
statements in ASP pages, like this:

<html>
<body>
<% Set username = Request.Form("username")
 Dim greeting

 greeting = "Hello " & username & " !"

 Response.write(greeting)
%>
</body>
</html>

ASP to Java Migration 3.1 Sample Codes

TU Dresden, Le Hai Dang 12

Fig. 3.1.b : ADO.DB example in ASP

As ADO is a COM component the DB object (COM class) can be created via the Server
object in ASP. In the same way any other COM component can be referenced in ASP like
this, therefore oftentimes application logic are implemented as COM components in ASP
Web Applications.

Fig. 3.1.c : COM components in ASP

Regarding programming styles, programming with COM components or with SQL
queries are both widespread. Whereas modeling business objects via SQL is not ideal but
accessing data is more straightforward. On the other hand COM components are hard to

<html>
<body>
<%
Set calculator =
Server.CreateObject(" COMCalculator.Vector Calculator")
Set vector1 = Server.CreateObject(" COMVector. Vector")
Set vector2 = Server.CreateObject(" COMVector. Vector")
vector1.x = 1
vector1.y = 2
vector2.x = 3
vector2.y = 4

Dim result
vector1 = calculator. vAdd(vector1, vector2)

result = "v.x=" & vector1.x & "v.y=" & vector1.y
Response.write(result)
%>
</body>
</html>

<html>
<body>
<%
Dim sConnection
sConnection = "DRIVER={MySQL ODBC 5.1 Driver}; SERV ER=localhost;
DATABASE=test; UID=root;PASSWORD=admin"

Set objConn = Server.CreateObject("ADODB.Connection ")
objConn.Open(sConnection)

Set resultSet = objConn.Execute("SELECT * FROM test .table1")

objConn.close
%>
</body>
</html>

ASP to Java Migration 3.2 MVC & Programming Styles in ASP Web Applications

TU Dresden, Le Hai Dang 13

implement and require additional programming skills. Through these technical features of
the ASP technology, there can be several programming styles be described. The
programming style of a ASP Web application is one of the main characteristics which
describes the software state of an application, thus it is necessary to analyze the main
programming styles which are widespread in ASP applications, in order to be able to
generate a migration concept for ASP-based applications.

3.2 MVC & Programming Styles in ASP Web
Applications

With the capabilities of ASP shown in the previous section, there are different styles
widespread how ASP applications can be developed. Regarding this, it is different from
project to project, in which style (and therefore in which quality) ASP applications can be
found. That must be kept in mind when migrating ASP applications as the quality of code
affects the outcome of the migration. The different styles range from completely mixed
MVC components to completely strict separation of MVC components. Generally a strict
separation of Model View Controller components is considered the best solution for (big)
Web Applications, however in order to achieve that, additional technologies must be
utilized, as ASP alone is not suited for every MVC component. In the following some
possible styles of ASP applications will be presented.

Fig. 3.2.a : Mixed MVC-style

In the first case, MVC components can be found in a completely mixed state. This is
apparent as “EditMember.asp” retrieves “Member” data via SQL queries and forwards
the new input data to “ViewMemberList.asp”. There, the incoming data will be validated
(Controller) and applied to the data model (Model) and the actual “Memberlist” (View)
will be rendered.

ASP to Java Migration 3.2 MVC & Programming Styles in ASP Web Applications

TU Dresden, Le Hai Dang 14

Fig. 3.2.b : Separated View via XSLT

Between complete mixed components and strict separation of components, forms of
partial separation of MVC components can be found. One form of partial separation is
when View components are separated via a combination of ASP pages and XML
transformations. In such a case Controller and Model Components are separated to
dedicated ASP pages and View Components are processed by separated ASP pages and
XSL files, where ASP pages hold the data to be presented in XML structure and XSL
files transform those XML structures to HTML. On pages where Controller and Model
components reside, SQL queries are used to access data from the data model. In such a
design business functions and control flow functions are not separated into different files,
therefore business logic and control logic are mixed with each other.

ASP to Java Migration 3.2 MVC & Programming Styles in ASP Web Applications

TU Dresden, Le Hai Dang 15

Fig. 3.2.c : Complete MVC separation with COM, ASP and XSLT

In complete separation of MVC components, Model components are implemented by
COM classes, Controller components are separated by dedicated ASP pages and View
Components are implemented by independent ASP pages. In such a design COM
components access data and provide business functions via object methods. Controller
components are separated to dedicated ASP pages, where they process input parameters
to handle the control flow of the application. Based on the input parameters the business
logic of the application is directed and the result is sent to the dedicated View page.

ASP to Java Migration 3.2 MVC & Programming Styles in ASP Web Applications

TU Dresden, Le Hai Dang 16

ASP Style Page
Structure

Model View Controller

Completely
Mixed MVC

• Model, View &
Controller
elements are
mixed together
within an ASP
file

• No object
oriented business
object model

• Business
functions in one
page with other
components

• Data access via
SQL

• Data entities from
Model are
presented with
ASP and HTML

• Control flow is
based on SQL
queries to the data
model or with
COM objects

• External
functionalities with
3rd party COM
components

Separated View

• Business
functions are
mixed with
control flow
functions in one
page

• View is
separated to a
dedicated page

• No object
oriented business
object model

• Business
functions in one
page with Control
components

• Data access via
SQL queries

• Data is presented
in a separated
ASP page with
SQL queries

• View can be
additionally
separated with
XML and XSL
files

• Control flow is
based on SQL
queries to the data
model

• External
functionalities with
3rd party COM
components

Complete
Separation of

MVC

• Business
functions are
separated into
COM
components

• Control flow
functions are
separated from
View pages

• View is
separated

• COM
components
access data model

• Business
functions are
implemented in
COM
components

• Data access via
COM DAO

• Data is presented
in a separated
ASP page with
SQL queries or
COM DAO

• View can be
additionally
separated with
XML and XSL
files

• Controller pages
manage control
flows of the
application based
on input
parameters and
business logic

• Control flow is
managed in
separated files

Fig. 3.2.d : MVC-styles in ASP applications

ASP to Java Migration 4 Basics: Technologies, Architectures and Tools

TU Dresden, Le Hai Dang 17

4 Basics: Technologies, Architectures and Tools

In this chapter relevant Web technologies, used in the best-practice migration project,
will be described. The legacy Web technologies used in Robert Japan are ASP and JSP.
Through the desired target platform by Robert Bosch Corporation, J2EE (Java Enterprise
Edition) technologies are mandatory, therefore J2EE standards and modern J2EE Web
frameworks will be introduced. Additionally SOA concepts and products used at Robert
Bosch will be described. Finally available migration tools for the relevant technologies
will be presented.

4.1 Technologies

4.1.1 ASP – Active Server Pages

Active Server Pages is a legacy web technology by Microsoft, which is used to create
dynamic HTML pages. Nowadays ASP is replaced by ASP.Net as the successor
technology of Microsoft. The mechanism behind Active Server Pages lies in the
embedment of ASP codes into a HTML structure, which can be evaluated dynamically
during run-time. As a server scripting technology, ASP codes are interpreted by the Web
server (commonly by the Microsoft “Internet Information Services” server) and the
resulting HTML documents are returned to the clients. The programming language used
by ASP can be any scripting language (commonly VBScript and JScript), which is
compatible with the Active Scripting Engine*. Through the support of COM-components,
the functionality of ASP scripts can be extended via COM/ActiveX components.
Therefore the functionality of ASP is not limited to built-in components such as
(“Session”, ”Request”, “Response”, “FileSystem” etc.), but can also be extended by
custom COM-components. This is often done in order to implement business logic in an
ASP application.

Advantages/Disadvantages:

One of the main limitations of ASP is that it easily allows mixing up presentation and
business logic. As for example one can often find SQL statements directly embedded
inside of ASP pages, which violates the common Model-View-Controller design pattern
in Web Applications. This is usually done when programmers access data sources via the
ADO (ActiveX Data Objects) COM-component, and implement their SQL-Statements
directly in ASP pages instead of COM-components itself. Hence in practice, ASP pages
are often implemented in the “dirty” way. Another problem regarding the migration of
COM-components of ASP applications to Java is that COM-components are bound to
Microsoft Windows and can not be reused by Java for other operating systems easily.

* The Active Scripting Engine itself is a COM component, because of that it provides Scripting Languages
to access COM components natively

ASP to Java Migration 4.1.2 JSP – Java Server Pages

TU Dresden, Le Hai Dang 18

4.1.2 JSP – Java Server Pages

Java Server Pages (JSP) is a technology for the presentation layer that allows the dynamic
creation of contents by using Java code, in similar way to ASP. JSP pages are located on
Java Web servers that evaluate Java-code fragments with a JSP compiler. JSP is designed
to separate application logic from presentation, therefore code for application logic can
be implemented in standard Java classes (POJO – “Plain Old Java Object”) and be called
by Java tags in JSP pages. This is a difference to ASP, as ASP allows COM-components
to be called from Active Server Pages, instead of Java classes, which are usually
implemented in the JavaBeans convention. JSP applications are usually written in
combination with the JSTL (JSP Standard Tag Library). This custom tag library is an
extension of the JSP specification, which allows the JSP compiler to evaluate tags
defined by the JSTL. Custom tags are sorted by category such as “core”, “ xml”, “ sql” etc.

Advantages/Disadvantages:

The advantage of JSP is the implicit integration of Java technology as compared to ASP
with COM support. Hence the technology is not bound to the requirements of the
underlying backend. The limitations of JSP are similar to ASP, such as the danger of
mixing up business logic code with presentation code easily. In regard to the migration of
legacy Web Applications from technologies such as ASP to Java, JSP as a target
technology is an ideal replacement for the presentation layers of an ASP application,
since there are many similarities between the two technologies.

4.1.3 Java Servlet

Java Servlets are Java classes, which are configured by the Java-Server to process HTTP
requests. These Java classes process HTTP requests and return HTML code to the client
via a HTTP-Response stream. Since Servlets are implemented at class level they are not
suited as View components (since the HTML code generation would be tiresome) but
instead as Controller components, because the control flow can be managed in the code
directly. Therefore Servlets are often used in combination with JSP to implement the
MVC pattern. From a technical point of view, JSP pages are equal to Servlets, since JSP
pages will be processed as Servlets by the Webserver.

4.1.4 Component Object Model

Microsoft Component Object Model (COM) [COM] is a technology, which enables
applications to reuse software components in the Microsoft Windows environment. COM
components can be created with many different programming languages, such as C++,
Visual Basic. The technology is used to provide interfaces in the local Windows
environment, which can be reused by other applications. COM components are compiled
binary files, often in form of a .dll or .exe file, which must be registered in Windows in
order to be reused. The COM technology itself is limited to the local environment,
however functionalities can be extended by Distributed Component Object Model
(DCOM) in order to be reused remotely.

ASP to Java Migration 4.1.5 Web Service

TU Dresden, Le Hai Dang 19

4.1.5 Web Service

Web services are remote software components that can be accessed via networks, such as
the internet or enterprise intranet. Web services in the regular configuration, are based on
the 3 open standards, Simple Object Access Protocol (SOAP), Web service Description
Language (WSDL) and Universal Description, Discovery and Integration (UDDI), which
define the communication, the interfaces and the registration of a Web service. Web
services provide remote procedure calls and can be used to build up a Service Oriented
Architecture (SOA). Web services share similarities with DCOM as they provide remote
computation and describe interfaces for such communication, however the biggest
differences lie in the communication protocol* and interface descriptions†. [Web Service
vs. DCOM]. In comparison to DCOM, Web services provide loose coupling to a software
environment, therefore Web services are the technology of choice for Service Oriented
Architectures.

4.1.6 JAX-WS

Java API for XML – Web Services (JAX-WS) [Sun JEE 5 Tutorial, part III], is a Java
API for the creation and consumption of Web Services. The API was introduced in the
Java Platform - Enterprise Edition 5 and is a replacement for the legacy Web Service
API, Java API for XML-based RPC (JAX-RPC). In JAX-WS Web Services can be
created in a much simpler way than it was in JAX-RPC, thereby JAX-WS makes use of
Java annotations heavily and simplifies the deployment of Web Services notably.
Compared to JAX-RPC, interfaces must not be created to generate Web Service stubs.

4.1.7 Model View Controller Design Pattern

The Model-View Controller (MVC) design pattern is an architectural pattern for
structuring the software development process of applications into Model (data model or
business object model) View (presentation) and Controller components (control logic).
The goal is to increase flexibility in software development, by facilitating future
modifications and extensions on the current software. The design pattern employs
separation of concerns for components, which helps to replace or reuse components from
each other independently. In the context of Web applications, the MVC pattern is widely
used as a reference, for modern design. Thereby each of the three components can be
implemented by different standards (of a technology). In the case of Java, oftentimes Java
Beans/EJB is used as Model, JSP as View and Java Servlet as Controller. In such a
configuration, a normal HTTP request is processed starting at the Java Servlet, which
process the request and calls Java Beans to return data to the JSP View component. In
legacy Web applications MVC components are usually mixed up together, therefore it is

* Web services communicate over HTTP via SOAP, while DCOM is based on a proprietary DCOM
protocol
† DCOM is based on remote objects and interfaces of COM objects defined in type libraries, while Web
services rely on loosely coupled WSDL interfaces

ASP to Java Migration 4.1.8 Enterprise Service Oriented Architecture – SAP NetWeaver

TU Dresden, Le Hai Dang 20

a goal in software migration to identify and to decouple MVC components from each
other, since the objective of software migration is the modernization of software.

4.1.8 Enterprise Service Oriented Architecture – SA P

NetWeaver

The software development in companies is more difficult, when functionalities can not be
reused and data can not be accessed seamlessly. Due to such obstacles, the modeling of
business processes can be slow and inflexible. Through the years, business processes
have changed at a fast pace and demands from inside or outside a company have
increased, thus a flexible and adaptable component based software environment have
become necessary, which could provide compositioning and reusing of existing
functionalities in a loose coupled environment. Such an architecture is the Enterprise
Service Oriented Architecture.

The concept of the Enterprise Service Oriented Architecture is based on the
compositioning of business services during the software development process. Other than
that loose coupling is also introduced by the Enterprise Service Oriented Architecture.
Thereby loose coupling is the basis for companies to integrate their incompatible systems
with each other. In a Service Oriented Architecture, a Service is a reusable functional
component, which encapsulates fine to coarse grained application functionalities that can
be called remotely and is defined by interface specification meta-data. Beside that
Services can be stored in repositories that can be looked up via naming and look up
functionalities. As described by [Nicolescu/Klappert/Krcmar, p.37 – p.40], an Enterprise
Software Architecture is composed of a Service Repository, Service Bus and a Frontend
Application. The latter one is usually represented by a portal application. In the case of
the Bosch SOA this instance is filled by the SAP NetWeaver Portal.

4.1.9 Portal System

On top of the Robert Bosch IT-infrastructure, the company has introduced the SAP
NetWeaver Portal, which acts as a front-end component to allow user-computer
interactions with the systems integrated to it. By definition SAP NetWeaver Portal is an
enterprise portal, which belongs to the group of closed and process oriented portals
[Nicolescu/Klappert/Krcmar, p. 23]. Whereby a closed portal is, in contrast to an open
portal (e.g. to which web portals belong to), a web system that is focused on a closed
group of users. An enterprise portal is defined as by [Vlachakis/Kirchhof/Gurzki, p.11] as
follows:

 “An enterprise portal is defined as an application, which based on web technologies
provides a centralized access to personalized contents as well as processes. Therefore
enterprise portals offer the possibility to support processes and collaboration between
heterogeneous groups. Characteristic for portals are the links and data transfer between
heterogeneous applications via a centralized platform and a uniform user-interface. A
manual log in on individual applications integrated to the platform is not necessary
through Single Sign On. ”

ASP to Java Migration 4.2 Migration Tools

TU Dresden, Le Hai Dang 21

By definition portal systems aggregate contents created from integrated applications and
display them in a uniform manner on the portal page. Portal systems display personalized
web-contents, depending on user roles and manage those roles in via their own identity
management system. Furthermore portal systems can increase efficiency and security by
proving SSO (Single Sign On) functionality to all integrated applications and can add
many services to support business related tasks, such as virtual conferencing,
collaborating, document sharing and etc.

4.2 Migration Tools

Migration processes can be supported by migration tools, which can implemented in a
form of a migration wizard or a stand-alone application that transforms code-to-code. In
the case of ASP-to-Java migration one of few migration tools that can be found is
NetCoole J-ASP, which transforms ASP applications into JSP/Servlet applications. In the
following this migration tool, along with a the wrapper tool COM4J will be presented,
which is an extremely useful tool when it comes to wrapping COM components to Java
classes.

4.2.1 NetCoole J-ASP

J-ASP is an ASP to JSP transformation tool from NetCoole company [J-ASP], which can
migrate ASP web applications to JSP applications. The tool takes ASP pages as input and
transforms them into JSP or Java Servlet applications. Thereby the tool works in this
way:

1. Takes a ASP project as input and analyzes each ASP page of it
2. Gets variables defined in an ASP page and declares them in the JSP page
3. Maps predefined ASP objects (Request, Response, Session, ADODB etc.) to J-

ASP objects in Java (jasp.Request, jasp.Response, jasp.Session, jasp.AdoDB etc.)
4. Transform ASP code to JSP code and create the JSP files

Essentially the tool works by mapping the standard ASP objects into Java classes and
transforming ASP codes to JSP codes based on the J-ASP classes. Following is a sample
of J-ASP transformation:

ASP to Java Migration 4.2.1 NetCoole J-ASP

TU Dresden, Le Hai Dang 22

Fig. 4.2.1.a : createMember.asp

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict //EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1" />
<title>Sample create Member</title>
</head>
<body>
<div id="container">

<% 'Controller

 Dim member_id
 randomize()
 member_id = int(rnd*9999999)+1
 Set member_name = Request.Form("member_name")
 Set member_firstname = Request.Form("member_firstn ame")

 Dim sConnection, objConn , objRS
 sConnection = "DRIVER={MySQL ODBC 5.1 Driver};
SERVER=localhost; DATABASE=ticos; UID=root;PASSWORD =; OPTION=3"
 Set objConn = Server.CreateObject("ADODB.Connectio n")
 objConn.Open(sConnection)
 Set rs = objConn.Execute("INSERT INTO tbl_members " & _
 "(member_id, name, firstname) " & _
 "VALUES ('" & member_id &"','" & _
 "member_name" & "',' "& member_first name & "')")

 objConn.close
 Response.Redirect "ViewMemberList.asp"
%>

</div>
</body>
</html>

ASP to Java Migration 4.2.1 NetCoole J-ASP

TU Dresden, Le Hai Dang 23

Fig. 4.2.1.b : createMember.jsp

<%@ page contentType="text/html; charset=iso-8859-1 " %>
<%@ page import="jasp.buildin.*" %>
<%@ page import="jasp.util.*" %>
<%@ page import="jasp.vbs.*" %>
<%@ page import="jasp.adodb.*" %>
<%@ page extends="jasp.servlet.JspBase" %>
<%
 try {
 jspinit(request,response,application,out);
%>

<%
 //Controller
 double member_id = 0;
 IStringList member_name = null;
 IStringList member_firstname = null;
 String sConnection = "";
 Connection objConn = null;
 variant objRS = new variant();
 Recordset rs = null;
%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict //EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1" />
<title>Sample create Member</title>
</head>
<body>
<div id="container">

<%
 vb.Randomize();
 member_id = vb.Int(vb.Rnd() * 9999999.0) + 1.0;
 member_name = Request.Form("member_name");
 member_firstname = Request.Form("member_firstna me");
 sConnection = "DRIVER={MySQL ODBC 5.1 Driver};
SERVER=localhost; DATABASE=ticos; UID=root;PASSWORD =; OPTION=3";
 objConn = new Connection();
 objConn.Open(sConnection);
 rs = objConn.Execute("INSERT INTO tbl_members " +
"(member_id, name, firstname) " + "VALUES ('" +
vb.CStr(member_id) + "','" + member_name.toString() + "',' " +
member_firstname.toString() + "')");
 objConn.Close();
 Response.Redirect("ViewMemberList.jsp");
%>

</div></body></html>

ASP to Java Migration 4.2.2 COM4J

TU Dresden, Le Hai Dang 24

Advantages/Disadvantages:

NetCoole J-ASP works by mapping ASP functionality to Java, therefore ASP developers
can easily read J-ASP fragments in Java code. The problem is that ASP-style code is
inserted in JSP files, which is confusing for JSP developers. Furthermore as the
transformation method of J-ASP is rather simple, the tool does not provide migration of
COM components. Therefore the usage of J-ASP is limited to simple ASP applications.
The applications that can be migrated with J-ASP must not have the business logic
implemented by COM-classes, therefore usually these applications implement business
logic by directly querying data from the data model. Another problem resulting from the
working method of J-ASP is that, the JSP applications generated will have the same
structure as their ASP counterparts, therefore Model-View-Controller patterns must be
added afterwards if possible. As a bottom line, it can be said that the use cases of J-ASP
are very limited, as J-ASP can only be applied for small-sized and simple ASP
applications. As for the working method of J-ASP, it can be said that it is rather simple
than sophisticated and can not serve as a good migration strategy for the migration of
Custom Business Web Applications.

4.2.2 COM4J

COM4J is a Java library which enables interoperability with Microsoft Component
Object Model. With COM4J one can generate Wrapper classes (Java classes that
implement native methods for COM interfaces) for COM interfaces automatically. By
doing so COM4J generates Java Wrapper classes at design-time and automatically
creates the necessary native implementation code during run-time [COM4J]. Therefore
developers can just reuse COM components in a convenient manner. In the case of ASP-
to-Java migration, COM4J can be used to encapsulate COM components that are being
used by ASP applications to enable interoperability with Java.

In order generate Java proxies, COM4J can be invoked via a command line tool, thereby
one has to specify the location of the COM file, which can be of a type of .ocx, .dll, .exe
or .tlb. As an example a COM4J command could look like this:

• ” java -jar tlbimp.jar -o wsh -p test.wsh c:\windows\system32\wshom.ocx”

Where “wshom.ocx” is the COM component, tlbimp.jar is a COM4J jar, wsh is the
output folder and test.wsh is the package name.

ASP to Java Migration 5 Software Migration

TU Dresden, Le Hai Dang 25

5 Software Migration

Due to the limitations in an industrial environment, a manual migration* approach in form
of a migration guideline is chosen (see 1.5 Available Migration Strategies and Related
Migration Works). In this chapter, the different migration strategies and methods for
manual migration will be presented. Additionally common deciding factors that influence
the decision making process of software migration will be named.

5.1 Common Deciding Factors

The common goal of any software migration project is to transform a given software
program from a legacy environment to a target environment by reusing or converting
existing components as much as possible. Software migration is about how to reuse the
most of existing components and how to rewrite existing components for the new
environment. In this manner the capability to conduct migration depends on common
deciding factors, which are described in [Sneed 1999, p. 24]:

• Costs – money to spend

• Time – deadline when to exchange the software

• Human resource - expertise, experience and quantity of members

• Software state – technical aspects of software such as code structure and modules

Monetary and time limitations are universal factors that affect any software project.
Human resource is an important criterion in the decision process of a software migration
process. For any migration project a balanced combination of expertise and experience
must be found in order to conduct the migration well. This means that both, expertise and
experience in the legacy technology as well as in the target technology must be available.
Beside those common criteria, the most important criterion is software state, which
describes the quality and complexity of a software program. This deciding factor must be
analyzed thoroughly as it defines which components can be reused and which migration
approach can be applied. Therefore the majority of analysis is spent on this aspect in any
software migration project.

5.2 Migration Strategies and Methods

Migration strategies and methods are the tools in a migration concept, which allows the
migration concept to rely on for different situations depending on the common deciding
aspects in context of a migration task. Thereby a migration strategy describes the overall
conduction of a migration concept and migration methods define the ways how actual

* In this way, the term “software migration” will, from this point on, be referred to as in the context of
manual migration

ASP to Java Migration 5.2.1 Migration Strategies

TU Dresden, Le Hai Dang 26

code can be migrated in a given case. In the following common migration strategies and
migration methods will be described.

5.2.1 Migration Strategies

• “Horizontal” and “Vertical” migration [MSDN Migrati on] [Jeenicke]

By horizontal and vertical, the distinction between application layers (horizontal)
and functionalities (vertical) are defined. While in the horizontal migration
strategy, a migration from certain layers of abstraction, such as presentation layer,
application layer, data layer, is targeted, it is the goal to migrate whole functional
modules in the vertical migration strategy. As for example in the case of
horizontal migration, there is a given situation where the application is well
separated into abstraction layers and components can be reused seamlessly in
these layers. On the other hand if functionalities are separated by functional
packages, it can be more efficient to migrate these functionalities, each as a stand
alone entity by applying the vertical approach.

• Incremental and All-At-Once migration

Other forms of migration can be identified by the incremental (or “Chicken Little”
[Brodie/Stonebreaker]) and the All-At-Once (“Big Bang” or “Cold Turkey”
[Brodie/Stonebreaker]) migration approach. Thereby, the incremental approach,
describes the migration of an application in incremental steps or migration cycles,
where components or functionalities will be migrated incrementally and deployed
in parallel to the current application. In incremental approaches the principle of
divide-and-conquer is applied to the migration. This approach has the advantage
that users will have more time to get familiar with the changes and thus will have
a higher acceptance to the application. Also, the application can be tested more
thoroughly because of the iterating steps. On the other side the disadvantage lies
in the parallelism of the two systems, as by the incremental approach the migrated
components and legacy components must be able to run in parallel to each other.
This can be difficult in certain situations, such as described in [Jeenicke, p. 11],
where target technology and legacy technology are incompatible. The “Big Bang”
strategy, describes the process as an all-at-once migration, where all
functionalities will be migrated in one big procedure. This approach may be
faster, when applied in the ideal circumstances (such as for well documented
small sized applications), but however this kind of migration strategy involves
great risks as changes to the requirements can not be reverted easily during the
migration process. Therefore this kind of strategy is more suitable in small and
less complex applications.

ASP to Java Migration 5.2.2 Migration Methods

TU Dresden, Le Hai Dang 27

5.2.2 Migration Methods

As for migration methods, generally there can be three types of methods named [Sneed
1999, p. 20] [Gimnich/Winter].

• Conversion

Conversion is the approach to re-use functionalities by code-to-code
transformation, often times applied when legacy technologies share similarities
with the target technologies, such as in case of ASP and ASP.Net. or ASP and
JSP. In such cases the syntax of the legacy technology resembles the syntax of the
target technology, which makes it easier to convert code from one environment to
another.

• Encapsulation

Encapsulation is the method to re-use existing components, by providing
wrappers or bridges for the legacy component. Encapsulation can be applied when
it is possible to run both, the legacy component and the target application in
parallel. Usually encapsulation can be considered the least extensive approach to
migrate software, since wrappers and bridges can be easily created. However it is
also the least clean solution, since legacy software are not modernized through
encapsulation and additionally must be run in parallel with the target system.

• Re-development or Re-engineering

Re-development defines the whole re-creation of software components. Thereby
program structures as well as data models can be subject of re-development.
Usually re-development is the most resource-consuming approach. Whenever re-
development is chosen, there must a situation exist where conversion or
encapsulation is not available for migration, such as in cases where source codes
are not available or whenever it is not allowed to transform code-to-code (e.g. by
3rd party software).

ASP to Java Migration 6 Migration Concept

TU Dresden, Le Hai Dang 28

6 Migration Concept

In this chapter the migration concept will be presented, it is structured in migration stages
which describe the analysis, design, implementation and integration phases in a migration
process. Additionally the concept will incorporate the design process for Web Service
interfaces for legacy Custom Business Web Applications, and will provide
recommendations to solve the dependencies between legacy application, in order to move
from the legacy environment to a Enterprise SOA-based environment.

6.1 A General Migration Concept for Software System s

The migration concept presented in this paper is based on the migration concept by Harry
M. Sneed and described in his book “Object Oriented Software Migration” [Sneed 1999],
in which the author describes a migration approach for legacy procedural business
software, written in COBOL, from a procedural and monolithic system to an object
oriented and distributed system. Thereby the migration process is structured in stages
which cover analysis, design, implementation and integration of the migrated system.
However, the concept is generally applicable, since it is based on steps that are
summarized by [Gimnich/Winter]. Therefore, this concept is based largely on the stages
described by Sneed and applies them in the context of Web applications. According to
[Gimnich/Winter], a manual migration process generally consists of the following
migration workflow: choosing a migration strategy, defining the target environment,
analyzing differences, defining the migration complexity, defining and executing
transformations, deploying the system, “migrating employees” and quality assurance.
These steps can be found in the stages of the migration model of Sneed, which is
presented below.

ASP to Java Migration 6.1 A General Migration Concept for Software Systems

TU Dresden, Le Hai Dang 29

Fig. 6.1.a : Migration Concept by Sneed

The development process described by Sneed is sequential, as it is separated into 8 stages
which are conducted stage by stage, therefore it is similar to software development
processes like the Waterfall model [Waterfall model]. Because of this reason Sneed’s
migration model inherits the higher risks, as compared to incremental software
development models, since the concept implies an “all-or-nothing” characteristic
(meaning that systems are developed in one big process), which is not suitable for big and
complicated projects, where business requirements may change during the development
process. Although the migration of Custom Business Web Applications is concerned with
small-sized to middle-sized applications, it is better, for the named reasons, to migrate
applications in an incremental approach. Following an incremental migration model
based on Sneed will be presented.

ASP to Java Migration 6.2 The Stages of the Migration Concept

TU Dresden, Le Hai Dang 30

Fig. 6.1.b : Incremental Migration Concept

This migration concept encourages the migration of single functional packages, which
can be in coarse or fine grained form, over an incremental development cycle. In the
course of the migration process, additional packages can be migrated and integrated
together or migrated packages can be further refined in additional iterations. Because the
data model is mostly untouched by this migration concept, the migrated packages can be
run in parallel to the legacy system.

6.2 The Stages of the Migration Concept

The migration process is structured into 7 stages which span analysis, design,
implementation, testing and integration. In the following the migration stages will be
introduced briefly.

ASP to Java Migration 6.2 The Stages of the Migration Concept

TU Dresden, Le Hai Dang 31

Software Evaluation

In the first stage the legacy system must be analyzed thoroughly, the goal is to
identify the structure of the legacy system, in order to decide which migration
methods can be applied. Therefore it must be analyzed how Model View
Components are implemented, and decided how to migrate them effectively with
regard to the limiting factors (such as costs, time, human resources etc.) and the
company’s requirements (such as technical requirements, functional requirements,
software quality etc.). The goal at the end of this stage is a vision of how
components of the legacy systems will be looking like in the new system and if it is
feasible with the resources given.

Object Modeling

The purpose of the second stage is to analyze the functionalities of the system, and
to identify its functional modules and business objects. The goal is to define a
coarse grained business object model in order to modernize the legacy application
and to prepare the interfaces for the Service Oriented Architecture. As the overall
goal of the migration of Custom Business Web Applications is to reduce
heterogeneity and to support reusability and flexibility via a SOA interfaces, it must
be kept in mind to analyze which business parts of the legacy system can be
exposed as SOA interfaces.

Software Post-documentation

In order to conduct migration properly in the implementation phases, the results of
the software evaluation stage must be documented in the third stage. The goal is to
document functionalities and structures of the legacy system, if it was not done in
the original development. The documentation of structures and components can be
done in the source code in order to support the mapping of Model View Controller
components to the new structure.

Object Refinement

In the fourth stage of the migration concept, a functional module or package will be
selected to be migrated. The goal of this stage is to design the classes and the
packages in preparation for the incoming implementation phase. The focus lies on
the refinement of the business objects and the design of packages for SOA
interfaces. As the goal is to migrate a functional package to the new environment,
Model View Controller components must also be refined and be prepared for the
implementation stage. The overall goal is to redefine the business object model so
that future business changes can be adapted more flexibly, therefore an object
oriented design of classes is favored. However it is not the goal to migrate the
legacy application to a fully object oriented Java application as it would reduce the
chances to reuse components of the old system. A common problem in this phase is
that functional packages have references to each other. Therefore it can not be

ASP to Java Migration 6.2 The Stages of the Migration Concept

TU Dresden, Le Hai Dang 32

assured that functional packages can be migrated isolated from each other,
furthermore it must be kept in mind to define functional dummy stubs so that they
can be integrated with each other in later phases and migration cycles (in Software
Implementation phase of the later migration cycles).

Software Reorganization

The Software Reorganization stage, was described by Sneed as a step between
Object Refinement and Software Implementation, which purpose is to prepare the
legacy software for migration. It was stated that components exist that do not fit and
are not supported by the target environment should be reorganized or redeveloped
before handed in order to be migratable to the target environment [Sneed 1999, p.20
- 31]. Such components as in the example of Sneed can be components that operate
on legacy data sources such as hierarchical databases, which are not supported by
the target technology (such as Java). Therefore it is necessary to reorganize the
legacy system before handed (in the sample case the hierarchical data model would
be reorganized to a relational data model). However in the context of Web
applications and in the migration of ASP to Java, such a case is insignificant since
Web applications in both technologies usually operate with similar and common
technologies nowadays. Therefore the software reorganization stage as described by
Sneed will be left out of this migration concept.

Software Implementation

In the fifth stage of the migration concept, the chosen package will be implemented
in the target technology. Dependent on the software evaluation stage and the refined
business object model, the legacy components of the Web Application will be
encapsulated, converted or redeveloped. Additionally dependencies between
functional packages can be resolved by implementing the now available functions
that were not migrated in earlier migration cycles. Therefore packages can be
integrated with each other if necessary. At the end of this stage the chosen package
can be tested in cooperation with the already migrated packages.

Software Testing

The testing stage is an essential part of every software development process,
thereby the migrated applications functionalities will be tested for errors and bugs.
Because of the incremental development process of the migration concept the
migrated packages can be tested on the data source, while running in parallel with
the legacy system.

Software Integration

The last stage of the migration concept is aimed to integrate the migrated package
to the new environment. This includes the integration with the portal system,
whereby application pages must be linked with the portal’s application repository or

ASP to Java Migration 6.3 Software Evaluation

TU Dresden, Le Hai Dang 33

Single Sign On functionalities must be implemented. Furthermore SOA interfaces
can be registered and integrated with the companies Service Oriented Architecture.
After the migrated packages are integrated with the new environment the migration
process can be furthermore conducted incrementally or can be finished at this point.

6.3 Software Evaluation

Fig. 6.3.a : Software Evaluation

The software evaluation stage starts with the analysis of the application. It has to be
determined how big and complicated the application is, therefore the source code and the
Lines of Code (LOC) must be checked. After this short analysis the structure of the
application must be analyzed. It has to be checked in which form the application is linked
with its data model, e.g. oftentimes legacy Custom Business Web Applications found in
business departments are connected with a simple database management system such as
Microsoft Access. As the data model usually relates to the complexity of an application,
it can serve as an indicator for the structure of the application. As the size of the
application defines the migration strategy, it can be already decided at this stage whether

ASP to Java Migration 6.3 Software Evaluation

TU Dresden, Le Hai Dang 34

the application should just be redeveloped or not, this is the case when the application is
of smaller size and have simple complexity.

Of greater importance is the analysis of the MVC components of the legacy application.
It should be determined in which programming style (see 13.2 MVC & Programming
Styles in ASP Web Applications) the application was developed, whether it has a mixed
MVC style or if MVC components are strictly separated. In the following the MVC
components must be analyzed in which technology they are implemented. As for the
View components the most common implementations involve ASP, XML/XSLT,
Cascading Style Sheets (CSS) and JavaScript. As ASP and JSP (the Java equivalent to
ASP) are quite similar in syntax and capabilities, and XML/XSLT, JavaScript and CSS
are reusable in JSP, it can be said that the mapping of View components from ASP to JSP
is rather trivial. The only aspect that has to be analyzed is that whether View components
must be adapted due to company requirements (e.g. new corporate design of portal
system), and following which components of the View can be reused or converted
(adapted).

As for Controller components, in ASP Web Applications these components can be
implemented in ASP fragments which manage the control flow of the application for
example by validating input parameters of the ASP page request. In ASP Web
applications such validation is usually done by accessing the data model either via SQL
queries or COM. In the same manner Model components must be analyzed, whether they
are modeled via COM components (in an object oriented form) or modeled directly by
the data model (e.g. the data model stores session or workflow data). In this sense the
quantity and complexity of SQL statements must be analyzed, in order to decide whether
SQL statements can be reused to query data or be remodeled via new Data Accessing
Objects (DAO) in the target system. Usually this is a choice between better software
design (redevelopment) and migration effort (reuse). In the case of COM components,
firstly it must be checked whether source codes of the original COM component exist or
whether the required COM components are developed by an 3rd party. In case that no
source codes are available COM components can only be wrapped to be reused by Java
or be redeveloped. If source codes are available, the COM components can also be
converted to Java. Encapsulation is the most efficient way to migrate legacy codes to
Java, however this approach is less flexible in the long run since functionalities must be
redeveloped in the Java wrapper classes (or changed in the original code) if the company
request changes in the Model. This solution is therefore suited for cases where migration
must be conducted immediately and future changes in the business logic occur not
frequently. In the case of a conversion, the components would be more flexible and more
efficient, which is due to the absence of Java-to-COM bridges. However the effort spent
to convert COM components to Java would be significantly higher. As the last
alternative, COM components can be completely redeveloped in Java. This solution gives
the most freedom in design, but requires the most effort to migrate functionalities from
the legacy application. The choice whether it is better to encapsulate, convert or
redevelop COM components is dependant on the project requirements. As for example in
the case where COM components are not accepted on the target server, encapsulation of
COM would be not a choice, therefore conversion or redevelopment would be suitable

ASP to Java Migration 6.4 Object Modeling

TU Dresden, Le Hai Dang 35

for platform independent solutions. Additionally, in regard to 3rd party COM components,
it must be analyzed which services (e.g. LDAP, Middleware etc.) could be wrapped by
Java or replaced by equivalent Java services.

Depending on the limiting factors costs, time, human resources and project requirements
one can decide which approaches to follow and where the focus should be, which can be
either on efficiency (reusability or conversion) or quality (redevelopment). In the
common case View components can be reused (JavaScript, XML/XSLT) and converted
(ASP to JSP), Controller components can be reused (SQL, COM) and converted (ASP to
Servlet) and Model components can be reused (SQL, COM).

6.4 Object Modeling

Fig. 6.4.a : Object Modeling

After the software evaluation stage the software’s technical state is analyzed and well
understood, therefore one can decide which migration methods can be applied for the
parts of the application. However in order to bring the legacy system up to date, the
application structures must be modernized (application of MVC pattern) and adapted to
the new enterprise environment (integration with SOA). Therefore the task in this stage is
to analyze the functionalities of the legacy system and to identify business objects and
functional modules. Thereby business objects are entities on which the application
operates.

ASP to Java Migration 6.4 Object Modeling

TU Dresden, Le Hai Dang 36

Business objects are essential entities in an object oriented* application structure, which
is necessary in the migrated application in order to be flexible and extensible for future
requirements. Because oftentimes legacy applications are not object oriented and not
flexible, as they do not have an object oriented business object model and do access data
structures via SQL queries only (see Fig. 3.1.b : ADO.DB example in ASP), it is
necessary to map the underlying data model to an object oriented model at application
level. Therefore one has to analyze the applications master data tables of the data model
and retrieve business objects from this information. Otherwise, when COM components
are used to access the data model, COM objects have to be analyzed. The goal of this step
is the generation of a coarse grained business object model that is object oriented in order
to cope with future changes and demands more flexibly.

When business objects have been identified and a basic business object model has been
generated, business packages must be defined. Business packages are functional modules
that group a set of related functionalities together. This can be done by analyzing the code
of the legacy applications, but as well by studying specification documents and use case
diagrams, if available. The purpose of this step is to define packages that are loosely
coupled with each other so that they can be migrated incrementally (as far as possible) in
the later migration stages. Additionally the goal is to allow the packages to be exposed as
SOA-based interfaces for the common reuse of functionalities.

Fig. 6.4.b : Tight coupling between Web applications

Since the goal of the migration process is to reduce heterogeneity and dependencies
between applications (see Fig. 6.4.b : Tight coupling between Web applications), it must
be identified which functionalities are being used by external systems. The goal is to
define business packages for these functionalities, and expose them as services (as Web

* In the context of Web applications, object orientation is often applied for the representation of database
entities in a structured manner. Object orientation of the business object model is a requirement for the
application to return data entities in a reasonable manner in SOA interfaces.

ASP to Java Migration 6.5 Software Post-Documentation

TU Dresden, Le Hai Dang 37

services) in an SOA-based manner, so that those services can be integrated into the
Service Oriented Architecture in order to be re-used and accessible in a more uniform
way. This will improve efficiency of the company’s IT infrastructure as less
middleware/bridges have to be maintained. As described in 1.2 Problems of
Heterogeneous Environments, a problem of Custom Business Web Applications is
redundant or inconsistent data. This was caused by the isolated development of systems
and inappropriate methods used for data transfer (such as data file transfer TICOS, see
Fig. 7.1.c : TICOS data export via files). These problems should also be addressed in the
creation of a business object model during the identification of business objects, thereby
it must be identified which data are being imported or exported. It should be denied to
store global master data locally or redundantly. Usually a company’s SOA-based IT
environment is based on a central interaction platform (the portal system) and a central
data provider, which provides integrated systems with common master data such as
employee information/business department codes etc, therefore these kind of data shall
not be stored locally. Therefore legacy data transfer mechanism shall be re-defined and
modernized if possible, in this cases the communication between departments is essential
to be able to design appropriate interfaces for common data exchange and common data
structures.

In summary, the overall goal of this stage is the generation of a coarse grained business
object model and related business packages. It has the purpose to solve problems of
heterogeneity and redundant data in the legacy environment and is aimed to build a
foundation for the later refinement (e.g. definition of Web service interfaces, methods
etc.) of the business object model in the later design and implementation phases.

6.5 Software Post-Documentation

Fig. 6.5.a : Software Post-Documentation

In the Software Post-Documentation stage, the goal is to document the technical
characteristics of the legacy application in order to support the implementation phase of
the migration and improve the understanding of the legacy application for all team
members conducting the migration. Therefore the decisions made and components

ASP to Java Migration 6.5 Software Post-Documentation

TU Dresden, Le Hai Dang 38

identified in the software evaluation process must be documented. This can either be
done in specification documents or in the source code of the application. Important
aspects that must be documented are MVC components and business functionalities,
especially those that are subject to be exposed as service interfaces. In the documentation,
Model, View and Controller code fragments must be distinguishable by comments and
tags. Furthermore it should be made apparent how these codes will be dealt with in the
implementation phases of the migration as available options were already discussed in the
software evaluation stage. The 3 options that are available for migration are
redevelopment, conversion and encapsulation/reuse, therefore the application of these
options on application components, must be documented in a document such as in a
specification document.

ASP to Java Migration 6.5 Software Post-Documentation

TU Dresden, Le Hai Dang 39

Fig. 6.5.b : Example of source code documentation

In addition to the documentation of MVC components and migration methods, the
functionalities of each component must be documented, if they are not already done by
the original developers. Since the migration of Custom Business Web Applications, in
context of an integration to a SOA-based IT environment and portal platform, involves
additional functionalities (e.g. portal integration via Single Sign On or Web service
definitions), those functionalities must be documented in any case in the software post-
documentation stage.

<%
‘ViewMemberList.asp
Response.ContentType="text/xml"

‘MODEL PART – implement connects to DB and gets all Members
Dim sConnection, objConn, objRS ‘ODBC Objects
sConnection = “DRIVER={Microsoft OODBC for Oracle}; ” &_
 “SERVER=localhost; DATABASE=ticos;” & _

 “UID=root;PASSWORD=;”

Set objConn = Server.CreateObject(“ADODB.Connection ”)
objConn.Open(sConnection)
Set rs = objConn.Execute(“SELECT member_id, name, f irstname” &_

.

.
 “FROM tbl_members”)

 .
 .
‘CONTROLLER PART – creates and maps the model data to the XML
‘and pass ‘control relevant Data if necessary
xmlString = “<?xml version='1.0' encoding='UTF-8'?> ” &_
 “<?xml-stylesheet type='text/xsl' “ &_

“href='viewmemberlist.xsl'?>”

Response.Write(xmlString)
Response.Write("<Members>")
 .

.
do until rs.EOF

 Response.Write(“<Member>”)
 for each x in rs.Fields

 Response.Write(“<” & x.name & “>” & x.value &_

 “</” & x.name & “>”)
 next
 Response.Write("</Member>")

rs.MoveNext
loop
 .
 .
Response.Write("</Members>")
%>

ASP to Java Migration 6.6 Object Refinement

TU Dresden, Le Hai Dang 40

By the end of this stage, the result will consist of a specification document, which gives
information about functionalities and functional modules of the legacy application and
new functionalities required by the requirements of the company. Additionally
documentation at source code level is available which helps to identify MVC components
for the mapping components during the implementation phase. In the following stage, the
object refinement stage, the documentations will help to refine the business object model
and to design interfaces.

6.6 Object Refinement

Fig. 6.6.a : Object Refinement

At this stage of the migration process, the legacy application will be prepared to be
migrated. Starting from this stage the legacy application will be migrated in an
incremental cycle by migrating functional packages, package by package. The goal of
this stage is to refine the business object model, defined in the object modeling stage,
with the purpose to modernize the application and solve the problems related to the
legacy technologies.

ASP to Java Migration 6.6.1 Vertical Migration vs. Horizontal Migration

TU Dresden, Le Hai Dang 41

6.6.1 Vertical Migration vs. Horizontal Migration

As an incremental migration strategy, the vertical migration strategy is suited at best for
the purposes of Custom Business Web Application migration, since it allows the
application to be separated into functional packages and to be deployed in parallel to the
legacy application. The advantage of vertical migration is that, it separates the migration
process into incremental cycles in which small packages can be migrated and tested
incrementally. In comparison the big bang, it is more flexible and less error prone during
the migration process, since the big bang approach migrates applications in an all-at-once
manner which is attached with higher risks. While the horizontal approach is also an
incremental migration strategy, it can not be applied well to Web applications, since
different technologies in Model, View or Controller components (such as a combination
of JavaBeans, Servlet and ASP) will cause incompatibilities and introduce additional
work. This is the case when for example a Servlet instance wants to pass its session data
to a ASP view component. For this reason the most suitable migration strategy for the
migration of Web applications is the vertical approach, where Model, View and
Controller components of a functional package will be migrated and tested in one
migration cycle.

In a related work, Jeenicke has also applied the vertical migration in his approach and
concluded from his experience that it was “quite easy to integrate rewritten parts with
each other” [Jeenicke p.13]. However this can not be generalized, as the migrated
functional components may have complex dependencies with each other. This aspect
leads to a main deciding factor which affects the efficiency of vertical migration, which is
how to separate business packages from each other. In an ideal case the packages are
independent from each other, so that the migration of one package can be viewed as a
complete process. On the other side, if packages have dependencies to each other, the
packages have to be implemented with temporary stubs so that packages can be migrated
and deployed. Following the process those stubs have to be changed to real
functionalities when the dependent functions are available. Therefore it is a task of the
implementation and integration phases to handle such problems.

6.6.2 Model View Controller Structure

The MVC components in an ASP-based Web Application must be mapped to appropriate
technologies on the Java platform. As a possible configuration, a combination of
JavaBeans, Servlet and JSP is considered as the most suitable solution for the direct
migration of ASP-based Web applications. While Java frameworks such as JSF [JSF],
Seam [Seam] etc. provide a modern workflow for Web development, they add additional
complexity to the migration process, which will not be dealt in this paper. Therefore
JavaBeans, Servlet and JSP will be used to map equivalent ASP components, as the direct
mapping of those technologies is simpler as when certain framework mechanics are
involved additionally. As a result the object refinement stage is focused on the design and
refinement of components in the named technologies, whereas JavaBeans will be used for
Model components, Servlet used for Controller components and JSP used for View
components.

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 42

Fig. 6.6.2.a: MVC structure in Java

6.6.3 Refinement and Design of MVC Components

In the software evaluation stage the legacy components were analyzed and in the object
modeling stage a new coarse grained model was defined. The goal of this stage is to
combine the information and to refine the business object model (of the chosen package)
and design the MVC components involved with it. As analyzed in the software evaluation
state, the possible migration methods for different components are dependent on the
software state of the legacy application and the project requirements.

Depending on the programming styles of ASP Web applications (see 13.2 MVC &
Programming Styles in ASP Web Applications), MVC mappings of legacy applications
follow different designs at this stage. In the following the different refinement and design
scenarios of MVC components will be described depending on programming styles that
may occur in ASP applications.

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 43

ASP Style Page
Structure

Model View Controller

Completely
Mixed MVC

• Model, View &
Controller
elements are
mixed together
within an ASP
file

• No object
oriented business
object model

• Business
functions in one
page with other
components

• Data access via
SQL

• Data entities from
Model are
presented with
ASP and HTML

• Control flow is
based on SQL
queries to the data
model or with
COM objects

• External
functionalities with
3rd party COM
components

Separated View

• Business
functions are
mixed with
control flow
functions in one
page

• View is
separated to a
dedicated page

• No object
oriented business
object model

• Business
functions in one
page with Control
components

• Data access via
SQL queries

• Data is presented
in a separated
ASP page with
SQL queries

• View can be
additionally
separated with
XML and XSL
files

• Control flow is
based on SQL
queries to the data
model

• External
functionalities with
3rd party COM
components

Complete
Separation of

MVC

• Business
functions are
separated into
COM
components

• Control flow
functions are
separated from
View pages

• View is
separated

• COM
components
access data model

• Business
functions are
implemented in
COM
components

• Data access via
COM DAO

• Data is presented
in a separated
ASP page with
SQL queries or
COM DAO

• View can be
additionally
separated with
XML and XSL
files

• Controller pages
manage control
flows of the
application based
on input
parameters and
business logic

• Control flow is
managed in
separated files

Fig. 6.6.3.a : MVC-styles in ASP applications

Completely Mixed MVC Style

In a completely mixed structure of an ASP application, the data access is usually realized
via inline SQL queries. In such a structure, there is actually no Model or object oriented
business object model existent, therefore the data records returned from such queries
must be mapped to object oriented business objects if possible. Like the Model the
Controller and View code is implemented with a combination of ASP and SQL queries.
In order to migrate such an application structure to a modern SOA-based environment,
the applications structure must be mapped to a MVC-based design and provide an object
oriented business object model. This can be done by reusing, converting or
redevelopment of components as analyzed in the software evaluation stage. In the
following the different migration methods for each component will be described.

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 44

Encapsulation

The most efficient way to migrate SQL statements (which involves Model, View and
Controller) is to reuse the statements completely as they are, since the statements are
already well tested in practice. The idea is to copy these SQL queries to a central Java
class from where Model, View and Controller components can call those queries like in
the way they were used in the legacy application. However the result set of queries which
return attributes of a business object (or a set of business objects) should be objectified if
possible, which means that the containing Java class must provide a method which
returns the results of the query as a business object type (see Fig. 6.6.3.b : Wrapping of
SQL queries – Model component).

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 45

Fig. 6.6.3.b : Wrapping of SQL queries – Model component

However those kind of design, would only apply to SQL queries that result in attributes
of a business object. For SQL queries that result in different values of different business
entities, such as in the following:

<% ’Sample ASP code - EditMember.asp

’get Parameters
Set member_id = Request.Form("member_id")
query = “SELECT member.name, member.lastname FROM m ember” &_
 “WHERE member.id =” & member_id
Set results = adoConnection.execute(query)

... write results to HTML/XML ...
%>

//SQL Query wrapped as method in Java

public QueryList{
...

 public static Member edit_member_asp_query1(int member_id){
 ...
 String query = “SELECT member.name, member.la stname” +
 “FROM member WHERE member.id =” + member_id;
 ResultSet rs = jdbcConnection.execute(query);
 ...
 Member member = new Member();
 member.name = (String) rs.getValue(0);
 member.lastname = (String) rs.getValue(1);
 return member;
 }
...
}

<% //The JSP View - EditMemberView.jsp

 //get Parameters
 int member_id =(int)this.getRequest.getAttribute(“member_id”);

Member m = QueryList.edit_member_asp_query1(member_ id);

 ... write results to HTML/XML ...
%>

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 46

Fig. 6.6.3.c : SQL queries in Controller component

The result set of the query can not be objectified and must be used as it is. This kind of
SQL query is typical for SQL statements of Controller components. Therefore those
queries will be reused in Java Servlets of the target applications often. As mentioned
before, this way of reuse is the most efficient way to migrate SQL components. The
advantages are that, SQL calls from the legacy application can be mapped to MVC
components of the target application very easily, without any redesign of queries and

<% ’ASP Sample – sample.asp
 ’Controller code

Dim member_name, role_name

query = “SELECT member.name, role.name” &_
 “FROM member INNER JOIN role” &_
 “ON member.role_id = role.role_id” &_
 “WHERE member.member_id =” & member_id
Set rs = ado_conn.execute(query)

... member_name = rs(0).value ...
... role_name = rs(1).value ...

if role_name = "manager" then
 ... Manager Code ...
End if

if role_name = "employee" then
 ... Employee Code ...
End if
%>

//Controller mapped to Java Servlet

public class Sample_ASP_ControllerServlet extends H ttpServlet{

 void doPost(HttpServletRequest request, HttpServle tResponse
response) throws ServletException, IOException
 {... get Post Parameters ...

ResultSet rs = QueryList.sample_asp_query1(member_i d);
...
String member_name = rs.getAttribute(“member.name”) ;
String role_name = rs.getAttribute(“role.name”);

if(role_name.equals(“manager”))
{... Manager Code ...}

if(role_name.equals(“manager”))
{... Manager Code ...}

}

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 47

function call structures. Additionally it provides a semi-object oriented programming
style to the application, since business objects queries return the actual objects instead of
data records. This can be used when implementing SOA interfaces where object
structures must be returned.

As Controller components may utilize external functionalities provided by 3rd party COM
components, those components must be encapsulated or their functionalities must be
replaced by equivalent Java components (redevelopment or replacement). Conversion of
3rd party components is not feasible, since those components are only available in binary
form. The only way to convert COM components without the original source code is to
re-engineer the binary files, but this would be far less efficient then wrapping components
into Java classes. In the following a target design for legacy components to a MVC based
Java design is presented.

Fig. 6.6.3.d : Target Design with encapsulated legacy components

As business functions, control flow functions and presentational functions are mixed
together into a single ASP page, those 3 components must be separated from each other
and stored separately in different files. View components in a mixed MVC style
application are implemented with ASP, therefore they can be mapped to JSP as both
technologies provide a set of very common tags. Code that manages the control flow in
legacy applications will be mapped to Java Servlets, where SQL statements and COM
components are wrapped into Java classes which allow a nearly equivalent style of
programming as in the original state. Those container and wrapper classes can be called
from any layer (Model, View, Controller) of the application, therefore the original

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 48

function call structures of the legacy application will remain. Model components, such as
business objects and business functionalities that were implemented in the same ASP
pages with Controller and View elements must be mapped to Java classes and Java
packages. As the vertical migration strategy encourages the migration of functional
packages (modules), it is appropriate to define such a package as a central Java class,
which contains the business functionalities of the module. In regard to business objects,
the corresponding data structures must be mapped to Java classes, in order to provide an
object oriented way to work with business objects.

Conversion & Redevelopment

In the design approach based on reusability, the focus is set on efficiency and fast
migration of legacy applications. This approach is suited for complex and unstructured
applications, as most components (SQL, COM) can be reused by encapsulation and used
in a similar way as they have been used in the legacy application. However the resulting
design of such an approach may not be flexible and extensible from the modern
perspective of Web development, as there is no complete object orientation behind the
design. As an example, when reusing SQL statements, there is no way to access business
data in an object oriented way such as:

Fig. 6.6.3.e : Object oriented calls on the data model

The reason behind this lies in the SQL statements that are used in the ASP applications.
In the example above, the query to fetch the Customer from the Project which is assigned
to a Member, is split into 2 object oriented method calls. However in practice, such kind
of query is not separated in the ASP application. Therefore when reusing SQL
statements, the whole statement is encapsulated into a Java containment class (see Fig.
6.6.3.g : Encapsulation of SQL statements).

//As Java Code
//Object oriented business object model
Project p = member.getProjects(0);
Customer c = p.getCustomer();

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 49

Fig. 6.6.3.f : SQL statement with subqueries

As a result the encapsulated data access method remains in the procedural form.

Fig. 6.6.3.g : Encapsulation of SQL statements

A solution to this problem is to convert and redevelop SQL queries found in the legacy
application. This approach would allow the target application to be more flexible and
extensible to future changes, however it is less efficient and slower as the encapsulation
approach. Following such migration approaches every single SQL query must be
analyzed and mapped one by one. In such a case the business object model designed in
the object modeling stage, will be refined with methods that allows such objects to query
its relationships with their neighbors. Therefore it should be mentioned that it would be
equally efficient to design business object classes based on an Object Relational Mapping
framework such as Hibernate, if the data model allows such a design. As in regard to
business functions, such kind of combined SQL queries can also be found in business
functions of legacy applications. In such cases the SQL queries can be analyzed and be
replaced by object oriented calls from business objects. In the following the migration
mapping for mixed ASP applications based on conversion and redevelopment will be
presented.

//Java CODE
//Reuse of SQL queries

Customer c = SQLQueryList.getCustomer(member_id, pr oject_id);

’ASP CODE
’Query for Customer with 2 parameters member_id and project_id
Dim query

query = “SELECT * FROM customer WHERE customer.id = ” &_

 “(SELECT project.customer_id FROM project” &_
 “WHERE project.id = “ &_
 “(SELECT member_projects.p_id FROM member _projects” &_
 “WHERE member_projects.member_id =” & mem ber_id “ &_
 “AND member_projects.project_id =” & proj ect_id & “))”

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 50

Fig. 6.6.3.h : Conversion and Redevelopment

Separated View Style

Comparable to ASP applications that are implemented in a mixed MVC style, this kind of
applications have a similar structure of Model and Controller components. As Model and
Controller components are usually implemented in the same ASP file and are based on
SQL queries and 3rd party COM components, the possible migration methods remain the
same as with the mixed MVC kind of applications, which are either encapsulation of
SQL and 3rd party COM components or conversion/redevelopment of SQL queries in the
business object model. The difference between those two styles lies in the View
component, which is separated into a dedicated file in this kind of style. As like with
Model and Controller components, View components in this kind of style may or may
not be reusable, depending on the way how they are implemented. In the first regular
form View components can just be implemented with regular ASP tags, such like in the
following example:

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 51

Fig. 6.6.3.i : View component in ASP

When this form is encountered the only migration method available is to convert the ASP
page to a JSP page. Following the example above the JSP page would be mapped like
this:

Fig. 6.6.3.j : View component converted to JSP

In the second form View components can be separated into a XSL part. In such a case,
the mixed Model/Controller page will return the data records in an XML structure (goal
is the structuring of those data records) which will be processed via XSL Transformation
to a HTML page.

<html><body>
<% //View component, get result data from Controlle r components
 //which are appended to the session object
 //Member is migrated to a JavaBean structure
 ArrayList<Member> memberList =

session.getAttribute(“memberArray”);
 for(Member member: memberList){
%>
<h1>Membername: </h1> <%= member.name %>
</br>

<% } %>

</body></html>

<html><body>
<% ’View component, get result data from Controller components
 ’which are appended to the session object

Set membernameList = Session(“membernameArray”)
For membername in membernameList
 Response.Write(“<h1>Membername: </h1>” & memberna me & “
</br>”)
next
%>
</body></html>

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 52

Fig. 6.6.3.k : Sample of ASP & XSLT

Since XSLT is not dependent on ASP, the View component can be reused as it is in the
target application. This solution is the fastest and most efficient solution to migrate View
components. However the generation of the necessary XML structure must be mapped
from the legacy applications ASP pages to the target applications Java Servlet. In the
following the design and mapping of View components will be presented.

<html><body>
<% ’sample.asp
 ’Data is fetched via SQL query
 Dim xmlString
 xmlString = "<?xml version='1.0' encoding='ISO-8 859-1'?>" &_
 "<?xml-stylesheet type='text/xsl' href='sample.xsl '?>"
 Response.Write(xmlString)

 Set rs = ado_conn.execute(query)
 Response.Write(“<Members>”)
 For x in rs
 Response.Write(“<Member><name>” & x.value & “</n ame></Member>”)
 next
 Response.Write(“</Members>”)

%>
</body></html>

<!-- sample.xsl -->
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
 <html><body>
 <h1> Memberlist</h1>
 <table>
 <xsl:for-each select="Members/Member">
 <tr><td>
 Membername: <xsl:value-of select="name" />
 </td></tr>
 </xsl:for-each>
 </table>
 </body></html>

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 53

Fig. 6.6.3.l : Target Design with separated View

Separated MVC Style

In ASP applications where a strict separation of MVC components is applied, the object
model and business logic is implemented by COM components. Through this design
Controller and View components of legacy ASP applications can make use of an object
oriented design of the object model. Usually Controller components are implemented in
separated ASP pages that validate incoming values of requests and manage the control
flow of the application. View components can be implemented in dedicated ASP pages or
in separate XSL files.

The fastest and most efficient migration method for this kind of applications is a
combination of encapsulation of COM components in the Model, conversion of ASP
pages and encapsulation of SQL statements in the Controller components and a
conversion or reuse of View components. Following this method, business objects should
be designed in such a way that they encapsulate their equivalent COM objects. By this
design, methods of the business object can delegate their functionalities to the COM
object or implement new functionalities by their own. Furthermore object creation and
destruction of the business object should be also delegated to the COM object, this allows
the business object to be used transparently from any location. Additionally business
functions can be encapsulated into business package classes, by the same pattern.

ASP to Java Migration 6.6.3 Refinement and Design of MVC Components

TU Dresden, Le Hai Dang 54

Fig. 6.6.3.m : Encapsulation of COM business objects

As an alternative to encapsulation, COM components can be converted or redeveloped to
Java, if the original source code is still available. In case of conversion, when source code
is available, COM components can be implemented by different programming languages.
Therefore it would exceed the scope of this paper to describe the conversion of COM
components in detail. However, when source code is available, the conversion can either
be done manually or automatically via code converters from various programming
languages to Java. Through automatic code conversion the structure of the legacy code
will be maintained therefore it can be disadvantageous if the original code was
implemented in a procedural style. Hence it would be beneficial to convert the code
manually and map the procedural functions to object oriented classes. In the following
the possible designs for the target application structure can be found.

//Encapsulation of COM components

class SampleClass{
 private COM_sampleClass com_sampleClass;

 public SampleClass(){
 com_sampleClass =
 COMWrapperClass.create(“ COM.SampleClass”);
 }

 public String method(){
 return com_sampleClass.method();
 //otherwise functionalities can be adapted
 }

 public void newMethod(){
 //new functionality can be implemented here
 }
}

ASP to Java Migration 6.6.4 Design of Service Interfaces

TU Dresden, Le Hai Dang 55

Fig. 6.6.3.n : Target Design for separated MVC

6.6.4 Design of Service Interfaces

At the last step in the object refinement stage, the analysis and design of SOA-based
interfaces will be conducted. In order to design interfaces suitable for the Service
Oriented Architecture it must be analyzed if the exposed interfaces should be fine grained
or coarse grained, this is usually defined by the company’s IT-policy and hence should be
considered in this step. Additionally it must be analyzed which functionalities must be
exposed explicitly according to the primary requirement of the company, which states
that SOA-based interfaces must be provided to reduce the dependencies between
applications (see Fig. 1.2.a : Tight coupling of applications in a heterogeneous
environment [IBM SOA]). Therefore it must be analyzed if business functions are being
used by external applications. This can happen between applications that reside on the
same server and reuse functionalities via a COM component of the actual application, but
also via middleware that access the COM component remotely or via DCOM (see 4.1.4
Component Object Model). As a remainder, the technology of choice for implementing
SOA-based interfaces is Web services, Web Services provide loose coupling between
applications in comparison to similar technologies such as DCOM [Web Service vs.
DCOM].

After the analysis on dependencies with external applications is done, the respective
interfaces can be designed. As already mentioned the granularity of such functions is
dependent on the requirement of external applications but also on the IT-policy that the
company follows. Therefore the ideal design is a service interface, which can be reused
by all dependent external applications and provides potential uses for future applications.
In respect to the location, service interfaces should be provided via the business package

ASP to Java Migration 6.7 Software Implementation

TU Dresden, Le Hai Dang 56

class. In regard to the functionalities reused by the business package methods, such as
COM methods or SQL queries, service interfaces can be composed of multiple
functionalities or just encapsulate a single function and expose them as a service
interface. In the following illustration the design of SOA-based interfaces will be
presented.

Fig. 6.6.4.a : Service Interface design

6.7 Software Implementation

In the software implementation stage, the chosen package will be migrated. Therefore,
depending on the design and refinement made during the object refinement stage,
components of the legacy application will be mapped to the new target design. The
conduction of migration is done manually, by converting ASP code to Java, reusing SQL
queries in Java classes and mapping ASP files to a MVC-based file structure. In the
following the conduction of migration will be presented.

6.7.1 Mapping of ASP files to Structures

As analyzed in the software evaluation stage and designed in the object refinement stage,
the ASP applications page structures must be mapped to Java classes, Java Servlets and
JSP pages. This has to be conducted in this stage in accordance to the design from the
object refinement stage. This means that the entire pageflow of the chosen package must
be mapped manually to the target structures, using the same mapping pattern that was
identified in the object refinement stage (see 6.6.3 Refinement and Design of MVC
Components). This step has to be done in the beginning to create the package structures
that will lead to migration. In the following an example of such pageflow mapping will
be presented.

ASP to Java Migration 6.7.2 Business Package Class & QueryList class

TU Dresden, Le Hai Dang 57

Fig. 6.7.1.a : Example of pageflow mapping from ASP to Java

6.7.2 Business Package Class & QueryList class

Independent from whether certain components will be reused, converted or redeveloped,
a business package class must be created for the chosen migration package. This business
package class acts as a central class that provides package related business functions to
the application and other applications. Therefore the business package class will not only
contain business functions but also interfaces to communicate with external applications.
During the implementation step, the business package class will be filled with business
functionality methods.

The second class which becomes necessary (when SQL queries are used) is the QueryList
class, which encapsulates SQL queries of the legacy application. This class will contain
all the SQL queries that are used by the legacy application, if it was decided to reuse all
the SQL queries that are existent in the legacy application. Model, Control and View
components can use this class and business objects can delegate their object oriented
method calls to appropriate SQL queries when necessary. Therefore the work to do is to
copy all SQL statements existent in the migration package to the QueryList class.
Following for each SQL statement, a method will be generated which executes the SQL
query on the database. In order to provide function calls from everywhere of the
application, the QueryList class will be implemented as a Singleton [Singleton]. Since
there may be a large number of SQL statements existent in the migration package, SQL
queries and corresponding methods must be named in a structured way. The naming
convention of those method will help to map SQL queries of the legacy application to
function calls in the new application. Typically the QueryList class could be like this:

ASP to Java Migration 6.7.3 Mapping of Model code

TU Dresden, Le Hai Dang 58

Fig. 6.7.2.a : Example of QueryList class

Unfortunately this step can only be done manually, as an automatic tool has yet to be
developed for this task. Therefore SQL files must one by one extracted from the ASP
pages and copied to the QueryList class.

6.7.3 Mapping of Model code

The procedure how to migrate legacy Model codes to corresponding business objects,
begins with the look up for annotated Model elements in the ASP pages. Following the
code fragments identified as Model components will be migrated. However this depends
on the migration methods and design of the Model components. In case the code
fragment contains SQL queries, and SQL queries were already copied into the QueryList
class, the code fragment can be mapped by calling the respective function of the
QueryList class. In case the code fragment is annotated as part of a business object, such
as a sequence of SQL queries to retrieve a certain data entity relative to the business

//Encapsulation of SQL Queries
//QueryList class as SingleTon
class QueryList{

 private static QueryList instance;
 private HashTable<String,String> querytable;

 private QueryList(){
 this.querytable = new HashTable<String,String >();
 ...
 querytable.put(“viewMemberList_asp_sqlQuery1” ,SQLQUERY1);
 querytable.put(“viewMemberList_asp_sqlQuery2” ,SQLQUERY2);
 querytable.put(“viewMemberList_asp_sqlQuery3” ,SQLQUERY3);
 ...
 }

 public static QueryList getInstance(){
 if(instance == null) instance = new QueryList ();

 return instance;
 }

 public List<Member> viewMemberList_asp_sqlQuery1 ()
 {
 ArrayList<Member> memberList = new ArrayList<M ember>();
 String query =
 this.querytable.get(“viewMemberList_asp_sqlQu ery1”);

 ResultSet rs = jdbc_conn.execute(query);
 ...
 Return memberList;
 }
}

ASP to Java Migration 6.7.3 Mapping of Model code

TU Dresden, Le Hai Dang 59

object, the code fragment will be mapped to the business object, which is implemented as
a JavaBean class. The code fragment itself will be mapped as a method of the business
object class, which calls the sequence of the SQL queries via the respective method of the
QueryList class. On the other side when the model code is identified as a business
function, the code fragment will be mapped to a method of the business package class,
such as:

Fig. 6.7.3.a : Mapping of Business Functions to Java

In a different case, when COM components are implemented instead of SQL queries, the
business functions of the components should be mapped to the business package class,

//as SingleTon
class BusinessPackage1{

 ... SingleTom implementation ...

 public static Evaluation
 evaluate_cost_asp_ FunctionName(Project p, Date atDate){
 String projectType = QueryList.evaluate_cost_a sp_query1(p);
 if(projectType.equals(“typeA”)){
 List<Resources> rL = QueryList.evaluate_cost_ asp_query2();
 //calculate the cost
 Evaluation ev = new Evaluation;
 ev.materials.cost = mat_c;
 return ev;
 }
 ...
}

<% ’evaluate_cost.asp FunctionName
 ’Business Functionality: Evaluates the Estimate Co sts of a
 ’Project at a given Date

 project_id = Request.Form(“project_id”)
 date = Request.Form(“date”)
 ’mapped as query1
 query1 = “Select project.type FROM project” &_
 “WHERE project.id =” & project_id
 Set rs = ado_conn.execute(query)
 ...get project Type
 If project_type = “typeA” Then
 ’Get Resources of the project
 query2 = “...”
 ’calculate the estimated cost at given date
 ’Write as XML structure
 Response.Write(“<Evaluation><Materials><Cost>” & mat_c &_
 “</Cost></Materials></Evaluation>”)
 EndIf
...
 ’End of Business Function

ASP to Java Migration 6.7.4 Mapping of Controller code

TU Dresden, Le Hai Dang 60

and database access functions should be mapped to the business objects. There are two
options how COM components can be migrated, which are conversion/redevelopment or
encapsulation. In the first approach, the source code of the COM components has to be
mapped to Java. This can be done manually or automatically. Manual and automatic
conversion of COM codes to Java will not be discussed by this paper, however it must be
done in that way that business functionalities should be converted to methods of the
business package class, and data access objects in COM should be converted to business
objects.

On the other hand, when COM components should be encapsulated in Java classes,
encapsulation can either be done manually or automatically. In the manual approach the
COM class must be wrapped by the Java Native Interface (JNI). By this solution, a Java
class must be created, which calls the COM methods via native functions, the procedure
is complex as a Java-to-COM bridge has to be created, which calls the native functions of
the COM component. By this method the Java class must implement native functions that
access stubs of the Java-to-COM bridge, which itself must be implemented in a native
programming language [Ullenboom]. Fortunately a more efficient way to encapsulate
COM components into a Java class exists. The COM wrapper tool, called “COM4J”,
provides such functionalities by default and creates automatically Java-to-COM bridges,
which can be used to call COM functions from a Java class (see 17.14.2.2 COM4J). The
resulting Wrapper classes can then easily be accessed via regular Java classes and
therefore should be encapsulated into the business objects and the business package class
to make the reuse of COM components transparent.

6.7.4 Mapping of Controller code

The next step in the implementation involves the migration of Controller elements to Java
Servlets. The procedure begins with the look up for Controller elements in ASP pages
and the separation of Controller components to a dedicated Java Servlet. Therefore the
ASP page will be mapped to a Java Servlet and JSP (only if the ASP page contains View
components) structure. Controller components can only be converted, since ASP code
must be mapped to Java explicitly, however data access within Controller components,
such as with SQL queries and COM objects, can be migrated as described in the previous
section. When 3rd party COM components can not be encapsulated, their functionalities
must be replaced by equivalent Java services or redeveloped in Java. Thereby it must be
kept in mind that the application logic and application structure shall not be broken by
replacing COM components or redevelopment. Since redevelopment and replacement of
components are too specific and dependent on different cases, they will be not discussed
in this paper.

The mapping of ASP code to Java Servlet can either be done manually or automatically.
In case of a manual mapping of ASP code to Java Servlet, the resulting code will be in a
better quality than a code converted via an automatic tool, since certain information can
be not processed by converters. As an example, the problem with typeless variables of
ASP can be named. Since ASP code is interpreted, the variable types within the code will
be processed during run-time. Therefore variable types at compile-time are processed as

ASP to Java Migration 6.7.4 Mapping of Controller code

TU Dresden, Le Hai Dang 61

“Variant” types in VBScript based ASP. As a result the resulting code, of converters such
as J-ASP consists of Java objects of type “Variant”, which is a generated Java class in
order to map variables from ASP to Java Servlet/JSP. As an additional reason against
ASP to Java converters, the incompatibility of the generated code with the designed
business object model can be named. As in the case of J-ASP, the tool does not really
converts ASP code to Java, but simulates ASP functionalities via Java Servlet
functionalities Java classes (see 17.14.2.1 NetCoole J-ASP). Therefore the codes
converted by J-ASP is incompatible to the business object model and regular Java Servlet
conventions, since variables converted are of type “Variant” and Java Servlet conventions
are undermined by an ASP style of Java Servlet structure.

In comparison to conversion and mapping tools, a manual conversion of ASP elements to
Java Servlet is more flexible. In such a case the annotated code will be mapped in such a
way, that the corresponding Java Servlet maintains the original control flow of the
application and is responsible for the validation of input parameters and the redirection of
return values to a JSP View component. By such a structure the code will be converted
instruction by instruction, by mapping SQL queries and COM objects to corresponding
business objects and business package classes and built-in ASP objects such as “Server”,
“Request”, “Response” etc to equivalent built-in Java Servlet objects. The following
figure represents the table for the mapping between built-in objects of ASP and Java
Servlet.

ASP to Java Migration 6.7.4 Mapping of Controller code

TU Dresden, Le Hai Dang 62

ASP Object Java Servlet/JSP
Object

Functionality Scope

ASP Request
ASP Respond

HttpServletRequest
HttpServletRespond

• Object representation the
HTTP request/respond

• Contains input parameters
(GET/POST)

HTTP
request/respond

ASP Session HttpSession

• Represents a stateful
communication between
client and server

• Stores data appended through
out the communication
between client and server

A Complete
Client/Server
conversation,
until time-out

ASP Application ServletContext

• Represents the state of the
whole application

• Stores data that is used by the
whole application

Globally for the
whole web
application

ASP ADO
Must be implemented

specifically

• Database connector to access
database management
systems

Dynamic

ASP Server
Functionalities must be

implemented specifically
ServletContext

• Functionalities vary from
COM object creation to
explicit execution of ASP
page

Server lifecycle

ASP FileSystem
Must be implemented

specifically
• Offers functions on the file

system
Dynamic

ASP Drive, Folder,
File

Must be implemented
specifically

• Offers functions on the file
system

Dynamic

ASP TextStream
Must be implemented

specifically
• Offers functions to read text

files
Dynamic

ASP Dictionary
Provided by Java
Dictionary class • Associative array Dynamic

Fig. 6.7.4.a : Mapping of built-in ASP objects to Java

The last step of mapping Controller components to Java, is the redirection of data to
View components. Depending on the programming style of the ASP application, the
migrated Java Servlet must either map the existing data redirection to View components
or must create a new redirection to View components. The latter case occurs when
Controller components and View components were previously mixed in the same ASP
page (hence the redirection of data to View components was not necessary), therefore
data objects must be redirected to View components via the “Session.setAttribute()” or
“Response.setAttribute()” methods.

ASP to Java Migration 6.7.5 Mapping of View code

TU Dresden, Le Hai Dang 63

Fig. 6.7.4.b : Redirection of data to Views

6.7.5 Mapping of View code

The mapping of View components in an ASP page to JSP is the last step of the procedure
to map legacy components to Java. As like with the other MVC components the mapping
of the View component is dependent on the programming style of the legacy application.
If the View component is mixed with Control components, the mapping procedure must
map separate the View components to a JSP page. The mapping procedure begins with
the look up of for annotated View components in the ASP application. If the View
component is mixed with other components in one ASP page, a new JSP View must be
created. Regarding the mapping of ASP codes there is again the alternative between
manual mapping and automatic mapping. However, as already discussed automatic
mapping may not have many advantages that outweight the flexibility of manual
mapping, but this is dependent on the quality of the converter used. In comparison to the
mapping process of ASP code to Java Servlet, the mapping of ASP to JSP does not
differentiate much from it, therefore the mapping will be conducted line by line in the
mapping process.

In the case View components are implemented via XSL Transformations (XSLT), the
View components can just be reused as they are, as the View components remain
independent from the Controller components, which are responsible for the redirection of
the data in the correct XML structure. Therefore Controller components must just be
mapped in that way that they return a correct structure of XML.

ASP to Java Migration 6.7.6 Implementation of Web Services

TU Dresden, Le Hai Dang 64

6.7.6 Implementation of Web Services

Following the mapping of MVC components to the target business package, the
implementation of new service interfaces can be started. In this paper the implementation
of service interfaces will be done by Web Services and via JAX-WS for reasons of
simplicity. However in practice the choice is dependent on the technical requirements of
the project. As in case of JAX-WS the implementation of Web Services is simple.
Depending on the design and requirements, business functions can be exposed as Web
Services by annotating the containing class, which is the business package class, with the
“@WebService” annotation and the respective method with the “@WebMethod”
annotation. By these 2 annotations the webserver will recognize the business package
class as a Web Service with accessible web methods, during the deployment of the
application. As an example an implementation of a Web Service containing a COM
function call will be presented.

Fig. 6.7.6.a : JAX-WS Web Service

6.7.7 Business Package Dependencies

Due to the dependencies between each other residing in business packages, one can not
migrate business packages completely. These dependencies can occur in form of
references to COM components or redirection of links. In the latter case, a Control
component can reference to an ASP component which is not yet migrated. In such a case
the referenced ASP page can be included to the migration cycle and be migrated along
the business package, but this would lead to further references to other components.
Therefore it is the best to invalidate the reference until the referenced component is
migrated or to create a dummy stub which simulates the referenced component in a
simple way (which means simulating the potential data that are passed through session
objects and etc.). As far as COM components are concerned, wrapper classes can just be
called as long as business objects or functions (of the to-be-migrated business package)

//Java – JAX-WS Web Service

@WebService(name="COMWebSerivceTest")
@SOAPBinding(style=SOAPBinding.Style.RPC)
public class BusinessPackage1{

 @WebMethod
 public String business_function1(int i)
 {

 COMClass com_obj = COMWrapper.create(“COMClass”);

 return com_obj.business_function1(i)
 }

}

ASP to Java Migration 6.8 Software Testing

TU Dresden, Le Hai Dang 65

are still not implemented, but should be updated as the business objects and functions are
implemented in the future. In case COM components are subject to be converted or re-
developed, the alternative would be to create simple Java dummies which simulate the
behavior of the functions. In the end all temporary stubs have to be replaced and
integrated with the final implementations.

6.8 Software Testing

In this stage of the migration process the migrated package will be tested. Since the
migration concept is based on an incremental approach, specifically on the vertical
migration strategy, packages migrated from the legacy application can be run in parallel
to the original system as the package is functionally separated. Therefore the migrated
functionalities can be tested whether the interactions with other migrated business
functionalities are working seamlessly. At every cycle all business packages have to be
tested together in cooperation with each other, which means that references that have
been updated in the implementation stage have to be error-free. At the end of this stage,
depending on the results of the tests, the process returns to the implementation stage if
any bugs were found or it progresses to the last step of the migration cycle.

6.9 Software Integration

In the software integration stage, the Web services defined in the migrated package will
be registered to the enterprise service repository, to be retrievable for other applications
in the company.

In order to register the Web services to the enterprise service repository, Web Services
need to be published to a global directory service where they can be searched and found.
This is often realized by an UDDI server, which is deployed in the company. Generally
an UDDI server is a Web application which implements the UDDI specifications and
provides an UDDI API for publishing and searching of Web Services. The most notable
interfaces are called “publish” and “inquiry” in the UDDI Web application. With these
two interfaces it is possible publish/inquire Web Services, either programmatically or via
a WEB interface such as “http://<servername>:<port>/publish” or
“http://<servername>:<port>/inquiry” (As in case of the open source Java UDDI server
[JUDDI]). In order to publish a Web service interface in UDDI, the Web service interface
must be mapped to a hierarchical structure which is the UDDI model specification. This
model defines business publishers, services and the technical specifications of the service
interface. For further reading a Web tutorial of [IBM UDDI] can be read. In the following
the components of that model will be presented.

ASP to Java Migration 6.9 Software Integration

TU Dresden, Le Hai Dang 66

Data Structure Description

businessEntity
- Specifies the Web Service provider
- Contains information such as company name, contact

detail and etc.

businessService

- Represents a group of min. one Web Service
- Can contain descriptions that describe the set of Web

Services
- Contains meta data about the service such as

classification names and descriptions

bindingTemplate
- Represents the Web Service
- Contains technical information such as access points to

invoke the Web Service

tModel

- Represents the technical specification of the Web
Service

- Contains the Reference to the WSDL file or the meta
data of the Web Service specification

Fig. 6.9.a : UDDI Model for Web Services

When publishing a Web Service to a UDDI registry (programmatically or via the Web
interface), the UDDI server maps the service interface defined by the WSDL file to the
UDDI model, which includes the descriptions of the business provider, service contents,
and service names.

The migration process can end with the software integration stage, or can be reiterated
from the object refinement stage to migrate further business packages or to improve
existing packages.

ASP to Java Migration 7 Use Case: Migration of TICOS

TU Dresden, Le Hai Dang 67

7 Use Case: Migration of TICOS

As a “best practice” migration project, the migration of TICOS was conducted at Robert
Bosch Japan. In this project the TICOS application was migrated to Java according to the
primary requirements (section 1.4) and secondary requirements (section 2.2), which were
defined by the company. In this chapter the experiences resulting from this migration
project will be presented.

Fig. 7.a : The legacy TICOS application

7.1 Migration Process

Software Evaluation

In the software evaluation stage, the TICOS application’s software state was analyzed.
Beginning with basic metrics the application was checked for its complexity and
structure. Thereby the application’s size, consisting of about 300 ASP files with about 70
lines of ASP codes per page, and the application’s structure , consisting of MVC layers
which are structured in dedicated ASP pages named after a certain convention (see Fig.
7.1.a : TICOS application structure) was captured. In the next step an overview over how
MVC components are implemented was taken. Thereby it turned out that View
components are separated in XSL files and Controller and Model components are mixed
together in ASP pages and implemented exclusively via SQL queries and ASP codes. The
structure of TICOS can be therefore described as mixed in an averaged degree. However
the file structure is structured quite well (files are named by their functionality and action

ASP to Java Migration 7.1 Migration Process

TU Dresden, Le Hai Dang 68

such as “all_project.asp” and “all_project_check.asp”) which helps to understand the
code better.

Fig. 7.1.a : TICOS application structure

After the brief analysis on the size and structure of TICOS was conducted, the
comprehension on functionalities was attempted to be established. Therefore
documentations of TICOS were studied, however it turned out that documentations were
lacking in details and extensiveness. As for example documentations of source-code,
package structures and data model were missing. Therefore manual reverse-engineering
approaches were done, in which the ASP files were examined for their linking structures
and functionalities. From the gathered information simple pageflow graphs and use-case
diagrams were developed.

Fig. 7.1.b : TICOS Worktime management use-case diagram

ASP to Java Migration 7.1 Migration Process

TU Dresden, Le Hai Dang 69

In order to understand the data model of TICOS, the database model of TICOS was
analyzed. Thereby Entity-Relationship diagrams were developed.

 Problems and Experiences

Since the migration is conducted manually, an adequate understanding over the legacy
application must be developed. This is however heavily dependent on the documentations
available and the complexity of the application. Through experience it can be said that in
companies, documentations for Custom Business Web Applications can rarely be found,
thus it takes a significant amount of time to conduct the software evaluation stage.

In regard to analysis and comprehension of TICOS, the manual reverse-engineering
approach taken is much more time-consuming (it took 3 person-weeks) as compared to
reverse-engineering done in automatic migration approaches. However the result of
manual reverse-engineering is that codes can be better understood and overall application
comprehension is better. The result of the gained comprehension helps to decide which
components and application parts can be reused, converted or redeveloped in consensus
with project requirements. Furthermore a better understanding of the program leads to a
better quality when it comes to the transformation of legacy code to new code.

In the special case of TICOS the problems of reverse-engineering occurred in the
comprehension and generation of pageflow models. Since in ASP it is allowed to embed
nested ASP documents it was difficult to understand the dataflow (of session objects) in
the application. On the other side reverse-engineering of database models and general
functionalities were rather simple.

Object Modeling

In the object modeling stage, it was attempted to create an object oriented business object
model out of the procedure oriented structures of TICOS. Therefore the database model
of TICOS and the application components were analyzed. Since TICOS is completely
implemented in a procedural manner as each ASP page implements a business
functionality by itself, the question arises if certain application functions should be
objectified. However this was considered not necessary at the beginning stage of the
migration, since enhancements on the object structures could still be done after the whole
legacy application is migrated to the new system. On the other side business entities have
to be objectified in order to expose them to Web Services. Therefore the database model
of TICOS was reverse-engineered and database tables were objectified. The issue is that
database entities can be related to each other represented by different Entity-Relationship
Normal Forms, such as in the case of a N:M relation, between 2 tables “Person” and
“Project”, an additional table “Person_to_Project” can be generated to extend the
relationship of A and B by mapping the primary keys of A and B to each other. In such a
Normal Form it is possible to extend the relationship of “Person” and “Project” with an
additional “Cost Accounting” entity. However, in regard to the actual implementation,
references to the supporting table “Person_to_Project” is only used within SQL

ASP to Java Migration 7.1 Migration Process

TU Dresden, Le Hai Dang 70

subqueries, in a manner that entities of “Person_to_Project” are never returned. Therefore
it is the goal to identify such data entities in SQL queries, so that only necessary data
entities are objectified.

In parallel to the objectification of business entities, business packages were identified
and created. In case of TICOS the business packages were already well defined so that
the original packages could be taken over to the new system. Therefore TICOS namely
consists of the following packages: Master Data, Project Accounting, Project Reporting,
Charging and Business Planning, Worktime Management and System.

 Problems and Experiences

In the case of TICOS it was rather simple to identify and objectify business objects for
Model components, which is due to the decision to reuse SQL queries and reuse SQL
queries in a single “QueryList” class. Thereby queries can be invoked via a dedicated
method of the “QueryList” class, which returns the result of the queries in an objectified
form. However this was not always possible in case for Controller components, since
SQL queries there can return combined data entries such as described in Fig. 6.6.3.c :
SQL queries in Controller component. In summary this stage took less than a 1 person-
week to be completed.

Post-Documentation

In the post-documentation stage of the TICOS migration the analysis of functionalities
and structures were put down on paper. Among typical documents as specification
document, use-case or class diagrams, pageflow and dataflow graphs were created to
document the relationships between ASP pages, which are important in the software
implementation stage of the migration process. At source-code level annotations in form
of comments were made to identify MVC components.

 Problems and Experiences

Since TICOS consists of about 300 ASP files, the time spent on this stage was
significant. Thereby for most of the pages MVC components were identified and
annotated. While this is a repetitive task, it is quite problematic to identify MVC
components in the code, even though it is done manually. The problem lies in the
distinction of Model and Controller code, which often times can be mixed up. As an
example, it is very difficult to distinguish validation code that manages the control flow
of a function, from business logic code in which validation is done. Therefore this task is
error-prone, especially when a large number of ASP files are given. Due to the amount of
files this task is not only error-prone but also very time-consuming. In the case of TICOS
it took about 4 person-weeks to conduct the whole post-documentation of the system.

ASP to Java Migration 7.1 Migration Process

TU Dresden, Le Hai Dang 71

Object Refinement

After the analysis and the documentation stages, TICOS was migrated in incremental
steps. Beginning with the “Master Data” package, in which master data such as personal,
project or customer data can be managed, the package was designed fully for the first
time. At this stage, the business object classes such as “Person”, “Project” and etc. were
refined with attributes and methods that represent the relationships of the business objects
to each other. Furthermore the business package class “Master Data” was designed, in
this class Model components that were identified as business functionalities were
designed. Thereby a naming convention relating to the ASP filenames were used, in order
to identify the functions from which ASP page they come from.

After the new Model consisting of business package class and the business objects are
created, the communication with Controller and Views have been designed. Thereby
Servlets were created for Controller components of the package and JSP pages were
created for Views. An important aspect in this task is how to design the communication
between JavaBean (Model), Servlet (Controller) and JSP (Views), although they
originated from only one ASP file. Therefore new codes have to be generated in order to
pass data from Servlet to JSP. As a result the communication and data flow between
Servlets and JSP had to be designed.

After the “Master Data” package was migrated, the remaining business packages were
migrated step by step. In summary the time required to migrate a package was about 2 to
3 person-weeks.

 Problems and Experiences

The problems in the Object Refinement stage lies in the selection of a fitting business
package. In the case of TICOS the first business package chosen was the “Master Data”
package, which consists of almost every important business entity of the application.
Therefore it was simpler for the later business packages to be migrated, since almost
every reference to the master data of the application was already migrated. By experience
there can be said, that for the start of the migration, it is a good decision to migrate
packages, which consist of many master data so that future business packages can be
migrated easier.

A major problem in the decision process, is whether functional enhancements should be
made on-the-fly or not. As the migration project progress, one may be attempted to not
just migrate the old components to the new system, but also implement new
functionalities or enhance existing functionalities in one migration cycle. As an example
from TICOS, the SSO functionality for the portal integration was implemented along
with the migration of the Login mechanism. Thereby enhancements in the data model of
TICOS and business logic had to be changed a little. On the positive side is that TICOS
can be just modernized and enhanced in one single migration cycle. On the other side,
however this has caused changes in the migration of all other business packages, since
business logic was changed. Therefore documentations done in the previous stages/cycles

ASP to Java Migration 7.1 Migration Process

TU Dresden, Le Hai Dang 72

may be become obsolete. Thus enhancements or modernizations of existing components
may be feasible, but should be really questioned if they are not contra-productive in
regard to further migrations. As a result it should be considered whether additional
functionalities should be better implemented when the whole legacy application was
migrated completely.

Software Implementation

Following the design phase, the packages were migrated in an incremental manner.
Thereby SQL queries of each ASP file were copied to a central static Data Access Object
(“QueryList” class) and data access calls were mapped to methods of that class. The
process of the implementation began with the implementation of the “QueryList” class
and the BusinessPackage class such as the “MasterDataPackage” class, followed by the
implementation of business object classes if not already implemented. Afterwards the
pageflows of TICOS were mapped to Java structures, such as Java classes, Servlets and
XSL files (since the View components could be reused). Following the logic of each ASP
file were mapped manually to Servlets, thereby calls to Model components were replaced
by object oriented calls from business objects, which delegated the data access calls to
the “QueryList” class. In case the ASP code contained business functionalities and
business logic, appropriate business functions were implemented in the business package
class as already designed in the object refinement stage. As the last step to map ASP
pages to JSP files, data structures were mapped to XML structures and redirected to the
XSL file.

According to the requirements of the company the application has to fit the corporate
design, which was provided by the company, in a form of a JavaScript library and CSS
files. Therefore View components just as the XSL file and the JavaScript files had to be
adjusted in order to fit the corporate design and the required structure of the corporate
design libraries. As the last step of the mapping, the AJAX functions in the JavaScript
files had to be adjusted to call the newly defined Servlets instead of former ASP pages.

In order to serve the requirements of Single Sign On a new log in mechanism based on
Browser Cookies were implemented. This mechanism was provided by the SAP
NetWeaver Portal system via the two dll libraries: “SapSecuLib.dll” and
“SAPSSOEXT.dll” and a Java bridge to access the functions. Via these two libraries the
application had decrypted the encoded cookie which was sent by the SAP NetWeaver
Portal once the user has logged in. From the information retrieved the users Portal ID was
mapped to the local TICOS User ID, and authorized according to the roles defined to the
user.

 Problems and Experiences

In the software implementation stage problems occurred mostly during the code-to-code
transformation process. During such a process program bugs may occur frequently. In the
case of TICOS difficulties happened when codes of nesting ASP pages have to be
implemented. Although codes of nesting ASP pages may have been already transformed

ASP to Java Migration 7.1 Migration Process

TU Dresden, Le Hai Dang 73

and could be reused (by calling the associated business package method), it is a difficulty
to keep the overview over the data flow of nested ASP pages, especially when the ASP
pages were not documented properly.

Testing

Following the implementation phase, the implemented business package was deployed in
a test environment. Thereby the functionalities could be tested against the data model an
be run in parallel to the legacy application. However, although legacy components and
migrated components run in parallel together they could not be integrated with each other
easily, since simple HTTP links couldn’t pass data from Java context to ASP context.
Therefore functionalities could only be tested against the shared database and in
combination with other migrated components. In the case software bugs were found, the
migration process switched back to the implementation phase, where bugs could be
removed. This procedure was repeated until all known bugs were removed and the
business package was tested successfully.

Software Integration

After the testing phase validated the correctness of the business package and its business
functionalities, Web Services were created on top of the business functionalities, in order
to expose them in the Service Oriented Architecture. Additionally data services that were
used by other systems were modernized and published as Web Services. In the case of
TICOS, data were exported as textfiles through a service which extracted the data from
the TICOS database periodically. Since this kind of data transfer violates the goal of a
homogenous environment, an appropriate Web Service was created which retrieves those
data from the database. The Web Services relied on the objectification of the returned
data, therefore the same business object classes as from the migration process were
returned. However the created Web Services could not be tested in practice since the
cooperating system was not migrated yet.

Fig. 7.1.c : TICOS data export via files

ASP to Java Migration 7.2 Problems and Advantages

TU Dresden, Le Hai Dang 74

7.2 Problems and Advantages

Problems

The migration concept provides a systematic way to migrate legacy ASP Web
applications to Java, however due to the manual conduction, the concept inherits the
problem when it comes to the size of the application. As experienced in the migration
process of TICOS, it was a problem to analyze and document components of the legacy
application, when hundreds of ASP files are involved. As a consequence the mapping
process at the implementation phase could not be conducted as intuitive as it could have
been, because application components were not analyzed and documented well enough.
Beside this the cost of time can become a significant aspect. Additionally the way some
components, such as SQL statements, were migrated was still inefficient, since each
statement had to be filtered and mapped to Java manually. Depending on the convention
used when it comes to the mapping of SQL queries to object functions, it could have been
a hassle for the conversion of ASP code to Java, when SQL queries had to be looked up
for their mapped method names. As a whole the process of extracting SQL queries and
mapping of MVC components was extensive although the conduction was systematic and
repetitive.

Another problem which was inherent by the choice of the migration method was the
introduction of secondary requirements into the migration project. As experienced in the
migration of TICOS, secondary requirements that involve an extension of existing
functionalities, such as the introduction of Single Sign On to TICOS, can lead to
complexities when conducted along the migration process, because of the interference
with the design of the legacy system. This is especially the case when changes to the data
model are necessary. Depending on the scale of the changes, new functionalities can have
impact just on the business object level, for example when just a new table has to be
introduced in the data model, or have to be adapted more extensively, for example when
the structures and relationships were altered by the extension. In such a case, the
adaptation involves the SQL queries that were previously encapsulated into DAO objects.
Therefore it should be considered extensively if it is not better to implement secondary
requirements at the end, after the legacy application is migrated 1:1 to the new
environment. In this case the migration concept offers the opportunity to implement
secondary requirements in additional incremental steps.

Advantages

One of the most important advantages that come with this migration concept is the
systematic approach, with which ASP applications are analyzed and migrated. Although
there can be numerous ways how to transform a legacy ASP application into a Java
application, it is necessary to have a structured schema how to migrate from one
technology to another. This became apparent, when migrating more complex and bigger
ASP applications to Java, as experienced with TICOS, where application components
could be migrated to Java in a straight forward fashion.

ASP to Java Migration 7.2 Problems and Advantages

TU Dresden, Le Hai Dang 75

The other benefit that comes with the migration process is the transformation from legacy
structures to a modern MVC design in Java, through the migration methods applied in the
migration concept. Therefore applications are provided with more extensibility and
flexibility. Additionally the migrated code is of better quality since it is readable for
humans. This is the result of the advantages of a manual migration approach when
compared to automatic or semi-automatic migration approaches, where generated code is
most of the time not readable and unstructured.

Additionally through the incremental migration process (vertical migration), complex
applications could be migrated step by step and be tested incrementally. Furthermore,
application packages that are well tested can be operated in parallel to the legacy
application in order to ease the familiarization process for users. In the following the
TICOS system is shown in the new portal environment of Robert Bosch Corporation.

Fig. 7.2.a : Deployment of a migrated business package on the SAP Portal

ASP to Java Migration 8 Outlook

TU Dresden, Le Hai Dang 76

8 Outlook

The migration concept provides a guideline, which allows companies to conduct their
migration projects in a systematic way. As described at the beginning of this paper, the
class of Custom Business Web Applications is existent in many local business
departments and their applications are managed locally. Therefore it is desirable from the
perspective of a company to provide local branches with a migration concept which allow
their employees to migrate legacy applications after a given schema. For that reason this
migration concept can be seen as an example, how migration tasks can be approached by
a company from an IT-government perspective and be designed and adjusted from case
to case specifically in order to propagate migration instructions to local departments.

As a basis for ASP-to-Java migration, this migration concept provides a manual
migration process for companies, which want to migrate small-sized to mid-sized ASP
applications. As a manual migration approach, the migration process can be extensive for
big-sized applications and be too repetitive and inefficient in some tasks, namely
documentation and code transformation. Although the manual migration brings
advantages such as a more flexible ASP-to-Java code transformation and mapping of
MVC components in general, it could be enhanced or supported by a semi-automatic
migration process. In case of a semi-automatic migration process, it was attempted to
incorporate migration tools such as the ASP-to-JSP tool “J-ASP” in the migration
process, however this failed due to the design of that tool. Nevertheless it is possible to
design a tool which migrates ASP applications based on the analysis and documentation
done in the early migration stages (Software Evaluation, Object Modeling, Post-
Documentation), via Metadata tags in the ASP application. In such a tool, the migration
team would analyze the legacy application for its functionalities and relevant business
data, and annotate each MVC component of the ASP application, afterwards the
migration tool would automatically transform the annotated ASP files with the inherent
information to a Java-based Web application, which is structured after the MVC pattern.
With such a tool the extensive task of mapping ASP codes and extracting components
could be automated, which would be beneficial for any company with a large number of
legacy ASP applications.

In order to design such a tool, one can refer to the work of [Ping et al], which described a
migration tool that analyses the structure of IBM .Net Data applications and migrates
such applications to Java-based MVC Web applications. In the named work, the authors
proposed a migration tool which extracts SQL statements and View components from the
original application and migrates them to a Java Web application based on JavaBeans and
JSP pages. Thereby the complete code had to be parsed and an Abstract Syntax Tree
(AST) had to be constructed, in order to extract SQL statements from the code and to
transform the original code to Java/JSP constructs. In case of SQL statements, dynamic
variables had to be stored into a property file which allows the tool to link the dynamic
variables with input parameters coming from different JSP pages. In relation to ASP
applications, the same mapping would be necessary, since mixed components (MVC)
have to be separated from each other, and be linked with each other properly afterwards.
The problem that was not described by [Ping et al], was how to distinguish MVC

ASP to Java Migration 8 Outlook

TU Dresden, Le Hai Dang 77

components automatically in the original code, in order to separate MVC components on-
the-fly along the migration process. Therefore the proposed methods of [Ping et al] could
be used in combination with a manual analysis and annotation of MVC components in
order to provide a semi-automatic migration tool, which can be used to migrated ASP
Web applications to Java-based MVC Web applications.

As a bottom line it can be said that since the presented migration concept is based on
systematic analyses and design, it can be enhanced with semi-automatic migration
mechanisms, which would be beneficial for companies to migrate large numbers of ASP-
based Web applications more quickly and more efficiently.

ASP to Java Migration References

TU Dresden, Le Hai Dang A

References

Bibliography

[Brodie/Stonebreaker]

• Brodie M. L., Stonebreaker M.; DARWIN: On the Incremental Migration of
Legacy Information Systems; 1993; p. 5

[Cimitile et al.]

• Cimitile A., Carlini U., Lucia A.; Incremental Migration Strategies: Data Flow
Analysis for Wrapping; 1998

[Gimnich/Winter]

• Gimnich R., Winter A.; Workflows der Software-Migration;

[Jeenicke]

• Jeenicke M.; Architecture-Centric Software Migration of Web-based Information
Systems

[Ullenboom]

• Ullenboom C.; Java ist auch eine Insel; 5. Auflage; Kapitel 24; Galileo
Computing; 2005

[Martin/Müller]

• Martin J., Müller H. A.; Strategies for Migration from C to Java;

[Nicolescu/Klappert/Krcmar 2007]

• Nicolescu V., Klappert K., Krcmar H.; SAP NetWeaver Portal; SAP Press; 2007

[Ping et al.]

• Ping Y., Lu J., Lau T. C., Kontogiannis K., Tong T., Yi. B.; Migration of Legacy
Web Applications to Enterprise Java™ Environments – Net.Data® to JSP™
Transformation, 2003

[Sneed]

• Sneed H. M.; Migration prozeduraler Anwendungssysteme in eine
objektorientierte Architektur

[Sneed 1999]

• Sneed H. M.; Objekorientierte Softwaremigration; Addison-Wesley; 1999

[Vlachakis/Kirchhof/Gurzki 2005]

ASP to Java Migration References

TU Dresden, Le Hai Dang B

• Vlachakis J., Kirchhof A., Gurzki T.; Marktübersicht Portalsoftware 2005,
Fraunhofer IRB Verlag; 2005

Web References

[COM]

• COM: Component Object Model Technologies;
http://www.microsoft.com/com/default.mspx

[COM4J]

• COM4J Project Website; https://com4j.dev.java.net/

[IBM UDDI]

• Understanding WSDL in a UDDI registry;
http://www.ibm.com/developerworks/webservices/library/ws-wsdl/

[IBM SOA]

• Develop a migration strategy from a legacy enterprise IT infrastructure to an
SOA-based enterprise architecture;
http://www.ibm.com/developerworks/webservices/library/ws-migrate2soa/

 [J-ASP]

• ASP to JSP/Servlet Migration Tool from Netcoole;
http://www.netcoole.com/jasp.htm

[JSF]

• JavaServer Faces Technology;
http://java.sun.com/javaee/javaserverfaces/

[JUDDI]

• Open Source Java UDDI Server;
http://ws.apache.org/juddi/

[MSDN Migration]

• Microsoft .Net/Com Migration; Migration Strategies;
http://msdn.microsoft.com/en-us/library/ms978506.aspx#cominterop_topic4

[Seam]

• Seam Framework Website;
http://seamframework.org/

[Singleton]

• Singleton Design Pattern;
 http://www.dofactory.com/patterns/PatternSingleton.aspx

ASP to Java Migration References

TU Dresden, Le Hai Dang C

[SUN JEE 5 Tutorial]

• SUN JEE 5 Tutorial;
 http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

[Waterfall model]

• The Waterfall model explained;
http://www.buzzle.com/editorials/1-5-2005-63768.asp

[Web Service vs. DCOM]

• Using Web Services instead of DCOM;
http://msdn.microsoft.com/en-us/library/aa302336.aspx

