A Software Migration Concept for ASP-based
Web Applications to Java

04. January.2010

Minor Thesis

Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Sichi
Institute of Systems Architecture
Faculty of Computer Science
Technische Universitat Dresden

Supervisor: Dipl. Inf. Marius Feldmann

Le Hai Dang
S2980966 @inf.tu-dresden.de

Declaration of Academic Honesty

|, Le Hai Dang, declare that this minor thesis on the topic of “A Software Migration
Concept for ASP-based Web Applications to Javai's wholly my own work and

conducted without any assistance from third parties.

Furthermore, | confirm that no sources have been used in the preparation of thisthesis

other than those indicated in the thesis itsalf.

Dresden, 04. January.2010

Signature

Table of Contents

LIST OF TABLES AND FIGURES ...ttt e e e e e e e et e e e e e e e e e e e e e eaaas 1]l
F N S SN I R X O T 1
1 RO 510 Lo 11N T 2
1.1HETEROGENEOUST-I NFRASTRUCTURES INCOMPANIES. ... cuuiittiitiiteitieiieeitieiiesstessnsesansssnssansernenans 2
1.2PROBLEMS OFHETEROGENEOUTENVIRONMENTS . .eutiuuiitniitniitneitneiaeitesasetessessnsseneesnessnsesnestenanns 3
1.3APPLICATION CLASS: CUSTOM BUSINESSWEB APPLICATIONS. .. .cvvtiiittieiiieeeieeeeie e e eeei e eenaneeeans 4
L. APRIMARY REQUIREMENTS ... ittuiettttetetatestieeeta e saaeeeta e eeaatseaaeeeteeeanesataeeraseeeanerenserersareneesens 5
1.5AVAILABLE MIGRATION STRATEGIES ANDRELATED MIGRATION WORKScovviiiiieceiiieeieeeeieeeennans 6
L.EMOTIVATION AND GOALS. ... ietnieett ettt ettt e ettt et e et e e e e e e e e e e e et e e e et e s et e e eaa e e ean e s aaneerebsarenneeeens 7
2 USE CASE: ROBERT BOSCH CORPORATION ...ttt e 8
2. 1SITUATION AND THE MIGRATION TASK .. evuuieitieeiiie it eeete e e e e et e s eteeesaa s essaneessteesanessansesaneenanees 8
2.2 SECONDARY REQUIREMENTS .. ittiitttttiittittt ettt e et st e saa e st asa s st sst s st ssttesassasstsesnestssesnessnasranns 8
2.3BEST-PRACTICE MIGRATION TASK: TICOSWEB APPLICATION. ..uuittiiteiteitieiieesiieiniesnessneesneesnenes 9
3 ANALYSIS ON ASP WEB APPLICATIONSttt eena e 11
BT BT Y 1= = @] 0] =5 11
3.2MVC & PROGRAMMING STYLES IN ASPWEB APPLICATIONSuiutiitiiiiiiiieeeeieeieesesiieeeneasnneees 13
4 BASICS: TECHNOLOGIES, ARCHITECTURES AND TOOLS oo 17
ot R I =T N T]I @ T 1 =S 17
4.1.1 ASP — ACLIVE SEIVEI PAJES....euiiiiiieeeeeeeeiiiiiiiiiitetteaaa e e e e e et s s s assssraaeerereaaaaaaaeeaaeesasaannnnnes 17
4.1.2 JSP — JaVa SEIVEI PAgBS......ccciiieieeeieeieiie et e s e e e e e e e e e e e e e e aaet e e e aeaaeeees 18
RGN o Y7 BT Y/ (= N 18
4.1.4 Component ObJECT MOUEIuuuiiiiiis it e e e e e e e e e e e e e e aaaaaaeaeeas 18
I VoYL= o TR ST Y (o1 19
406 JAXNN S e e—————— e e e e a e e ettt e e et e et et aniaas 19
4.1.7 Model View Controller DeSign PAtterneeeeeeeeieiiiiaieaae e 19
4.1.8 Enterprise Service Oriented Architecture PI:NetWeaver..........ccoeeeeeiiiiiiiiiciieeeeeeeee 20
e I o T v= LIRS} V1 (=] o [PPSO 20
Vet =y 10N 010 T T 21
it R V= (@ Yo (ST AN] 21
A O 1V N 24
5 SOFTWARE MIGRATION ...ttt e et e e e e e e e e e et e e et e e e eaesssaneeeeaeerennss 25
5.1 COMMON DECIDING FACTORS. .. .cctuiiiteeeieee et e et e et e e e e e aaeeeet e e e st e s et e sataeesaneseaneesaneeesanans 25
5.2MIGRATION STRATEGIES ANDIMETHODSetueiitieieteeeetee et e et e e et e e et sesaaeeeteeeeteessneserneereneees 25
5.2.1 Migration STFAEJIESuuuveeeeerersesmmmssseseeeeeeeeeessaaaaaaeasassssaasasssssssessnnereereeeaeaeeseesnnsannnnssnnns 26
5.2.2 Migration MELNOMS.cooii ittt e e e e e e e e e e e e e e e e e eneenes 27
6 MIGRATION CON CE P T .o ettt et e e e e e e et e et e e e st e s st s rat e e sat s seanaeeensns 28
6.1 A GENERAL MIGRATION CONCEPT FORSOFTWARE SYSTEMS....utituiiiiiiiiiiiieiieiie e et e eieesaseanns 28
6.2THE STAGES OF THEM IGRATION CONCEPT....uuituiitiiiteitetieeiettettsttestasssassaneasn st esnesteraneaterans 30
6.3 SOFTWARE EVALUATION ...ittiitiitiiitietee it et ee et e et e et s e st e et e s s et e sb s eaa s et s e sa s sa e sbssss s sbasennssbanen 33
(S X @ =] lou 1Y [o]] = I N TN 35
6.5 SOFTWARE POST-DOCUMENTATION ...ttt ettt eeete e e et ee et e eeea e e saaeeeeasessaass st seetaseeanssssneesesaeereneees 37
(SR ST @ = =T (= =TT =1 1= N N 40
6.6.1 Vertical Migration vs. Horizontal Migration..............ooiieiiceiiriniiiiiieeeeeee e e e e e s e s s s 41
6.6.2 Model VieW CONrOHEr STIUCIUIEcommumeeeeeierieeee et e e e et e e st e e e eeb e s e e e e e eaaaanas 41

6.6.3 Refinement and Design of MVC COMPONENES.ccuaceiiiiiiiiiiiieeeeeeiieeieeestinereree e e e e ee e e e 42

6.6.4 DeSigN Of SEIVICE INTEITACES. .. .uuuiieeeeiiiiiiiie e e e e e e e e e e e e e e e e 55

6.7 SOFTWARE IMPLEMENTATION ...ccutttteitritestreeessrseeesneeesssnseesnneesasneeessnenessnneeesnneeesnneeesnneesnes 56
6.7.1 Mapping Of ASP fileS t0 StIUCIUIESccee e e 56
6.7.2 Business Package Class & QUErYLISt CIaSS........c.uuuuuiiiiiiiiiiiiieieaeee e 57
6.7.3 Mapping Of MOl COUE ..ot 58
6.7.4 Mapping Of CONLIOIEr COUR...... ... i ettt e e eeeaaaaaaaeaeas 60
6.7.5 Mapping Of VIEW COUR. ..o e e e e e e e e e e e e e 63
6.7.6 Implementation Of WEeD SerVICES ... 64
6.7.7 Business Package DepenUeNnCIeS.ccocuuuiiiiiiiiiiiiee ettt a e e e e e 64

5.8 SOFTWARE TESTING1eteuteteeiuteeeaatreeesstreeesasreeessneeesamseesaane e e e asne e e s s et e aan st e e s nn e e e snreeesnneesnnneeeannns 65

6.9 SOFTWARE INTEGRATION ...ttt itreee sttt e stree e st e e st e samee e e st e s asre e e s mne e e s nsne e e sn e e e s nneesanneeennnes 65

7 USE CASE: MIGRATION OF TICOS......cciiiiieiiiii ettt 67
T.LMIGRATION PROCESS.....cetiitteeeiutreieiittessitree e sttt e s sine e e ssne e e s se s e e st e e s bt e e s s e e e nnne e e e smneeesnreeeennneeas 67
7.2PROBLEMS ANDADVANTAGESvtteitreeerireeiesteeessiteeessreeessieeesanseeessneessnnneeessneeessnneeesnnneeesnneeas 74

8 OUTLOOK ...ttt ettt e e e it e s Rt e st e e e saR e e s s et e e nere e e s nn e e e nnn e e e nnneeeas 76

REFERENCES. ...ttt etttk e e ettt oo e s bt e a4 ek b e e e ekttt e e ek be e e nee e e abbeeeambbeeesabeeesanbeaean A
BIBLIOGRAPHYeettete ittt ettt ettt et e st e st e e et et e e et e e e s e e e ea Rt e e s e e e s ne e e e nn R e e e e s e e e e nr e e e es A
WEB REFERENCES......uttttttttttitttitetteee et et sesie sttt et e et e e e e e e et e e s sa s s e bbb e e e e e e e et e e aeeeeeaessesaaesnnnnans B

List of Tables and Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1.2.a: Tight coupling of applications in adr@geneous environment [IBM SOA]............cccceee. 3
1.3.a: Classification of Custom Business VR@PIICationsccccvvvviiiiiiiiiiiccceeeeeiieeeereee e 5
2.3.a: TICOS appliCation SLIUCIUIE........uuuuieiiiiiieeiee e e e e e e e e e e e e e e e e e s e e s e s e reeeeeees 10
3.1.a: Request- RESPONSE-0DJECES IN ASP e ceiiieiieieiiiiittee et et e e e e e e s as s rareeeeeeeees 11
3.1.b : ADO.DB €XamPIE iN ASP.......oiii e ttetteeeeteeeettaaaeeaas e et sssssssraaaareeeeeeaaaeeaaaeesessanaannnnnes 12
3.1.C: COM COMPONENES IN ASPot e e e e e e e e e e s e e e e e e e e aeeeaaaesaesannnnnnnnes 12
3.2.8 : MiIXEA MV C-SEYI.. ..o ettt et e e e e e e e e e e s e e se ettt e e e e eeeaaaaaaeeaesaesaannnnnnnns 13
3.2.b : Separated VIEW Via XSLT ceeeee i e e e e e e e e e e e e s e eee e 14
3.2.c : Complete MVC separation with COM, ASII XSLTooooiiiiiiiiiiiiiee e 15
3.2.d : MVC-styles iN ASP apPliCALIONS. . et eeeeeeeeeiiaaaeeeeee ettt e e e e e e e 16
o = R o) =T (1Y (=T] o T=T = 1] o P UPPRRRTRT 22
o N o I o (=T (=Y (=T] =] 1 o P UPPRPPTRT 23
6.1.a : Migration Concept DY SNEed oo i i 29
6.1.b : Incremental Migration CONCEPL ...cceeeeeeeeee i e e e e e e eeeeees 30
6.3.8: SOftWAre EVAIUALIONveii et 33
L - T @ o] [=Tox 1Y (o o 1= 1o PSR 35
6.4.b : Tight coupling between Web applicasiQn............ccccuviiiiiiiiiiiiieiee e 36
6.5.a : Software POSt-DOCUMENTALION........cceiiiriiiiiiieiiree et e e 37
6.5.b : Example of source code doCUMENTAtION...........coiiiiiiiiiiiii et 39
6.6.a 1 ODJECt REfINEMENT. et e e e e e e e e e e e e e e e e e e e annees 40
6.6.2.2] MVC SEIUCLUIE 1N JAVA.....eeeiiiieaiaeee ettt ettt e e e e e e e e e e e e e e e bbbt e et e e et e eeaaaaaaaaaaaaanas 42
6.6.3.a: MVC-styles in ASP appliCatiONS oo ...t 43
6.6.3.b : Wrapping of SQL queries — Model COMNTooooiiiiiiiiiiiiiiiiie e e 45
6.6.3.c : SQL queries in Controller COMPONENL...........uuiiiiiiiiieiiieeie e e e e e e e 46
6.6.3.d : Target Design with encapsulateddg@@mmpPOoNents............ccooevviiiiivinrieeerereereeeeeeeeeeas 47
6.6.3.e : Object oriented calls on the dat@@hO..............coevveiiieeeieiii e 48
6.6.3.f : SQL statement With SUDQUETIES ceeeeeeeieee e e e e e e e e 49
6.6.3.9 : Encapsulation of SQL StatEMENISummm . .uvrriiriieiiiiiiiiiieeie e e e e e er e aaeaeeeaae e e 49
6.6.3.h ;: Conversion and REAEVEIOPMENT cammeeeeeiieiieeeee e e e 50
6.6.3.0 : VIEW COMPONENT IN ASPutimmmm e e e eeeteeseesett ittt r e e e e e eaeaesesassssssnsraeereaererrereaeaaaaeees 51
6.6.3.j : View component CONVerted t0 JSP.......coiiiiiiiiiiiiiiii ittt e e 51
6.6.3.K 1 SAMPIE Of ASP & XSLT .. ettt e e e e e e e e e e 52
6.6.3.1 : Target Design with SEPArated VIEW cee . .coeiiiiiieiiiiiiei et 53
6.6.3.m : Encapsulation of COM DUSINESS OIBJECL.........cccoiiiiiiiiiee it 54
6.6.3.n : Target Design for separated MVC..........ooi it 55
6.6.4.a : Service INtErface deSIGNo e e e e e e e e e e e e e e e 56
6.7.1.a : Example of pageflow mapping from ABBava...............ccccecciiiiniiiiiieee e 57
6.7.2.a : Example of QUEIYLISE ClaSS...coamm i iiiiii ittt e e e e e e e e e e e e e aaeaeaeas 58
6.7.3.a: Mapping of BUSINESS FUNCLIONS tOBJAV..........ccceeeeieiiiiieiiiiintiivesesmmmmmr e e e e e e e e e e e e s enennnenes 59
6.7.4.a : Mapping of built-in ASP ObJECES BVA..........ccceeeiiiii it e e e e e e e aaeaeeeas 62
6.7.4.b : Redirection Of data t0 VIEWSccueiiiiii ittt 63
6.7.6.2 1 JAX-WS WED SEIVICEuteiiiiiiieiae ettt e e e e e e e et e e e e e e e aaaaaaeaens 64
6.9.a : UDDI Model fOr WeD SEIrVICES ... ittt 66
7.a:The legacy TICOS apPlCAtIONcouiiaaeiiiiiiiiiie ettt a e e e e e e e e e 67
7.1.a: TICOS appliCation SLIUCTUIEuuueiiiiiiiieii ettt e e e e e e e e e e e e e e 68
7.1.b : TICOS Worktime management USE-CaSBIralliBcccuuuiiaaaeaiiiaiiiiiiiiiees e e e e 68
7.1.c : TICOS data eXport Via fileS oo 73
7.2.a : Deployment of a migrated business agelon the SAP Portal..........cceeveveviiicccccccinnnnns 75

Abstract

In many of today’s large-scale enterprises, IT-adstiations often times find their IT-
infrastructure heavily “departmentalized” [IBM SQAThis happens primarily, because
enterprises tended to leave their business depaisnaand local IT-administrations to
take care for their own needs, instead of relyingaaccentrally managed IT-organization.
For that reason local departments ended up creappications in isolation from the
global context. As a result the IT-infrastructurecme heterogeneous and complex, as
applications were coupled in a direct manner, dude lack of common interfaces. This
situation is calledight couplingof applications, which is a major source of manatece
and development problems for enterprises.

A modern solution for this situation is tl&ervice Oriented Architectu(&OA),which is
widely implemented in enterprises nowadays. $kevice Oriented Architectuis an IT-
infrastructure, which introducefoose couplingto the environment and decouples
applications by providing common interfaces. A grofrom the set of enterprise
applications consists of Web-based applicationsjchvhare used in the intranet
environments to support business departments witttomized functionalities. These
Web Applications are often times implemented in AS® (or classic ASP) and are built
in a monolithic manner. As a result, Web applicagicare often times part of the
enterprise’s migration strategy to migrate legatygystems to a modern SOA-based IT-
infrastructure

Therefore this paper focuses on the migration & thass of intranet-based Web
Applications and presents a migration concept fagbWApplications implemented in
ASP, in the context of a migration to $OAbased IT-infrastructure. Based on a
migration project conducted at Robert Bosch Japlais, paper summarizes analysis,
deciding factors, migration approaches and begitipeaexperiences in a concept, with
the goal to provide a systematic approach to nmegraSP-based Web applications
successfully.

TU Dresden, Le Hai Dang 1

ASP to Java Migration 1 Introduction

1 Introduction
1.1 Heterogeneous IT-Infrastructures in Companies

A significant part of a company’s IT-infrastructugecharacterized by management and
controlling systems, which is usually composed rofgssional ERP software (Enterprise
Resource Planning) and custom applications. Thaestom applications are tailored to
complement software of the shelf and are oftenginealized as web applications in the
company’s intranet environment. They can be foumdali business departments of
companies and are applied in many different usescds a large-scale company, it is
often the case that the local IT-departments develstomized applications, for different
departments of the regional branch, and therebyndb follow a strict IT-policy
(sometimes due to a lack of a global IT-policy).isTbften times leads to an overall
heterogeneous IT-infrastructure which consists afnatithic and tightly coupled
applications tightly. Due to this “departmentalizediay of developing software,
applications are built in a monolithic way in aroleed manner, which causes the
applications to lack extensibility and reusability.

Through this constellation many companies strugglecope with the increasing
maintenance problems and the demands for modesemices. In order to solve these
problems the companies IT-administrations are cimgntheir IT-infrastructures to a
more homogeneous environment, by using common téahies and common interfaces.
Along with a change to a homogeneous environmergp aalledService Oriented
Architectureis often times established by the companiBisereby a Service Oriented
Architecture is a widely applied solution to proeidxtensibility and reusability to the IT-
environment as it is based on the idea of integer and reusable services which
encapsulate functionalities of the underlying basgapplications. Therefore companies
can benefit from such an architecture by:

* Reducingtight couplingof applications via changing middleware conneitm
Service interfaces, which introdudeose couplingand decrease maintenance
costs of legacy software

* Reusing Service interfaces to reuse functionalities order to speed up
development time and lower development costs olicgipns

* Implementing an Enterprise Service Busto increase flexibility in the
communication between applications and allow bettegration of applications

* Introducing a central presentation platform, suslagortal system, that is based
on the aggregation of contents from business agpics and services.

TU Dresden, Le Hai Dang 2

ASP to Java Migration 1.2 Problems of Heterogeadfrwironments

1.2 Problems of Heterogeneous Environments

In a “departmentalized” legacy IT-infrastructuree tproblems lie in the many custom
applications used in the departments. Due to tineiependent development, they are
heterogeneous and require middleware to be intembfeewith each other. The resulting
picture of such an IT-environment resembles a caaj@dd network of heterogeneous
nodes with customized middleware connections. Kims of environment is depicted

below.

Enterprise T infrastructure

~
Business Area D

Business Area B

Application 5 \
Application 1° “/

L= Application 2'

I ~ .
Business Area A L & Busine
| Application 3 — —
Apphlication 1 — Application 1
| — Application & /] :‘ Apeplication 4
Application 2 /,/ ¢
v i__'_._'_'_.___ - A
Application 3
\ Application 4 Application 4
A hS A

Fig. 1.2.a : Tight coupling of applications in a herogeneous environment [IBM SOA]

What is apparent in such a case is the numeroustiguaf middleware used to link
applications together, whereby middleware is remlito connect applications with each
other, which are implemented in different techn@sdsuch as Java, ASP, PHP or native
technologies like COM) and operate on differentadaburces (such as relational
databases, data files, messages) with each othisr.infroduces strong dependencies to
the applications and result in inflexibility andeitensibility in regard to changes to the
systems. Therefore the maintenance costs for suwnstellation is high. Additionally
the potential of redundant and inconsistent daist,esince applications often times store
overlapping set of data locally. Therefore middlesvaonnections have to deal with
different technologies and different data formatshiese environments. In fact it is often
the case that information can not be synchronizegerly due to the heterogeneous
infrastructure.

Through these reasons companies have begun to mweléneir IT and transform their
infrastructure to a SOA-based IT-infrastructuren€exmuently as a part of this movement,

TU Dresden, Le Hai Dang 3

ASP to Java Migration 1.3 Application Class: CustBusiness Web Applications

the class of Web Applications, which constitutes thajority the described applications,
are also being migrated to a SOA-based platformthénfollowing the class of these
mentioned Web Applications will be characterized.

1.3 Application Class: Custom Business Web
Applications

As an own category of applications in a companyshvironment,Custom Business
Web Applicationscan be found in the intranet environment of manysitess
departments. There, they serve many kinds of reménts, ranging from controlling,
resource planning tasks to information or messagergices. Thereb€ustom Business
Web Applicationsare small-sized or middle-sized monolithic Web Apgtions, which
operate on local data sources or retrieve portidrgata from external sources via some
sort of data service. Typicallgustom Business Web Applicatica® implemented in
different (legacy) programming technologies, depegan the expertise available in the
different business departments or local IT-admiatgins. The common web
technologies used are “classic” ASP, JSP or PHFReréefbre it is difficult for the
companies to come up with a general migration @m®oc& concept, because of the
differences in the technologies.

Through the isolated development ©fistom Business Web Applicatiptise software
guality can vary very much, depending on the maturi the system. The range can span
from applications with poor implementation and doemtation quality, e.g. where
typical Model-View-Controller components are maslipdtogether and documentations
are insufficient, to matured applications, wheranponents are well structured and
documented. Though in reality within a departmémye are more small-sized and poor
implemented applications than matured applicatidfrem a technical point of view
Custom Business Web Applicatiom® used by a small quantity of users (usually by
those in the business department) on a regulas,asifor example in time accounting or
project management Web applications. Thereforenopdtion issues such as load
balancing, availability etc. are less relevant.

From the data-centric point of viewgustom Business Web Applicatiprigpically
operate on local datasources. If ever data musthbeed, applications tend to retrieve
portions of data and store them locally for furtpeocessing, therefore synchronization
services are mandatory in many applications, afthousually less synchronization
services are implemented. Additional third partwges can be used such as directory
services (e.g. LDAP) or (Windows) authenticatiorvees.

TU Dresden, Le Hai Dang 4

ASP to Java Migration 1.4 Primary Requirements

Classification Custom Business Web Applications

Type - Specialized Web Applications

- Intranet environment

- Small-sized to middle-sized legacy Web Applications

Examples/Fields - Controlling (resource planning, time accounting etirey

of usage room reservation)

- Resource Planning (warehouse management)

- Information and communication services (web traos)a
web-based instant messaging, conference chat,
maintenance notification, employee/customer
information)

- knowledge management (wiki, collaboration)

Properties - use of middleware to communicate with other
applications of different technologies

- monolithic

- specialized and redundant data

- non-uniform user interfaces

- decentralized login

- non-uniform login mechanism and identity management

Implementation - Implementation in different programming languages

- commonly ASP, PHP, JSP

- AJAX, COM, ActiveX components

Software - less usage of common programming conventions

Quality/State - no (rare) application of MVC model

- usually no object orientation

- poor documentation of code

Fig. 1.3.a : Classification of Custom Business Welpplications

1.4 Primary Requirements

Resulting from the named problems with heterogesdduinfrastructure andCustom
Business Web Applicatiorthe primary goals for requirements are:

* Migration of Custom Business Web Applications to aarget programming
technology (Java)

This is an IT-policy specific requirement, which ajjois to generalize the
programming technology used at business departniemisier to provide better
support and resolve heterogeneity of the IT-infragtire.

* Generation of SOA-based interfaces from businessiations

The goal is to provide reusability of business tiores and resolve exponential
dependencies between applications. By providing $@ged interfaces the

TU Dresden, Le Hai Dang 5

ASP to Java Migration 1.5 Available Migration $égies and Related Migration Works

qguantity of middleware/bridges between applicationdl be reduced and
therefore enables loose coupling between appligsitio

* Modernization of Custom Business Web Applications @ a Model-View-
Controller based structure

As Custom Business Web Applicatioase implemented by local business
departments, the quality of code is usually notdyols applications should be

reusable, they must be able to cope with futurengbs, therefore an implicit

modernization along the migration process is reglir

1.5 Available Migration Strategies and Related Migr ation
Works

The topic of software modernization is a complidapeoblem in software engineering,
which has produced different kinds of solutions the time, especially in case of
software migration of procedural programs to ob@tnted programs (such as in ASP
to Java). From the perspective of automatism, @mefind different approaches ranging
from full- or semi-automatic code-to-code transfatibn to complete manual
approaches. Works that are based on automatic toeclede transformation rely on re-
engineering techniques in order to generate datadiod function call graphs, examples
of works that fall into these categories are [MdNiuller] [Ping et al.] or [Cimitile et
al.]. Although the solutions named in [Martin/Miilleefer to C-to-Java migration it is
apparent that automatic solutions often times tdasulinsatisfactory codes that are not
readable for humans. This is also apparent in itleetdcontext of ASP-to-Java migration,
namely in the [J-ASP] tool, which will be introdutén 4.2.1 NetCoole J-ASHBesides
full automatic solutions, semi-automatic code-takedransformation tools can be found.
Those tools rely on user interaction in order toiege ambiguous information in the re-
engineering process. The aim of such systems énl@ance the quality of the resulting
code. In the work of [Ping et al.] a code-to-codmsformation tool for Net.Datao JSP
was developed, which migrated Net.Data programkS#® while enhancing the structure
to a Model-View-Controller based design. The toeleloped relied on the analysis of
the Net.Data Abstract Syntax Tree (AST) and thepimags of dataflow and function call
graphs, additionally data access via SQL queriesaaalyzed and dynamic variables are
mapped with the help of dataflow models. The advged of automatic and semi-
automatic approaches in comparison to manual appesalie in the fast transformation
of code, however often times the result of thoseke/@re unsatisfactory for industrial
standards. In [Sneed] an overview of the reasormbs @oblems in the migration of
procedural programs to object oriented prograngsvisn.

Due to the complexity of the topic and the limivais found in the industry, it is often
times not feasible to follow the research heavyhpait automatic or semi-automatic
migration. Therefore a pragmatic goal is oftenisetompanies, which encourages the

" Net.Data is a server-side scripting language dgesl by IBM

TU Dresden, Le Hai Dang 6

ASP to Java Migration 1.6 Motivation and Goals

development of manual migration concepts. In théner this paper tries to provide an
extensive migration concept for ASP based Web eaintins.

However, in the context of Web applications migraticoncepts, materials and
references are scarce. Through research on thmentdhe author had to rely on Web
sources in order to gain valuable experiences ib ¥mlication migration. Therefore the
information and approaches presented in this peges heavily on the experiences of
the author. Related works that have been doneigcstibject can be found in [Jeenicke]
or [MSDN Migration].

1.6 Motivation and Goals

In the concrete case of a company-wide migrati@cegss in the context of a SOA-based
IT-infrastructure, companies must provide a migmatprocedure folCustom Business
Web ApplicationsDue to the different technologies used in différdepartments, it is
not easy for a company to provide a general migmgprocedure for all technologies and
all application types. Instead the companies musvtige local departments and IT-
administration a guideline which is customized floe technologies used within these
departments. Thereby one must take into accouat, different departments and IT-
administrations have different fields of expertifgerefore the guideline must define a
systematic decision process to migrate Web apmicatfrom one environment to
another.

Since the paper is based on a project conduct&blaert Bosch Japan, where ASP was
the major web technology used, “classic” ASP issemoas the legacy web technology to
represent the migration @ustom Business Web Applicatiofifierefore the goal is to
provide a holistic migration concept for ASP-bas®db Applications, which discusses
the following problems of migration:

 How to analyze and what factors have to be consitlén preparation for a
migration process

« Identification of reusable components in ASP-baaksl applications

* What are the problems in the migration of ASP-basketh applications

* What kind of migration methods can be applied td®?A8eb applications

* How to modernize the structure of legacy Web appibns

* How to migrate towards a SOA-based infrastructure

TU Dresden, Le Hai Dang 7

ASP to Java Migration 2 Use Case: Robert Bosclp@ation

2 Use Case: Robert Bosch Corporation

2.1 Situation and the Migration Task

Due to the heterogeneous IT-infrastructure of thebdkt Bosch Corporation, the

company has introduced a custom Service Orientethi#@cture, called “Robert Bosch

SOA”, and deployed a portal system called SAP NetV&e Portal as a central platform
for users to access business applications. In defgaits custom Web applications, the
company’s goal is to migrate those Web applications base technology, which is Java,
and integrate the applications with the portal exyst

In this paper, a project conducted at Robert Balgian will serve as the best-practice
example for the migration of Web Applications. Sirthis project was part of a migration
process at Robert Bosch Japan, the goal was taataigie application called TICOS
(“Task-Information-Charging-Operation-System”) tava and integrate it with the SAP
NetWeaver Portal. As in the case of Robert Bosgmadathe local IT department is
responsible for the whole IT administration andtooliing of Robert Bosch Japan. The
local IT department develops small- and middlegizastomized Web applications to
support the business processes of the local bsstegmrtments. Most of the applications
produced are kinds of controlling tools, to supsevprojects and account times/costs.
They all are designed as stand-alone applicatindshave only few interaction interfaces
with each other, such as with COM (Microsoft ComgainObject Model) interfaces for
ASP Web applications.

However at Robert Bosch Japan applications arelynoshnected together at data level
via shared databases or with custom data servisbgh often times is used to
interchange data with external clients, such asro#iguivalent departments of different
regions (China, Australia and Europe etc.). Just tetently all these applications were
used in an intranet environment, but due to thepaon's IT policy, it had been decided
to migrate and integrate all applications to a m@#tal environment, in order to allow
users a centralized application access. The godhefcompany is to provide central
access to resources and applications by a comnuhitemnture in a standardized and
service oriented manner.

2.2 Secondary Requirements

Due to the transformation from the old heterogeseanfrastructure to a new
homogeneous infrastructure and the introductiorRobert Bosch SOA and the SAP
NetWeaver Portal system, the company has defined Ifiepolicies in regard to the

custom Web applications used at subsidiaries. Trepgarements include the migration
of Web applications to Java and the exchange dlitivaal middleware for modern

service oriented Web Service interfaces. Additiynia that, Web applications should be
integrated with the portal system and should prewdrtain functionalities of the portal
system.

TU Dresden, Le Hai Dang 8

ASP to Java Migration 2.3 Best-Practice Migrafi@sk: TICOS Web Application

Under the term “Minimized Portal Integration” thengpany has introduced the minimal
requirements for the migration process of custombVWWg@plications to provide the
minimal set of functionality that all applicatiomsust support when integrated into the
company’s portal system, in order to gain the adddde of portal systems.

» Single Sign On (SSO) and Identity Management

For applications used in the portal system of Rolgwsch Company, the
company requires additional functions to be impleted. As for improving

efficiency and security, applications integratetoithe portal system have to
implement a Single Sign On mechanism.

Single Sign On is a mechanism where users arereglyired to login once to the
portal system and then be automatically logged imtegrated applications
subsequently. Therefore users do not need to cayena@e about a great
multitude of passwords and hence work more safadyia an efficient manner.

» Corporate Design

Since the portal system is the company’s presemaltiplatform and in order to
provide a uniform user interface in the web appioces, it is necessary to
introduce a common user interface design whicheBndd in the corporate
design. Therefore, it is required from applicatitmsupport the portal’s corporate
design.

» Linking with Portal Navigation

Web applications from different departments andafions are required to be
accessible from a single central platform (SAP Ned&wér Portal). Therefore web
applications must be linked with the portal apglma in a personalized manner.
The web applications must then be integrated with gortal in a form, which

allows the portal to initialize the Web applicatson a personalized manner.

2.3 Best-Practice Migration Task: TICOS Web
Application

TICOS (“Task-Information-Charging-Operation-Systgnis a Web-based information
system deployed at the Information Systems depaittrmeRobert Bosch Japan and is
used for accounting and charging of IT servicesCO% stores, among other things,
master data, such as project, employee or custdater and manages the accounting,
charging and planning of these resources. EssgnTisfLOS works with personal data
and manages project workflows. Projects can beteulday managers and then planned
with team members. The system provides projectnoan(work packages, milestones,
resource planning) and time accounting (daily tiaerounting, time management)
mechanism and presents them in personalizable viewsegular basis TICOS’ business

TU Dresden, Le Hai Dang 9

ASP to Java Migration 2.3 Best-Practice Migrafi@sk: TICOS Web Application

data is exported to external systems for furthec@ssing, this is done by an scheduled
service, which retrieves data from the databaseeapdrts data to different formats such
as Microsoft Excel Sheet (*.xls) or XML to a shacta server.

From the technical point of view, TICOS is implerteshwith ASP in combination with
XML, XSL and JavaScript. The application’s struetuis inflexible, since TICOS

components mix up Model-View-Controller codes andctionalities are scattered into
many files.

Jdodel + Contro
——
g, — A3 responge:
pdaster Data E"mﬂd P+ XELT to innerH TRl
~4_lmain.asp haupt asp
J\ nevillser. asp =
. Y delliser asp
wpet oat s -
ia export Fils -
daily 3 a.m. Reporing packa
asp files "
sternal i C5%5 L\.-I'Bs-clipt
azp files JawaScripd
ACiS *

Fig. 2.3.a : TICOS application structure

As described previously the goal was migrate TIC@Sthe Java platform with
integration to Robert Bosch SOA and portal systdence the tasks included analyzing
appropriate migration strategies and conductingraiign with focus on the redesign of
functionalities for SOA and implementing requiratchétionalities in order to integrate
with the portal system. Furthermore the system rhasedesigned in order to be flexible
for future changes.

TU Dresden, Le Hai Dang 10

ASP to Java Migration 3 Analysis on ASP Web Apgtiicns

3 Analysis on ASP Web Applications

In order to provide a migration concept for ASPdzh¥Veb applications, an analysis of
the ASP technology and programming styles is necgst the next sections samples of
ASP specific techniques will be presented and @nogning styles will be described.

As mentioned in the previous chapter, ASP is aeseside scripting technology. As such
ASP scripts are interpreted on server-side byiatsty runtime, called “Active Scripting
Engine”. This scripting runtime supports the depetent of ASP application in different
programming languages, such as VBScript, JScripi) We requirement that each
programming language must be interpreted by ancaded Active Scripting Engine
which is implemented as a COM-class. In this paperwill only consider VBScript
types of ASP Web Applications, as the VBScript #&etScripting Engine is the standard
and the most common implementation available onrddeft IS server (Internet
Information Services). Since the Active Scriptinggihe is itself implemented as a COM
component, it supports COM components to be use8iSR pages. As such ASP has
standard components already implemented by defaulhe following the programming
style and usage of COM components in ASP will lesented.

3.1 Sample Codes

Syntactically VBScript is a derivate of Visual Bas(VB) and Visual Basic for
Applications (VBA). The following code snippet wiBhow VBScript and standard
components implemented in VBScript ASP:

<html>

<body>

<% Set username = Request.Form("username")
Dim greeting

greeting = "Hello " & username & " !"

Response.write(greeting)
%>
</body>
</html>

Fig. 3.1.a : Request- Response-objects in ASP

A COM object which is regularly used by ASP is ASBO (ActiveX Database Object),
which is an ActiveX (COM) object that provides ass¢o database management systems
and comes with the Microsoft 1IS server. Therefoiaa can be queried with SQL
statements in ASP pages, like this:

TU Dresden, Le Hai Dang 11

ASP to Java Migration 3.1 Sample Codes

i <html> i
{ <body> :
: <%)
: Dim sConnection]
: sConnection = "DRIVER={MySQL ODBC 5.1 Driver}; SERV ER=localhost; !
i DATABASE-=test; UID=root;PASSWORD=admin" :
i Set objConn = Server.CreateObject("ADODB.Connection " :
: objConn.Open(sConnection))
i Set resultSet = objConn.Execute("SELECT * FROM test .table1") i
i objConn.close]
! %> :
: </body> :
: </html>)

Fig. 3.1.b : ADO.DB example in ASP

As ADO is a COM component the DB object (COM clasa) be created via the Server
object in ASP. In the same way any other COM cormepboan be referenced in ASP like
this, therefore oftentimes application logic argiemented as COM components in ASP
Web Applications.

i <html> :
i <body>]
I <% :
i Set calculator = :
: Server.CreateObject(" COMCal cul at or .Vector Cal cul at or") !
: Set vectorl = Server.CreateObject(" COWect or . Vect or "))
: Set vector2 = Server.CreateObject(" COWect or . Vect or "))
l vectorl.x = 1]
i vectorl.y = 2 :
! vector2.x = 3 :
: vector2.y =4 !

Dim result
vectorl = calculator. vAdd(vectorl, vector?2)

result = "v.x=" & vectorl.x & "v.y=" & vectorl.y
Response.write(result)

%>

</body>

</html>

Fig. 3.1.c : COM components in ASP

Regarding programming styles, programming with C@bMmponents or with SQL
gueries are both widespread. Whereas modeling éssiobjects via SQL is not ideal but
accessing data is more straightforward. On therdthed COM components are hard to

TU Dresden, Le Hai Dang 12

ASP to Java Migration 3.2 MVC & Programming StyleASP Web Applications

implement and require additional programming skillsrough these technical features of
the ASP technology, there can be several programnsiyles be described. The

programming style of a ASP Web application is ofi¢he main characteristics which

describes the software state of an applications this necessary to analyze the main
programming styles which are widespread in ASP ieatpbns, in order to be able to

generate a migration concept for ASP-based apjitat

3.2 MVC & Programming Styles in ASP Web
Applications

With the capabilities of ASP shown in the previaestion, there are different styles
widespread how ASP applications can be developedafling this, it is different from
project to project, in which style (and therefanenihich quality) ASP applications can be
found. That must be kept in mind when migrating Af#plications as the quality of code
affects the outcome of the migration. The differstyies range from completely mixed
MVC components to completely strict separation &f@Icomponents. Generally a strict
separation of Model View Controller componentsaasidered the best solution for (big)
Web Applications, however in order to achieve thadditional technologies must be
utilized, as ASP alone is not suited for every M¥@nponent. In the following some
possible styles of ASP applications will be presdnt

Model + Controller
) <% If Request.form("action”) = “edit”
View Then ‘Model Code
‘update datamodel
<% ‘Get Member data EndIf
PP %>
%>
<form> "
P ,, " . i i . View
<input type="text ViewMemberList.asp?action=edit&
name="member_name">... member_id=123&. . . <table>
</input> > <%
<input type="button”>edit</input> for member in memberList
<input type="button”>back %>
</input> <tr>
e <td> <% member.name %> </td>
</form> <td>. <ftd>
</tr>
<% next %>
</table>
EditMember.asp ViewMemberList.asp

Fig. 3.2.a : Mixed MVC-style

In the first case, MVC components can be found itompletely mixed state. This is
apparent as “EditMember.asp” retrieves “Member’adat SQL queries and forwards
the new input data to “ViewMemberList.asp”. Thettee incoming data will be validated
(Controller) and applied to the data model (Model)l the actual “Memberlist” (View)

will be rendered.

TU Dresden, Le Hai Dang 13

ASP to Java Migration

3.2 MVC & Programming StyleASP Web Applications

Model + Controller

<% If Request.form("action”) = “edit”
Then ‘Model Code
'update datamodel
EndIf
%>

<Members>
<%
for m in memberList
o>
<Member>
<name><% m.name %></name>
<firstname>. </firstname>
</Member>
<% next %>
</Members>

\d

ViewMemberList.asp

View

<xsl:template match="/">
<html>
<body>
<table>
<tr>
<th>Name</th>
<th>Firstname</th>
</tr>
<xsl:for-each
select="Members/Member">
<tr>
<td><xsl:value-of select="name"
[></td>

[=</td>

<td><xsl:value-of select="firstname"

ViewMemberList.xs|

Fig. 3.2.b : Separated View via XSLT

Between complete mixed components and strict separaf components, forms of
partial separation of MVC components can be foubde form of partial separation is
when View components are separated via a combmatfio ASP pages and XML
transformations. In such a case Controller and Mdtlemponents are separated to
dedicated ASP pages and View Components are pextéssseparated ASP pages and
XSL files, where ASP pages hold the data to begmiesl in XML structure and XSL
files transform those XML structures to HTML. Onges where Controller and Model
components reside, SQL queries are used to ace¢s$rdm the data model. In such a
design business functions and control flow funciane not separated into different files,
therefore business logic and control logic are mhixéh each other.

TU Dresden, Le Hai Dang 14

ASP to Java Migration

3.2 MVC & Programming StyleASP Web Applications

Controller View
<%’:‘a|idate i:PUt T;imetf,ts <xsl:template match="/">
!thequest. orm("id") <> <html>
en
bod
'COM business functions <hogy>
Endif <table>
" <tr>
<Members> <th>Name</th>
<% <th>Firstname</th>
for m in memberList .
%> = </tr>
<Member> - <xsl:for-each
<name><% m.name %></name> select="Members/Member">
<firsthame>. </firstname> <tr>
I <td><xsl:value-of select="name"
</Member> [></td>
<% next %> <td><xsl:value-of select="firstname"
</Members> 1></td>
EditMember_EditAction.asp ViewMemberList.xsl
Model L4

GUID="A126-FE21-0412-8374"

{...

public editMember(int id, Parameters p{])

sampleModel.dll

Fig. 3.2.c : Complete MVC separation with COM, ASRPand XSLT

In complete separation of MVC components, Model gonents are implemented by
COM classes, Controller components are separatedeticated ASP pages and View
Components are implemented by independent ASP pdgesuch a design COM
components access data and provide business fuscotia object methods. Controller
components are separated to dedicated ASP pagess Wiey process input parameters
to handle the control flow of the application. Basa the input parameters the business
logic of the application is directed and the resikent to the dedicated View page.

TU Dresden, Le Hai Dang 15

ASP to Java Migration

3.2 MVC & Programming StyleASP Web Applications

ASP Style Felys Model View Controller
Structure
» Model, View & | *« No object « Data entities from| « Control flow is
Controller oriented business| Model are based on SQL
elements are object model presented with queries to the data
mixed together | « Business ASP and HTML model or with
Completely within an ASP functions in one COM objects
Mixed MVC file page with other * External
components functionalities with
« Data access via 3 party COM
SQL components

 Business * No object « Data is presented| ¢ Control flow is
functions are oriented business| in a separated based on SQL
mixed with object model ASP page with queries to the data
control flow « Business SQL queries model
Separated View functions in one functioqs inone | Viev_v_can be . Exter_nal N _
page page with Control| additionally functionalities with
*View is components separated with 3 party COM
separated to a | « Data access via | XML and XSL components
dedicated page| SQL queries files
* Business *« COM « Data is presented| * Controller pages
functions are components in a separated manage control
separated into | access data model ASP page with flows of the
COM * Business SQL queries or application based
Complete components functions are COM DAO on input
Separation of | ¢ Control flow implemented in | ¢ View can be parameters and
MVC functions are COM additionally business logic
separated from| components separated with « Control flow is
View pages « Data access via XML and XSL managed in
* View is COM DAO files separated files
separated

Fig. 3.2.d : MVC-styles in ASP applications

TU Dresden, Le Hai Dang

16

ASP to Java Migration 4 Basics: Technologies, Aedtures and Tools

4 Basics: Technologies, Architectures and Tools

In this chapter relevant Web technologies, useth@é best-practice migration project,

will be described. The legacy Web technologies usdfobert Japan are ASP and JSP.
Through the desired target platform by Robert BdSohporation, J2EE (Java Enterprise
Edition) technologies are mandatory, therefore J2EHAdards and modern J2EE Web
frameworks will be introduced. Additionally SOA ampts and products used at Robert
Bosch will be described. Finally available migratitools for the relevant technologies

will be presented.

4.1 Technologies

4.1.1 ASP — Active Server Pages

Active Server Pages is a legacy web technology loyrddoft, which is used to create
dynamic HTML pages. Nowadays ASP is replaced by .A8P as the successor
technology of Microsoft. The mechanism behind Aeti®erver Pages lies in the
embedment of ASP codes into a HTML structure, whiah be evaluated dynamically
during run-time. As a server scripting technolo8$P codes are interpreted by the Web
server (commonly by the Microsoft “Internet Infortiwen Services” server) and the
resulting HTML documents are returned to the ceffthe programming language used
by ASP can be any scripting language (commonly fBSand JScript), which is
compatible with the Active Scripting Engind hrough the support of COM-components,
the functionality of ASP scripts can be extended WOM/ActiveX components.
Therefore the functionality of ASP is not limited built-in components such as
(“Session”, "Request”, “Response”, “FileSystemeétc.), but can also be extended by
custom COM-components. This is often done in otdemplement business logic in an
ASP application.

Advantages/Disadvantages:

One of the main limitations of ASP is that it epsallows mixing up presentation and
business logic. As for example one can often filRgl Statements directly embedded
inside of ASP pages, which violates the common Nidilew-Controller design pattern

in Web Applications. This is usually done when pesgmers access data sources via the
ADO (ActiveX Data Objects) COM-component, and impént their SQL-Statements
directly in ASP pages instead of COM-componengfit¢lence in practice, ASP pages
are often implemented in the “dirty” way. Anotheoplem regarding the migration of
COM-components of ASP applications to Java is @@M-components are bound to
Microsoft Windows and can not be reused by Javattoer operating systems easily.

" The Active Scripting Engine itself is a COM compoi because of that it provides Scripting Langsage
to access COM components natively

TU Dresden, Le Hai Dang 17

ASP to Java Migration 4.1.2 JSP - Java ServerdPage

4.1.2 JSP — Java Server Pages

Java Server Pages (JSP) is a technology for tisempiaion layer that allows the dynamic
creation of contents by using Java code, in simviay to ASP. JSP pages are located on
Java Web servers that evaluate Java-code fragméhta JSP compiler. JSP is designed
to separate application logic from presentatioerdfore code for application logic can
be implemented in standard Java classes (POJCain“®©ld Java Object”) and be called
by Java tags in JSP pages. This is a differenésst®, as ASP allows COM-components
to be called from Active Server Pages, instead afaJclasses, which are usually
implemented in the JavaBeans convention. JSP apipins are usually written in
combination with the JSTL (JSP Standard Tag Librtafyis custom tag library is an
extension of the JSP specification, which allows I8P compiler to evaluate tags
defined by the JSTL. Custom tags are sorted bygoagesuch ascore’, “xml’, “sql’ etc.

Advantages/Disadvantages:

The advantage of JSP is the implicit integratiod@afa technology as compared to ASP
with COM support. Hence the technology is not bouadthe requirements of the

underlying backend. The limitations of JSP are lsimio ASP, such as the danger of
mixing up business logic code with presentationecedsily. In regard to the migration of
legacy Web Applications from technologies such @&PAto Java, JSP as a target
technology is an ideal replacement for the presemtdayers of an ASP application,

since there are many similarities between the agbriologies.

4.1.3 Java Servlet

Java Servlets are Java classes, which are confignyréhe Java-Server to process HTTP
requests. These Java classes process HTTP requéststurn HTML code to the client
via a HTTP-Response stream. Since Servlets areemgited at class level they are not
suited as View components (since the HTML code gaioe would be tiresome) but
instead as Controller components, because theatdlaw can be managed in the code
directly. Therefore Servlets are often used in comtion with JSP to implement the
MVC pattern. From a technical point of view, JSBgmare equal to Servlets, since JSP
pages will be processed as Servlets by the Welrserve

4.1.4 Component Object Model

Microsoft Component Object Model (COM) [COM] is achnology, which enables

applications to reuse software components in theddbft Windows environment. COM

components can be created with many different jarogring languages, such as C++,
Visual Basic. The technology is used to provideerfaces in the local Windows

environment, which can be reused by other apptinatiCOM components are compiled
binary files, often in form of a .dll or .exe fileshich must be registered in Windows in
order to be reused. The COM technology itself mited to the local environment,

however functionalities can be extended Distributed Component Object Model
(DCOM)in order to be reused remotely.

TU Dresden, Le Hai Dang 18

ASP to Java Migration 4.1.5 Web Service

4.1.5 Web Service

Web services are remote software components thabveaccessed via networks, such as
the internet or enterprise intranet. Web servioethé regular configuration, are based on
the 3 open standards, Simple Object Access Pro{&dAP), Web service Description
Language (WSDL) and Universal Description, Discgvand Integration (UDDI), which
define the communication, the interfaces and tlggstation of a Web service. Web
services provide remote procedure calls and cansbd to build up a Service Oriented
Architecture (SOA). Web services share similaritieth DCOM as they provide remote
computation and describe interfaces for such conmwation, however the biggest
differences lie in the communication protocahd interface descriptiohgWeb Service
vs. DCOM]. In comparison to DCOM, Web services pdevoose coupling to a software
environment, therefore Web services are the tedgyobf choice for Service Oriented
Architectures.

4.1.6 JAX-WS

Java API for XML — Web Services (JAX-WS) [Sun JEH &torial, part 1], is a Java

API for the creation and consumption of Web SeviceEhe API was introduced in the
Java Platform - Enterprise Edition 5 and is a regai@ent for the legacy Web Service
API, Java API for XML-based RPC (JAX-RPC). In JAXSMVeb Services can be
created in a much simpler way than it was in JAXeREhereby JAX-WS makes use of
Java annotations heavily and simplifies the depkymof Web Services notably.
Compared to JAX-RPC, interfaces must not be creatgeénerate Web Service stubs.

4.1.7 Model View Controller Design Pattern

The Model-View Controller (MVC) design pattern is1 architectural pattern for
structuring the software development process ofiegipns into Model (data model or
business object model) View (presentation) and @dat components (control logic).
The goal is to increase flexibility in software éépment, by facilitating future
modifications and extensions on the current so#warhe design pattern employs
separation of concerns for components, which helpsplace or reuse components from
each other independently. In the context of Weliegons, the MVC pattern is widely
used as a reference, for modern design. Therelly éfathe three components can be
implemented by different standards (of a techndloljythe case of Java, oftentimes Java
Beans/EJB is used as Model, JSP as View and JawdetSas Controller. In such a
configuration, a normal HTTP request is processadisg at the Java Servlet, which
process the request and calls Java Beans to reaanto the JSP View component. In
legacy Web applications MVC components are usualked up together, therefore it is

" Web services communicate over HTTP via SOAP, whilOM is based on a proprietary DCOM
rotocol

EDCOM is based on remote objects and interfac&3i¥l objects defined in type libraries, while Web

services rely on loosely coupled WSDL interfaces

TU Dresden, Le Hai Dang 19

ASP to Java Migration 4.1.8 Enterprise Servicee@ed Architecture — SAP NetWeaver

a goal in software migration to identify and to degle MVC components from each
other, since the objective of software migratiothis modernization of software.

4.1.8 Enterprise Service Oriented Architecture - SA P
NetWeaver

The software development in companies is moreddilifi when functionalities can not be
reused and data can not be accessed seamlesslyo Bueh obstacles, the modeling of
business processes can be slow and inflexible. uffwrdhe years, business processes
have changed at a fast pace and demands from iosidmitside a company have
increased, thus a flexible and adaptable compobaséd software environment have
become necessary, which could provide compositgponamd reusing of existing
functionalities in a loose coupled environment. IS@an architecture is the Enterprise
Service Oriented Architecture.

The concept of the Enterprise Service Oriented kecture is based on the
compositioning of business services during thewsri development process. Other than
that loose coupling is also introduced by the Eprise Service Oriented Architecture.
Thereby loose coupling is the basis for comparogaategrate their incompatible systems
with each other. In a Service Oriented Architect@eService is a reusable functional
component, which encapsulates fine to coarse gtapelication functionalities that can
be called remotely and is defined by interface gpation meta-data. Beside that
Services can be stored in repositories that catoteed up via naming and look up
functionalities. As described by [Nicolescu/Klapgi€rcmar, p.37 — p.40], an Enterprise
Software Architecture is composed of a Service Rigpry, Service Bus and a Frontend
Application. The latter one is usually represeridgda portal application. In the case of
the Bosch SOA this instance is filled by the SARWeaver Portal.

4.1.9 Portal System

On top of the Robert Bosch IT-infrastructure, th@mmpany has introduced the SAP
NetWeaver Portal, which acts as a front-end commbrie allow user-computer
interactions with the systems integrated to it.d&finition SAP NetWeaver Portal is an
enterprise portagl which belongs to the group cfosed and process oriented portals
[Nicolescu/Klappert/Krcmar, p. 23]. Whereby a cldg#ortal is, in contrast to an open
portal (e.g. to which web portals belong to), a vegbtem that is focused on a closed
group of users. An enterprise portal is definetyap/lachakis/Kirchhof/Gurzki, p.11] as
follows:

“An enterprise portal is defined as an applicatiovhich based on web technologies
provides a centralized access to personalized cbsitas well as processes. Therefore
enterprise portals offer the possibility to suppprocesses and collaboration between
heterogeneous groups. Characteristic for portals tre links and data transfer between
heterogeneous applications via a centralized ptatfand a uniform user-interface. A

manual log in on individual applications integrated the platform is not necessary

through Single Sign Of.

TU Dresden, Le Hai Dang 20

ASP to Java Migration 4.2 Migration Tools

By definition portal systems aggregate contentatek from integrated applications and
display them in a uniform manner on the portal p&yetal systems display personalized
web-contents, depending on user roles and manage tioles in via their own identity
management system. Furthermore portal systemsncagase efficiency and security by
proving SSO (Single Sign On) functionality to altegrated applications and can add
many services to support business related tasksh ss virtual conferencing,
collaborating, document sharing and etc.

4.2 Migration Tools

Migration processes can be supported by migratmhst which can implemented in a
form of a migration wizard or a stand-alone appiaathat transforms code-to-code. In
the case of ASP-to-Java migration one of few mignatools that can be found is
NetCoole J-ASP, which transforms ASP applicationts JSP/Servlet applications. In the
following this migration tool, along with a the vmaer tool COM4J will be presented,
which is an extremely useful tool when it comesvtapping COM components to Java
classes.

4.2.1 NetCoole J-ASP

J-ASP is an ASP to JSP transformation tool fromQdele company [J-ASP], which can
migrate ASP web applications to JSP applicatiohg fbol takes ASP pages as input and
transforms them into JSP or Java Servlet applicatidhereby the tool works in this
way:

1. Takes a ASP project as input and analyzes eachpage of it

2. Gets variables defined in an ASP page and dedhees in the JSP page

3. Maps predefined ASP objects (Request, Responssjo§e#ADODB etc.) to J-
ASP objects in Java (jasp.Request, jasp.RespasgeSession, jasp.AdoDB etc.)

4. Transform ASP code to JSP coaled create the JSP files

Essentially the tool works by mapping the standaBP objects into Java classes and
transforming ASP codes to JSP codes based onAlsP klasses. Following is a sample
of J-ASP transformation:

TU Dresden, Le Hai Dang 21

ASP to Java Migration 4.2.1 NetCoole J-ASP

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict /[EN"
"http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-strict.dtd" >

<html xmlns="http://www.w3.0rg/1999/xhtm|">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1" />

<title>Sample create Member</title>

</head>

<body>

<div id="container">
<% '‘Controller

Dim member_id

randomize()

member_id = int(rnd*9999999)+1

Set member_name = Request.Form("member_name")

Set member_firstname = Request.Form("member_firstn ame")

Dim sConnection, objConn , objRS
sConnection = "DRIVER={MySQL ODBC 5.1 Driver};

SERVER=localhost; DATABASE-=ticos; UID=root;PASSWORD =; OPTION=3"
Set objConn = Server.CreateObject("ADODB.Connectio n")
objConn.Open(sConnection)

Set rs = objConn.Execute("INSERT INTO thl_members "&

"(member_id, name, firstname) " & _
"VALUES ("' & member_id &"," & _
"member_name" & "' "& member_first name & ")")

objConn.close
Response.Redirect "ViewMemberList.asp"
%>

</div>
</body>
</html>

Fig. 4.2.1.a : createMember.asp

TU Dresden, Le Hai Dang 22

ASP to Java Migration

4.2.1 NetCoole J-ASP

<%@ page contentType="text/html; charset=is0-8859-1
<%@ page import="jasp.buildin.*" %>
<%@ page import="jasp.util.*" %>
<%@ page import="jasp.vbs.*" %>
<%@ page import="jasp.adodb.*" %>
<%@ page extends="jasp.servlet.JspBase" %>
<%
try {
jspinit(request,response,application,out);
%>

<%
/IController
double member_id = 0;
IStringList member_name = null;
IStringList member_firstname = null;
String sConnection = "";
Connection objConn = null;
variant objRS = new variant();
Recordset rs = null;
%>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict
"http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-strict.dtd"
<html xmlns="http://www.w3.0rg/1999/xhtm|">
<head>
<meta http-equiv="Content-Type" content="text/html;
8859-1" />
<title>Sample create Member</title>
</head>
<body>
<div id="container">

<%
vb.Randomize();
member_id = vb.Int(vb.Rnd() * 9999999.0) + 1.0;
member_name = Request.Form("member_name");
member_firstname = Request.Form("member_firstna
sConnection = "DRIVER={MySQL ODBC 5.1 Driver};
SERVER=localhost; DATABASE-=ticos; UID=root;PASSWORD
objConn = new Connection();
objConn.Open(sConnection);
rs = objConn.Execute("INSERT INTO tbl_members "
"(member_id, name, firstname) " + "VALUES (" +
vb.CStr(member_id) + ™," + member_name.toString()
member_firstname.toString() + ")");
objConn.Close();
Response.Redirect("ViewMemberList.jsp");
%>

</div></body></html>

/[EN"
>

charset=iso-

me");

=; OPTION=3";

+

4o g

Fig. 4.2.1.b : createMember.jsp

TU Dresden, Le Hai Dang

23

ASP to Java Migration 4.2.2 COM4J

Advantages/Disadvantages:

NetCoole J-ASP works by mapping ASP functionaldyJava, therefore ASP developers
can easily read J-ASP fragments in Java code. Tolggm is that ASP-style code is
inserted in JSP files, which is confusing for JS&elopers. Furthermore as the
transformation method of J-ASP is rather simple, thol does not provide migration of
COM components. Therefore the usage of J-ASP igedhto simple ASP applications.
The applications that can be migrated with J-ASPstrmot have the business logic
implemented by COM-classes, therefore usually tlegg®ications implement business
logic by directly querying data from the data modeitother problem resulting from the
working method of J-ASP is that, the JSP applicetigenerated will have the same
structure as their ASP counterparts, therefore NMudav-Controller patterns must be
added afterwards if possible. As a bottom linean be said that the use cases of J-ASP
are very limited, as J-ASP can only be applied $onall-sized and simple ASP
applications. As for the working method of J-ASP¢an be said that it is rather simple
than sophisticated and can not serve as a goodtioigrstrategy for the migration of
Custom Business Web Applications.

4.2.2 COM4J

COM4J is a Java library which enables interopeitgtbivith Microsoft Component
Object Model. With COM4J one can generate Wrapdasses (Java classes that
implement native methods for COM interfaces) for MC@nterfaces automatically. By
doing so COM4J generates Java Wrapper classessaneane and automatically
creates the necessary native implementation codagdtun-time [COM4J]. Therefore
developers can just reuse COM components in a coevemanner. In the case of ASP-
to-Java migration, COM4J can be used to encaps@i@iel components that are being
used by ASP applications to enable interoperabaithh Java.

In order generate Java proxies, COM4J can be idreleea command line tool, thereby
one has to specify the location of the COM fileisthcan be of a type of .ocx, .dll, .exe
or .tlb. As an example a COM4J command could |adak this:

* "java -jar tlbimp.jar -0 wsh -p test.wsh c:\winds\system32\wshom.ocx”

Where “wshom.ocx” is the COM component, tlbimp.jara COM4J jar, wsh is the
output folder and test.wsh is the package name.

TU Dresden, Le Hai Dang 24

ASP to Java Migration 5 Software Migration

5 Software Migration

Due to the limitations in an industrial environmemmanual migratiorapproach in form
of a migration guideline is chosesegl.5 Available Migration Strategies and Related
Migration Works. In this chapter, the different migration stragsgand methods for
manual migration will be presented. Additionallynamon deciding factors that influence
the decision making process of software migratidhbe named.

5.1 Common Deciding Factors

The common goal of any software migration projecta transform a given software
program from a legacy environment to a target emvirent by reusing or converting
existing components as much as possible. Softwageation is about how to reuse the
most of existing components and how to rewrite texgs components for the new
environment. In this manner the capability to castdeigration depends on common
deciding factors, which are described in [Snee®19924]:

» Costs — money to spend

* Time — deadline when to exchange the software

* Human resource - expertise, experience and quarftiyembers

» Software state — technical aspects of software asaode structure and modules

Monetary and time limitations are universal factthat affect any software project.
Human resource is an important criterion in theisien process of a software migration
process. For any migration project a balanced coatinn of expertise and experience
must be found in order to conduct the migrationlwitis means that both, expertise and
experience in the legacy technology as well abéntarget technology must be available.
Beside those common criteria, the most importaitergon is software state, which
describes the quality and complexity of a softwanegram. This deciding factor must be
analyzed thoroughly as it defines which componeats be reused and which migration
approach can be applied. Therefore the majoritgnaflysis is spent on this aspect in any
software migration project.

5.2 Migration Strategies and Methods

Migration strategies and methods are the tools mmigration concept, which allows the

migration concept to rely on for different situatsodepending on the common deciding
aspects in context of a migration task. Therebyigration strategy describes the overall
conduction of a migration concept and migration hods define the ways how actual

" In this way, the term “software migration” wilkdm this point on, be referred to as in the contéxt
manual migration

TU Dresden, Le Hai Dang 25

ASP to Java Migration 5.2.1 Migration Strategies

code can be migrated in a given case. In the falgwommon migration strategies and
migration methods will be described.

5.2.1 Migration Strategies

* “Horizontal” and “Vertical” migration [MSDN Migrati on] [Jeenicke]

By horizontal and vertical, the distinction betwesgplication layers (horizontal)
and functionalities (vertical) are defined. While the horizontal migration
strategy, a migration from certain layers of alittom, such as presentation layer,
application layer, data layer, is targeted, ithis goal to migrate whole functional
modules in the vertical migration strategy. As fexample in the case of
horizontal migration, there is a given situationend the application is well
separated into abstraction layers and componemisbeareused seamlessly in
these layers. On the other hand if functionalittee separated by functional
packages, it can be more efficient to migrate tHiesetionalities, each as a stand
alone entity by applying the vertical approach.

* Incremental and All-At-Once migration

Other forms of migration can be identified by theremental (or “Chicken Little”
[Brodie/Stonebreaker]) and the All-At-Once (“Big B or “Cold Turkey”
[Brodie/Stonebreaker]) migration approach. Therahg, incremental approach,
describes the migration of an application in inceatal steps or migration cycles,
where components or functionalities will be migdabecrementally and deployed
in parallel to the current application. In incrert@rapproaches the principle of
divide-and-conquer is applied to the migration.sTapproach has the advantage
that users will have more time to get familiar wilie changes and thus will have
a higher acceptance to the application. Also, tfhaieation can be tested more
thoroughly because of the iterating steps. On thercside the disadvantage lies
in the parallelism of the two systems, as by tleeamental approach the migrated
components and legacy components must be ablentm nparallel to each other.
This can be difficult in certain situations, suchdescribed in [Jeenicke, p. 11],
where target technology and legacy technologyravempatible. The “Big Bang”
strategy, describes the process as an all-at-onegration, where all
functionalities will be migrated in one big procedu This approach may be
faster, when applied in the ideal circumstanceshsas for well documented
small sized applications), but however this kindnafjration strategy involves
great risks as changes to the requirements cabenog¢verted easily during the
migration process. Therefore this kind of strategynore suitable in small and
less complex applications.

TU Dresden, Le Hai Dang 26

ASP to Java Migration 5.2.2 Migration Methods

5.2.2 Migration Methods

As for migration methods, generally there can lreghypes of methods named [Snheed
1999, p. 20] [Gimnich/Winter].

Conversion

Conversion is the approach to re-use functionalitiby code-to-code

transformation, often times applied when legacyhimetogies share similarities
with the target technologies, such as in case d? A8d ASP.Net. or ASP and
JSP. In such cases the syntax of the legacy teamoésembles the syntax of the
target technology, which makes it easier to congede from one environment to
another.

Encapsulation

Encapsulation is the method to re-use existing @mapts, by providing
wrappers or bridges for the legacy component. Esdagpon can be applied when
it is possible to run both, the legacy componerd #re target application in
parallel. Usually encapsulation can be considehnedéast extensive approach to
migrate software, since wrappers and bridges casabiy created. However it is
also the least clean solution, since legacy soéiveae not modernized through
encapsulation and additionally must be run in palralith the target system.

Re-development or Re-engineering

Re-development defines the whole re-creation ofiwsse components. Thereby
program structures as well as data models can bgdcuof re-development.
Usually re-development is the most resource-consgrapproach. Whenever re-
development is chosen, there must a situation ewisére conversion or
encapsulation is not available for migration, sashin cases where source codes
are not available or whenever it is not allowedrémsform code-to-code (e.g. by
3 party software).

TU Dresden, Le Hai Dang 27

ASP to Java Migration 6 Migration Concept

6 Migration Concept

In this chapter the migration concept will be presd, it is structured in migration stages
which describe the analysis, design, implementadimhintegration phases in a migration
process. Additionally the concept will incorpordbhe design process for Web Service
interfaces for legacy Custom Business Web Applicatipnend will provide
recommendations to solve the dependencies betwganyt application, in order to move
from the legacy environment to a Enterprise SOAeddanvironment.

6.1 A General Migration Concept for Software System s

The migration concept presented in this paper seth@n the migration concept by Harry
M. Sneed and described in his book “Object Orie@eftware Migration” [Sneed 1999],
in which the author describes a migration approémhlegacy procedural business
software, written in COBOL, from a procedural andnuolithic system to an object
oriented and distributed system. Thereby the mimnaprocess is structured in stages
which cover analysis, design, implementation artégration of the migrated system.
However, the concept is generally applicable, sirtcés based on steps that are
summarized by [Gimnich/Winter]. Therefore, this cept is based largely on the stages
described by Sneed and applies them in the confeXfeb applications. According to
[Gimnich/Winter], a manual migration process geftgr@onsists of the following
migration workflow: choosing a migration strategy, defining the targeivironment,
analyzing differences, defining the migration coempl, defining and executing
transformations, deploying the system, “migratingpboyees” and quality assurance.
These steps can be found in the stages of the tioigranodel of Sneed, which is
presented below.

TU Dresden, Le Hai Dang 28

ASP to Java Migration 6.1 A General Migration Cepicfor Software Systems

Object
Modeling
2 4
O @ Software O ;
Software Post- Object
Evaluation e . —_ Refinement
Documentation
decision decision l
5
Software
Reorganization
C @
Software Software System
Implementation | = Testing - Integration

Fig. 6.1.a : Migration Concept by Sneed

The development process described by Sneed isrsggjuas it is separated into 8 stages
which are conducted stage by stage, therefore #inslar to software development
processes like th&Vaterfall model[Waterfall model]. Because of this reason Sneed’s
migration model inherits the higher risks, as comgato incremental software
development models, since the concept implies alfofanothing” characteristic
(meaning that systems are developed in one bigepsdcwhich is not suitable for big and
complicated projects, where business requirememntg change during the development
process. Although the migration Gustom Business Web Applicatioesoncerned with
small-sized to middle-sized applications, it istéetfor the named reasons, to migrate
applications in an incremental approach. Followang incremental migration model
based on Sneed will be presented.

TU Dresden, Le Hai Dang 29

ASP to Java Migration 6.2 The Stages of the Migra€oncept

@

Software
Evaluation

T
@ o=

Object ! Post-
Modeling Documentation

o
Vertical Migration /chaose paciap

> Object

Refinement

no migration

Y

6
Software N Software
Implementation f=—— Testing

L

Re-iterate System
Integration

new package

Fig. 6.1.b : Incremental Migration Concept

This migration concept encourages the migratiorsingle functional packages, which

can be in coarse or fine grained form, over anemantal development cycle. In the

course of the migration process, additional packacgn be migrated and integrated
together or migrated packages can be further mfim@dditional iterations. Because the
data model is mostly untouched by this migrationaept, the migrated packages can be
run in parallel to the legacy system.

6.2 The Stages of the Migration Concept

The migration process is structured into 7 stagdschw span analysis, design,
implementation, testing and integration. In thddeing the migration stages will be
introduced briefly.

TU Dresden, Le Hai Dang 30

ASP to Java Migration 6.2 The Stages of the Migra€Concept

Software Evaluation

In the first stagethe legacy system must be analyzed thoroughly,gthed is to
identify the structure of the legacy system, ineordo decide which migration
methods can be applied. Therefore it must be aedlypow Model View
Components are implemented, and decided how toateighem effectively with
regard to the limiting factors (such as costs, film@man resources etc.) and the
company’s requirements (such as technical requimgsnéunctional requirements,
software quality etc.). The goal at the end of thiage is a vision of how
components of the legacy systems will be lookikg In the new system and if it is
feasible with the resources given.

Object Modeling

The purpose of theecond stages to analyze the functionalities of the systend a
to identify its functional modules and businessect§. The goal is to define a
coarse grained business object model in order tdenmize the legacy application
and to prepare the interfaces for the Service @tArchitecture. As the overall
goal of the migration ofCustom Business Web Applicatioms to reduce
heterogeneity and to support reusability and fldikyvia a SOA interfaces, it must
be kept in mind to analyze which business partghef legacy system can be
exposed as SOA interfaces.

Software Post-documentation

In order to conduct migration properly in the implentation phases, the results of
the software evaluation stage must be documentéukithird stage The goal is to
document functionalities and structures of the dggsystem, if it was not done in
the original development. The documentation ofcitnes and components can be
done in the source code in order to support thepmgpof Model View Controller
components to the new structure.

Object Refinement

In thefourth stageof the migration concept, a functional module ackage will be

selected to be migrated. The goal of this stagt idesign the classes and the
packages in preparation for the incoming implenterigphase. The focus lies on
the refinement of the business objects and thegdesi packages for SOA

interfaces. As the goal is to migrate a functiopatkage to the new environment,
Model View Controller components must also be rdirand be prepared for the
implementation stage. The overall goal is to rewethe business object model so
that future business changes can be adapted mexiblyl, therefore an object

oriented design of classes is favored. Howeves ihot the goal to migrate the
legacy application to a fully object oriented Jaygplication as it would reduce the
chances to reuse components of the old systemmAnom problem in this phase is
that functional packages have references to eduér.oTherefore it can not be

TU Dresden, Le Hai Dang 31

ASP to Java Migration 6.2 The Stages of the Migra€Concept

assured that functional packages can be migratelhtesl from each other,
furthermore it must be kept in mind to define fuostl dummy stubs so that they
can be integrated with each other in later phasdsvagration cycles (in Software
Implementation phase of the later migration cycles)

Software Reorganization

The Software Reorganization stage, was describe®rmed as a step between
Object Refinement and Software Implementation, Wwiparpose is to prepare the
legacy software for migration. It was stated th@mhponents exist that do not fit and
are not supported by the target environment shbaldeorganized or redeveloped
before handed in order to be migratable to thestaggvironment [Sneed 1999, p.20
- 31]. Such components as in the example of Snaede components that operate
on legacy data sources such as hierarchical daspbasich are not supported by
the target technology (such as Java). Thereforg tecessary to reorganize the
legacy system before handed (in the sample cadadherchical data model would
be reorganized to a relational data model). Howeweithe context of Web
applications and in the migration of ASP to Jawshsa case is insignificant since
Web applications in both technologies usually ofgemsith similar and common
technologies nowadays. Therefore the software eanzgtion stage as described by
Sneed will be left out of this migration concept.

Software Implementation

In thefifth stageof the migration concept, the chosen packageheilimplemented

in the target technology. Dependent on the softwaeduation stage and the refined
business object model, the legacy components ofWled Application will be
encapsulated, converted or redeveloped. Additignalependencies between
functional packages can be resolved by implemertiegnow available functions
that were not migrated in earlier migration cycl@herefore packages can be
integrated with each other if necessary. At the @ntthis stage the chosen package
can be tested in cooperation with the already negrpackages.

Software Testing

The testing stage is an essential part of everyjwaoé development process,
thereby the migrated applications functionalitia fae tested for errors and bugs.
Because of the incremental development processh@fntigration concept the
migrated packages can be tested on the data soumnde,running in parallel with
the legacy system.

Software Integration
The last stage of the migration concept is aimethtigrate the migrated package

to the new environment. This includes the integratwith the portal system,
whereby application pages must be linked with thegb's application repository or

TU Dresden, Le Hai Dang 32

ASP to Java Migration 6.3 Software Evaluation

Single Sign On functionalities must be implementeédithermore SOA interfaces
can be registered and integrated with the comp&eegice Oriented Architecture.
After the migrated packages are integrated withnéae environment the migration
process can be furthermore conducted incremerdaligan be finished at this point.

6.3 Software Evaluation

Software Evaluation

application size?
—— > Analysis of Application page flow - structure T
Strucutre x
l MVC Pattern?

Analysis of Application
Codes
]
| | |
Model code View code Controller code
- data access via SQL? In ASP code? - data validation via SQL?
->50L query count -» conversion -> reusable? .. see Model
->reusable? - data validation via COM?
+ :migration Is efficlent, through XSLT? -» .. sea Model
fast, well tested ->reuse - 3rd Party functionallties?
-: Inflexible, no DAOS, + :simple reuse of X5L -» encapsulation?
less extensible components + :efficient, fast
- : requires Windows
- data access via COM? JavaScript/CSS -= replacement/re-design?
-=reusable? ->reusable? + : Independent from
+ :encapsulation, efficlent, ->redevelopment? Windows
fast, well tested -: more complex/effort
- : less extensible
-=conversion/re-design?
+ :flexible, extensible
- :more complex/affort,
unavallablliity of source code
Cholce of migration
methods
->depending on project
requiremenits:

- flexibllity? extensibility?

- resources? time? costs?
human resources?

- Importance of the app. 7

- secondary requirements?

->depending on the software
state:
- application size
- source codes avallable?
- application structura?

Fig. 6.3.a : Software Evaluation

The software evaluation stage starts with the amalgf the application. It has to be
determined how big and complicated the applicaisotherefore the source code and the
Lines of Code (LOC) must be checked. After thisrstamalysis the structure of the
application must be analyzed. It has to be cheakedich form the application is linked
with its data model, e.g. oftentimes legdgystom Business Web Applicatidosind in
business departments are connected with a simpddake management system such as
Microsoft Access. As the data model usually relatethe complexity of an application,

it can serve as an indicator for the structure hif &pplication. As the size of the
application defines the migration strategy, it t&nalready decided at this stage whether

TU Dresden, Le Hai Dang 33

ASP to Java Migration 6.3 Software Evaluation

the application should just be redeveloped or thag, is the case when the application is
of smaller size and have simple complexity.

Of greater importance is the analysis of the MV@ponents of the legacy application.
It should be determined in which programming st{gee 13.2 MVC & Programming
Styles in ASP Web ApplicatiQrihie application was developed, whether it hasi>aedn
MVC style or if MVC components are strictly sepat In the following the MVC
components must be analyzed in which technology #Hre implemented. As for the
View components the most common implementationsoluer ASP, XML/XSLT,
Cascading Style Sheets (CSS) and JavaScript. Asah8RISP (the Java equivalent to
ASP) are quite similar in syntax and capabilitiésd XML/XSLT, JavaScript and CSS
are reusable in JSP, it can be said that the mgupiiew components from ASP to JSP
is rather trivial. The only aspect that has to balged is that whether View components
must be adapted due to company requirements (ew.aorporate design of portal
system), and following which components of the Viean be reused or converted
(adapted).

As for Controller components, in ASP Web Applicasothese components can be
implemented in ASP fragments which manage the obfibw of the application for
example by validating input parameters of the AS&yep request. In ASP Web
applications such validation is usually done byessing the data model either via SQL
gueries or COM. In the same manner Model compomantt be analyzed, whether they
are modeled via COM components (in an object cerbriorm) or modeled directly by
the data model (e.g. the data model stores sessiarorkflow data). In this sense the
guantity and complexity of SQL statements mustiedyaed, in order to decide whether
SQL statements can be reused to query data ornbededed via new Data Accessing
Objects (DAO) in the target system. Usually thisaishoice between better software
design (redevelopment) and migration effort (reuse)he case of COM components,
firstly it must be checked whether source codetheforiginal COM component exist or
whether the required COM components are develogednb3 party. In case that no
source codes are available COM components canbenlyrapped to be reused by Java
or be redeveloped. If source codes are availabke,GOM components can also be
converted to Java. Encapsulation is the most efficvay to migrate legacy codes to
Java, however this approach is less flexible inloimg run since functionalities must be
redeveloped in the Java wrapper classes (or changbd original code) if the company
request changes in the Model. This solution isetoee suited for cases where migration
must be conducted immediately and future changethenbusiness logic occur not
frequently. In the case of a conversion, the coreptswwould be more flexible and more
efficient, which is due to the absence of Java-@MCbridges. However the effort spent
to convert COM components to Java would be sigmifily higher. As the last
alternative, COM components can be completely reldged in Java. This solution gives
the most freedom in design, but requires the midgttdo migrate functionalities from
the legacy application. The choice whether it idtdseto encapsulate, convert or
redevelop COM components is dependant on the gnaggairements. As for example in
the case where COM components are not accepteldeaiariget server, encapsulation of
COM would be not a choice, therefore conversiomeglevelopment would be suitable

TU Dresden, Le Hai Dang 34

ASP to Java Migration 6.4 Object Modeling

for platform independent solutions. Additionally,riegard to 8 party COM components,
it must be analyzed which services (e.g. LDAP, Neddre etc.) could be wrapped by
Java or replaced by equivalent Java services.

Depending on the limiting factors costs, time, hamasources and project requirements
one can decide which approaches to follow and wtierdocus should be, which can be
either on efficiency (reusability or conversion) quality (redevelopment). In the
common case View components can be reused (JapgSXKIL/XSLT) and converted
(ASP to JSP), Controller components can be reuSéd. (COM) and converted (ASP to
Servlet) and Model components can be reused (SQM)C

6.4 Object Modeling

Object Modeling

Analysls of Business Objects
*—>»
and Functionalities
->analyze datamodel
Identify Business Objects - what is application logic
- what is master data
-> analyze external datasources
- is business data available in
structured form?
-> analyze business functionilities - as Web service?
- via specification documents Identify Business Pack- - or in different way? export file?
- via source code ages
- via use-case diagrams
-> derive business packages l
-> identify dependencies with other
Identify dependencies || applications
with other applications - define prototypical service-
l interfaces in business packages
Create a Coarse-Grained
Business Object Model

Fig. 6.4.a : Object Modeling

After the software evaluation stage the softwatethnical state is analyzed and well
understood, therefore one can decide which migratn@thods can be applied for the
parts of the application. However in order to brihg legacy system up to date, the
application structures must be modernized (appiinadf MVC pattern) and adapted to
the new enterprise environment (integration withA3Q herefore the task in this stage is
to analyze the functionalities of the legacy systamd to identify business objects and
functional modules. Thereby business objects ar#ie=n on which the application
operates.

TU Dresden, Le Hai Dang 35

ASP to Java Migration 6.4 Object Modeling

Business objects are essential entities in an bbjéented application structure, which
is necessary in the migrated application in ordebé flexible and extensible for future
requirements. Because oftentimes legacy applicatame not object oriented and not
flexible, as they do not have an object orientesifess object model and do access data
structures via SQL queries onlgee Fig. 3.1.b : ADO.DB example in ASR is
necessary to map the underlying data model to gcobriented model at application
level. Therefore one has to analyze the applicatioaster data tables of the data model
and retrieve business objects from this informati©therwise, when COM components
are used to access the data model, COM objectstbdeeanalyzed. The goal of this step
is the generation of a coarse grained businesstaimjedel that is object oriented in order
to cope with future changes and demands more fiexib

When business objects have been identified andsia basiness object model has been
generated, business packages must be defined.eBsgiackages are functional modules
that group a set of related functionalities togetii@is can be done by analyzing the code
of the legacy applications, but as well by studyspgcification documents and use case
diagrams, if available. The purpose of this stepoiglefine packages that are loosely
coupled with each other so that they can be migraterementally (as far as possible) in
the later migration stages. Additionally the gsata allow the packages to be exposed as
SOA-based interfaces for the common reuse of fanatities.

Tight Coupling

ASP application PHP application

PHP/COM
Bridge

COM component ““\»O «— PHP class

COM/Java Q O Java/PHP
Bridge Java Application Bridge

N e
Java Class

Fig. 6.4.b : Tight coupling between Web applicatios

Since the goal of the migration process is to redneterogeneity and dependencies
between applicationsé¢e Fig. 6.4.b : Tight coupling between Web appboa), it must

be identified which functionalities are being ud®d external systems. The goal is to

define business packages for these functionalitied, expose them as services (as Web

" In the context of Web applications, object orieiotats often applied for the representation of Hate
entities in a structured manner. Object orientatibrihe business object model is a requirementtier
application to return data entities in a reasonaidaner in SOA interfaces.

TU Dresden, Le Hai Dang 36

ASP to Java Migration 6.5 Software Post-Documeartat

services) in an SOA-based manner, so that thosecesrcan be integrated into the
Service Oriented Architecture in order to be reduaad accessible in a more uniform
way. This will improve efficiency of the company$T infrastructure as less
middleware/bridges have to be maintained. As desdriin 1.2 Problems of
Heterogeneous Environmenta problem ofCustom Business Web Applicatioiss
redundant or inconsistent data. This was causeitidysolated development of systems
and inappropriate methods used for data transterth(ss data file transf@rCOS, see
Fig. 7.1.c : TICOS data export via files'hese problems should also be addressed in the
creation of a business object model during thetifieation of business objects, thereby
it must be identified which data are being importedexported. It should be denied to
store global master data locally or redundantlyudlly a company’'s SOA-based IT
environment is based on a central interaction @iatf(the portal system) and a central
data provider, which provides integrated systemgh wommon master data such as
employee information/business department codestletcefore these kind of data shall
not be stored locally. Therefore legacy data tensfechanism shall be re-defined and
modernized if possible, in this cases the commtioicdbetween departments is essential
to be able to design appropriate interfaces forrmomdata exchange and common data
structures.

In summary, the overall goal of this stage is tkaagation of a coarse grained business
object model and related business packages. IthHegurpose to solve problems of

heterogeneity and redundant data in the legacyr@mwvient and is aimed to build a

foundation for the later refinement (e.g. defimtiof Web service interfaces, methods

etc.) of the business object model in the lateigieand implementation phases.

6.5 Software Post-Documentation

Post-Documentation

Use-Case Diagrams

!

Document Functionalities

tsin S Cod
of the legacy application £ommentsin Source =

‘document mapping of

*——>
X ﬁlncllon;ﬂil:asgtgsbuslness

Document MVC

document the mapping of components

MVC components

h

document control flo
Document Page Flows

document data flows

I

Fig. 6.5.a : Software Post-Documentation

In the Software Post-Documentation stage, the g®ato document the technical
characteristics of the legacy application in ortesupport the implementation phase of
the migration and improve the understanding of légacy application for all team
members conducting the migration. Therefore theistd@ts made and components

TU Dresden, Le Hai Dang 37

ASP to Java Migration 6.5 Software Post-Documeartat

identified in the software evaluation process mustdocumented. This can either be
done in specification documents or in the sourcdecof the application. Important
aspects that must be documented are MVC comporagnisbusiness functionalities,
especially those that are subject to be expossdrage interfaces. In the documentation,
Model, View and Controller code fragments must inguishable by comments and
tags. Furthermore it should be made apparent hesetlcodes will be dealt with in the
implementation phases of the migration as availaptens were already discussed in the
software evaluation stage. The 3 options that avaeilable for migration are
redevelopment, conversion and encapsulation/rethseefore the application of these
options on application components, must be docuadent a document such as in a
specification document.

TU Dresden, Le Hai Dang 38

ASP to Java Migration 6.5 Software Post-Documeartat

<%
‘ViewMemberList.asp
Response.ContentType="text/xml"

‘MODEL PART — implement connects to DB and gets all Members
Dim sConnection, objConn, objRS ‘ODBC Objects
sConnection = “DRIVER={Microsoft OODBC for Oracle}; " &

“SERVER=localhost; DATABASE=ticos;” &
“UID=root;PASSWORD-=;"

Set objConn = Server.CreateObject(“ADODB.Connection ")
objConn.Open(sConnection)
Set rs = objConn.Execute("SELECT member_id, name, f irstname” & _

“FROM 'tbl_members”)

‘CONTROLLER PART - creates and maps the model data to the XML
‘and pass ‘control relevant Data if necessary
xmlString = “<?xml version="1.0" encoding="UTF-8'?> " &

“<?xml-stylesheet type="text/xsl' “ & _
“href="viewmemberlist.xsl'?>"

Response.Write(xmlIString)
Response.Write("<Members>")

do until rs.EOF

Response.Write(“<Member>")
for each x in rs.Fields

Response.Write(“<” & x.name & “>" & x.value & _
“</” & x.name & “>"
next
Response.Write("</Member>")
rs.MoveNext
loop

Response.Write("</Members>")
%>

Fig. 6.5.b : Example of source code documentation

In addition to the documentation of MVC componeatsd migration methods, the
functionalities of each component must be docunigntehey are not already done by
the original developers. Since the migrationfstom Business Web Applicatipms
context of an integration to a SOA-based IT enviment and portal platform, involves
additional functionalities (e.g. portal integratisia Single Sign On or Web service
definitions), those functionalities must be docutednin any case in the software post-
documentation stage.

TU Dresden, Le Hai Dang 39

ASP to Java Migration 6.6 Object Refinement

By the end of this stage, the result will consisa®pecification document, which gives
information about functionalities and functional dodes of the legacy application and
new functionalities required by the requirements tok company. Additionally
documentation at source code level is availablewhelps to identify MVC components
for the mapping components during the implementgpioase. In the following stage, the
object refinement stage, the documentations wip be refine the business object model
and to design interfaces.

6.6 Object Refinement

Object Refinement

Choose a Defined
Business Package

y

Map ASP Page Flows to
Java Application
Structure

map a mixed pageflow to
JavasServiet/ ISP

A

Map MVC components to
Java

| |

Java Classes Java Serviets

Jsp

-encapsulate COM objects
in business objects
->define a business package
class

classas
-» define a business package
class for business functions

- reuse SQL -» conversion/redevelopment - conversion to Serviet -= conversion from ASP to JSP
- define 50L container class of data access - map controller - reuse of X5LT
- delegate function calls to - refine business object componants to Serviats
S0L queries miodel - access datamodel via
- define additional - use Object-Relational- business objects
oo-gueries for business Mapping for business - 3rd Party COM
objects objects components
-»encapsulation of COM -= conversion/redevelopment - reuse via Java/COM bridge
business objects of COM components - replacement via similar
-define Java/COM bridges - define appropriate Java Java services

- redevelopment via own
classes
- design data flow from
between components if

- contains business
functions

necassary

™~

Design & Refine Service
Interfaces

- expose business functionalities
in business package classes

Fig. 6.6.a : Object Refinement

At this stage of the migration process, the legapplication will be prepared to be
migrated. Starting from this stage the legacy a&apbbn will be migrated in an
incremental cycle by migrating functional packageackage by package. The goal of
this stage is to refine the business object maifined in the object modeling stage,
with the purpose to modernize the application aoldesthe problems related to the
legacy technologies.

TU Dresden, Le Hai Dang 40

ASP to Java Migration 6.6.1 Vertical Migration ¥orizontal Migration

6.6.1 Vertical Migration vs. Horizontal Migration

As an incremental migration strategy, the vertiogjration strategy is suited at best for
the purposes ofCustom Business Web Applicationigration, since it allows the
application to be separated into functional packagel to be deployed in parallel to the
legacy application. The advantage of vertical ntigrais that, it separates the migration
process into incremental cycles in which small pggs can be migrated and tested
incrementally. In comparison thieg bang it is more flexible and less error prone during
the migration process, since thig bangapproach migrates applications in an all-at-once
manner which is attached with higher risks. Whhe horizontal approach is also an
incremental migration strategy, it can not be aplivell to Web applications, since
different technologies in Model, View or Controlleomponents (such as a combination
of JavaBeans, Servlet and ASP) will cause incorbpiéies and introduce additional
work. This is the case when for example a Servigtiance wants to pass its session data
to a ASP view component. For this reason the maisalde migration strategy for the
migration of Web applications is the vertical agmb, where Model, View and
Controller components of a functional package Wi migrated and tested in one
migration cycle.

In a related work, Jeenicke has also applied thrécaé migration in his approach and
concluded from his experience that it was “quiteyetd integrate rewritten parts with
each other” [Jeenicke p.13]. However this can netdeneralized, as the migrated
functional components may have complex dependenitts each other. This aspect
leads to a main deciding factor which affects ttieiency of vertical migration, which is
how to separate business packages from each dthan ideal case the packages are
independent from each other, so that the migradioane package can be viewed as a
complete process. On the other side, if packages Hapendencies to each other, the
packages have to be implemented with temporarysstalihat packages can be migrated
and deployed. Following the process those stubse hev be changed to real
functionalities when the dependent functions arailable. Therefore it is a task of the
implementation and integration phases to handlb puablems.

6.6.2 Model View Controller Structure

The MVC components in an ASP-based Web Applicathust be mapped to appropriate
technologies on the Java platform. As a possiblefigoration, a combination of
JavaBeans, Servlet and JSP is considered as thesotable solution for the direct
migration of ASP-based Web applications. While Jaaaeworks such as JSF [JSF],
Seam [Seam] etc. provide a modern workflow for Vdelselopment, they add additional
complexity to the migration process, which will ne¢ dealt in this paper. Therefore
JavaBeans, Servlet and JSP will be used to mapaqot ASP components, as the direct
mapping of those technologies is simpler as whetaice framework mechanics are
involved additionally. As a result the object refment stage is focused on the design and
refinement of components in the named technologibsreas JavaBeans will be used for
Model components, Servlet used for Controller congmts and JSP used for View
components.

TU Dresden, Le Hai Dang 41

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

View

JSP

Fig. 6.6.2.a: MVC structure in Java

Model { (Controller
| |

6.6.3 Refinement and Design of MVC Components

In the software evaluation stage the legacy compisneere analyzed and in the object
modeling stage a new coarse grained model waseatkfithe goal of this stage is to

combine the information and to refine the busir@gsct model (of the chosen package)
and design the MVC components involved with it.akslyzed in the software evaluation

state, the possible migration methods for differeainponents are dependent on the
software state of the legacy application and tloget requirements.

Depending on the programming styles of ASP Web iegjpbns ee 13.2MVC &
Programming Styles in ASP Web ApplicatipidVC mappings of legacy applications
follow different designs at this stage. In the doling the different refinement and design
scenarios of MVC components will be described ddpgnon programming styles that
may occur in ASP applications.

TU Dresden, Le Hai Dang 42

ASP to Java Migration

6.6.3 Refinement and DesigdlVC Components

ASP Style Felys Model View Controller
Structure
» Model, View & | *« No object « Data entities from| « Control flow is
Controller oriented business| Model are based on SQL
elements are object model presented with queries to the data
mixed together | « Business ASP and HTML model or with
Completely within an ASP functions in one COM objects
Mixed MVC file page with other * External
components functionalities with
« Data access via 3 party COM
SQL components
 Business * No object « Data is presented| ¢ Control flow is
functions are oriented business| in a separated based on SQL
mixed with object model ASP page with queries to the data
control flow « Business SQL queries model
Separated View functions in one functioqs inone | Viev_v_can be . Exter_nal N _
page page with Control| additionally functionalities with
*View is components separated with 3 party COM
separated to a | « Data access via | XML and XSL components
dedicated page| SQL queries files
 Business «COM « Data is presented| ¢ Controller pages
functions are components in a separated manage control
separated into | access data model ASP page with flows of the
COM * Business SQL queries or application based
Complete components functions are COM DAO on input
Separation of | ¢ Control flow implemented in | ¢ View can be parameters and
MVC functions are COM additionally business logic
separated from| components separated with « Control flow is
View pages « Data access via XML and XSL managed in
* View is COM DAO files separated files
separated

Fig. 6.6.3.a : MVC-styles in ASP applications

Completely Mixed MVC Style

In a completely mixed structure of an ASP applmatithe data access is usually realized
via inline SQL queries. In such a structure, theractually no Model or object oriented
business object model existent, therefore the datards returned from such queries
must be mapped to object oriented business objegisssible. Like the Model the
Controller and View code is implemented with a comabion of ASP and SQL queries.
In order to migrate such an application structareéatmodern SOA-based environment,
the applications structure must be mapped to a Nbe§ed design and provide an object
oriented business object model. This can be done rdwysing, converting or
redevelopment of components as analyzed in thevaddt evaluation stage. In the
following the different migration methods for eamtmponent will be described.

TU Dresden, Le Hai Dang 43

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

Encapsulation

The most efficient way to migrate SQL statementki¢tv involves Model, View and
Controller) is to reuse the statements completslyhey are, since the statements are
already well tested in practice. The idea is toyctgese SQL queries to a central Java
class from where Model, View and Controller compusecan call those queries like in
the way they were used in the legacy applicatianweéler the result set of queries which
return attributes of a business object (or a séiusiness objects) should be objectified if
possible, which means that the containing Javaschasst provide a method which
returns the results of the query as a businessiotyjee 6ee Fig. 6.6.3.b : Wrapping of
SQL queries — Model compongnt

TU Dresden, Le Hai Dang 44

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

<% 'Sample ASP code - EditMember.asp

'get Parameters

Set member_id = Request.Form("member_id")

query = “SELECT member.name, member.lasthame FROM m ember” &
“WHERE member.id =" & member_id

Set results = adoConnection.execute(query)

... write results to HTML/XML ...
%>

/ISQL Query wrapped as method in Java

public QueryList{

public static Member edit_member_asp_queryl(int member_id){

String query = “SELECT member.name, member.la sthame” + i
“FROM member WHERE member.id =" + member_id; !
ResultSet rs = jdbcConnection.execute(query); i

Member member = new Member();
member.name = (String) rs.getValue(0);
member.lastname = (String) rs.getValue(1);
return member;

<% //The JSP View - EditMemberView.jsp

/lget Parameters
int member_id =(int)this.getRequest.getAttribute(“member_id");
Member m = QueryList.edit_member_asp_queryl(member_ id);

... write results to HTML/XML ...
%>

Fig. 6.6.3.b : Wrapping of SQL queries — Model compnent

However those kind of design, would only apply ©QLSqueries that result in attributes
of a business object. For SQL queries that reautlifferent values of different business
entities, such as in the following:

TU Dresden, Le Hai Dang 45

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

<% 'ASP Sample — sample.asp
'Controller code

Dim member_name, role_name

query = “SELECT member.name, role.name” & _
“FROM member INNER JOIN role” &
“ON member.role_id =role.role_id" & _
“WHERE member.member_id =" & member _id
Set rs = ado_conn.execute(query)

... member_name = rs(0).value ...
... role_name =rs(1).value ...

if role_name = "manager" then
... Manager Code ...
End if

if role_name = "employee" then
... Employee Code ...

End if

%>

/[Controller mapped to Java Servlet

public class Sample_ASP_ControllerServlet extends H ttpServiet{
void doPost(HttpServiletRequest request, HttpServle tResponse
response) throws ServletException, IOException

{... get Post Parameters ...

ResultSet rs = QueryList.sample_asp_queryl(member_i d);

String member_name = rs.getAttribute(“member.name”) ;
String role_name = rs.getAttribute(“role.name”);

if(role_name.equals(“manager”))
{... Manager Code ...}

if(role_name.equals(“manager”))
{... Manager Code ...}

Fig. 6.6.3.c : SQL queries in Controller component

The result set of the query can not be objectifiad must be used as it is. This kind of
SQL query is typical for SQL statements of Cone&olcomponents. Therefore those
gueries will be reused in Java Servlets of theetagpplications often. As mentioned
before, this way of reuse is the most efficient waymigrate SQL components. The
advantages are that, SQL calls from the legacyi@imn can be mapped to MVC

components of the target application very easilithout any redesign of queries and

TU Dresden, Le Hai Dang 46

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

function call structures. Additionally it provides semi-object oriented programming
style to the application, since business objectsigs return the actual objects instead of
data records. This can be used when implementindg $terfaces where object
structures must be returned.

As Controller components may utilize external fimealities provided by "3 party COM
components, those components must be encapsulatdeeio functionalities must be
redplaced by equivalent Java components (redevelopareeplacement). Conversion of
3" party components is not feasible, since those oments are only available in binary
form. The only way to convert COM components withthe original source code is to
re-engineer the binary files, but this would beléas efficient then wrapping components
into Java classes. In the following a target defigriegacy components to a MVC based
Java design is presented.

* ASP
reuse (Model)
—
(Controller } conversion
conversion N
View
ISP
v / \ b
Model N Controller
BusinessPackage- SQLQuerylist Serviet
Class
calls business functionalities
COMWrapper N L
v
BusinessObject1 BusinessObjec2
\ 3 =/
—>»(COMClass

Fig. 6.6.3.d : Target Design with encapsulated legg components

As business functions, control flow functions anésgntational functions are mixed
together into a single ASP page, those 3 compomeait be separated from each other
and stored separately in different files. View caments in a mixed MVC style
application are implemented with ASP, thereforeytban be mapped to JSP as both
technologies provide a set of very common tags.eGbdt manages the control flow in
legacy applications will be mapped to Java Seryvhtsere SQL statements and COM
components are wrapped into Java classes whiclv a@lmearly equivalent style of
programming as in the original state. Those coetaamd wrapper classes can be called
from any layer (Model, View, Controller) of the digation, therefore the original

TU Dresden, Le Hai Dang 47

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

function call structures of the legacy applicatwiti remain. Model components, such as
business objects and business functionalities weae implemented in the same ASP
pages with Controller and View elements must be padpto Java classes and Java
packages. As the vertical migration strategy ermges the migration of functional
packages (modules), it is appropriate to definehsa@ackage as a central Java class,
which contains the business functionalities of mfredule. In regard to business objects,
the corresponding data structures must be mappéaavio classes, in order to provide an
object oriented way to work with business objects.

Conversion & Redevelopment

In the design approach based on reusability, tleeisfas set on efficiency and fast
migration of legacy applications. This approacltsusted for complex and unstructured
applications, as most components (SQL, COM) carebsed by encapsulation and used
in a similar way as they have been used in theclegaplication. However the resulting
design of such an approach may not be flexible ertknsible from the modern
perspective of Web development, as there is no tmpbject orientation behind the
design. As an example, when reusing SQL stateminaie is no way to access business
data in an object oriented way such as:

i /[As Java Code

! //Object oriented business object model
: Project p = member.getProjects(0);

: Customer ¢ = p.getCustomer();

Fig. 6.6.3.e : Object oriented calls on the data niel

The reason behind this lies in the SQL statemdmatsdre used in the ASP applications.
In the example above, the query to fetch@ustomerfrom theProjectwhich is assigned
to aMember is split into 2 object oriented method calls. Hwer in practice, such kind
of query is not separated in the ASP applicatioheréfore when reusing SQL
statements, the whole statement is encapsulatedaidava containment claseé¢ Fig.
6.6.3.9 : Encapsulation of SQL statemgnts

TU Dresden, Le Hai Dang 48

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

'ASP CODE

'Query for Customer with 2 parameters member_id and project_id
Dim query

query = “SELECT * FROM customer WHERE customer.id = " &

“WHERE project.id =" &

“(SELECT member_proTects.p_id FROM member _projects” &_
“WHERE member_projects.member_id =" & mem ber id“ &
“AND member_projects.project_id =" & proj ect id &))"

i “(SELECT project.customer_id FROM project” & _

Fig. 6.6.3.f : SQL statement with subqueries

As a result the encapsulated data access metha@inem the procedural form.

/l[Java CODE
/IReuse of SQL queries

Customer ¢ = SQLQueryList.getCustomer(member_id, pr oject_id);

Fig. 6.6.3.g : Encapsulation of SQL statements

A solution to this problem is to convert and redepeSQL queries found in the legacy
application. This approach would allow the targeplecation to be more flexible and
extensible to future changes, however it is lefisieft and slower as the encapsulation
approach. Following such migration approaches ew@ngle SQL query must be
analyzed and mapped one by one. In such a cadmuiigess object model designed in
the object modeling stage, will be refined with hoets that allows such objects to query
its relationships with their neighbors. Therefarshould be mentioned that it would be
equally efficient to design business object clabss®d on an Object Relational Mapping
framework such as Hibernate, if the data modemallguch a design. As in regard to
business functions, such kind of combined SQL @sedan also be found in business
functions of legacy applications. In such casesSfd queries can be analyzed and be
replaced by object oriented calls from busines®abj In the following the migration
mapping for mixed ASP applications based on comwerand redevelopment will be
presented.

TU Dresden, Le Hai Dang 49

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

*.ASP

conversion/redevelopment. @
)
conversion

Controller

View

conversion

JsP

Model N Controller

BusinessPackage- Servlet
Class

calls business functionalities

BusinessObject! BusinessObject2

N /

Fig. 6.6.3.h : Conversion and Redevelopment
Separated View Style

Comparable to ASP applications that are implememeadmixed MVC style, this kind of
applications have a similar structure of Model &whtroller components. As Model and
Controller components are usually implemented a1ghme ASP file and are based on
SQL queries and®party COM components, the possible migration mashemain the
same as with the mixed MVC kind of applications,ichhare either encapsulation of
SQL and % party COM components or conversion/redevelopméSiQL queries in the
business object model. The difference between thoge styles lies in the View
component, which is separated into a dedicatedirilthis kind of style. As like with
Model and Controller components, View componentshia kind of style may or may
not be reusable, depending on the way how theyinapéemented. In the first regular
form View components can just be implemented watputar ASP tags, such like in the
following example:

TU Dresden, Le Hai Dang 50

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

<htmlI><body>
<% 'View component, get result data from Controller components
'which are appended to the session object

1
1
1
1
1
1
1
|
i Set membernamelList = Session(*membernameArray”)
i For membername in membernameList
: Response.Write(“<h1>Membername: </h1>" & memberna me & “
</br>")
1 next
i %>
; </body></html>
1

1

1

1

Fig. 6.6.3.i : View component in ASP

When this form is encountered the only migratiorthod available is to convert the ASP
page to a JSP page. Following the example abovd3Repage would be mapped like
this:

<htmlI><body>
<% //View component, get result data from Controlle r components
/lwhich are appended to the session object
/IMember is migrated to a JavaBean structure
ArrayList<Member> memberList =
session.getAttribute(“memberArray”);
for(Member member: memberList){
%>
<hl1>Membername: </h1> <%= member.name %>
</br>

<% } %>

</bodv></html>

Fig. 6.6.3.j : View component converted to JSP

In the second form View components can be separatech XSL part. In such a case,
the mixed Model/Controller page will return the alatcords in an XML structure (goal
is the structuring of those data records) which kel processed via XSL Transformation
to a HTML page.

TU Dresden, Le Hai Dang 51

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

<html><body>
<% 'sample.asp
'Data is fetched via SQL query
Dim xmlString
xmlString = "<?xml version='1.0" encoding="ISO-8 859-1'?>" &
"<?xml-stylesheet type="text/xsl' href="'sample.xsl 2>
Response.Write(xmlIString)

Set rs = ado_conn.execute(query)
Response.Write(“<Members>")
Forxinrs
Response.Write(“<Member><name>" & x.value & “</n ame></Member>")
next
Response.Write(“</Members>")

%>
</body></html>

<!l-- sample.xsl -->
<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html><body>
<h1> Memberlist</h1>
<table>
<xsl:for-each select="Members/Member">
<tr><td>
Membername: <xsl:value-of select="name" />
</td></tr>
</xsl:for-each>
</table>
</body></html>

Fig. 6.6.3.k : Sample of ASP & XSLT

Since XSLT is not dependent on ASP, the View comepbican be reused as it is in the
target application. This solution is the fastest arost efficient solution to migrate View

components. However the generation of the necesSlly structure must be mapped

from the legacy applications ASP pages to the taagelications Java Servlet. In the
following the design and mapping of View componenmii be presented.

TU Dresden, Le Hai Dang 52

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

* ASP * ASP/*.XSL

Controller

View

reuse
conversion
redevelopment

conversion

JSP/XSL

reuse
conversion

N

Model Controller

BusinessPackage-
Class

Servlet

__calls business functionalities

4
BusinessObject] BusinessObject2

NG /

Fig. 6.6.3.1 : Target Design with separated View
Separated MVC Style

In ASP applications where a strict separation of BA8bmponents is applied, the object
model and business logic is implemented by COM ammepts. Through this design

Controller and View components of legacy ASP agpions can make use of an object
oriented design of the object model. Usually Cdigracomponents are implemented in
separated ASP pages that validate incoming valtiesqoiests and manage the control
flow of the application. View components can be lienpented in dedicated ASP pages or
in separate XSL files.

The fastest and most efficient migration method flois kind of applications is a
combination of encapsulation of COM componentsha Model, conversion of ASP
pages and encapsulation of SQL statements in thetr@ler components and a
conversion or reuse of View components. Followimg thethod, business objects should
be designed in such a way that they encapsulateedfeivalent COM objects. By this
design, methods of the business object can deldbate functionalities to the COM
object or implement new functionalities by their mwrurthermore object creation and
destruction of the business object should be ad¢egdted to the COM object, this allows
the business object to be used transparently froynla@cation. Additionally business
functions can be encapsulated into business padtagges, by the same pattern.

TU Dresden, Le Hai Dang 53

ASP to Java Migration 6.6.3 Refinement and DesigdlVC Components

/[Encapsulation of COM components

class SampleClass{
private COM_sampleClass com_sampleClass;

public SampleClass(){
com_sampleClass =
COMWrapperClass.create(* COM Sanmpl eCl ass™);
}

public String method(){
return com_sampleClass.method();
/lotherwise functionalities can be adapted

}

public void newMethod(){
/Inew functionality can be implemented here

Fig. 6.6.3.m : Encapsulation of COM business objest

As an alternative to encapsulation, COM componeatsbe converted or redeveloped to
Java, if the original source code is still avaiéabh case of conversion, when source code
is available, COM components can be implementedifbgrent programming languages.
Therefore it would exceed the scope of this papeddscribe the conversion of COM
components in detail. However, when source co@wadlable, the conversion can either
be done manually or automatically via code converteom various programming
languages to Java. Through automatic code conwvetbm structure of the legacy code
will be maintained therefore it can be disadvantageif the original code was
implemented in a procedural style. Hence it woudd deneficial to convert the code
manually and map the procedural functions to obgeiEinted classes. In the following
the possible designs for the target applicatiomcstire can be found.

TU Dresden, Le Hai Dang 54

ASP to Java Migration

6.6.4 Design of Service riaiges

*DLL *ASP/*.XSL * ASP
Coa D) | | =
reuse

conversion . conversion
redevelopment View
JSP/XSL reuse
conversion
L v
Model Controller
BusinessPackage- Servlet
Class
calls business functionalities

Lo

BusinessObject]

\ /

BusinessObject2

Fig. 6.6.3.n : Target Design for separated MVC
6.6.4 Design of Service Interfaces

At the last step in the object refinement stage, dhalysis and design of SOA-based
interfaces will be conducted. In order to desigterfaces suitable for the Service
Oriented Architecture it must be analyzed if thpased interfaces should be fine grained
or coarse grained, this is usually defined by thgany’s IT-policy and hence should be
considered in this step. Additionally it must bealymed which functionalities must be
exposed explicitly according to the primary regoiest of the company, which states
that SOA-based interfaces must be provided to eedihe dependencies between
applications ¢ee Fig. 1.2.a : Tight coupling of applications @& heterogeneous
environmen{IBM SOA]). Therefore it must be analyzed if busés functions are being
used by external applications. This can happen detwapplications that reside on the
same server and reuse functionalities via a COMpaorant of the actual application, but
also via middleware that access the COM comporenbtely or via DCOM<gee 4.1.4
Component Object ModelAs a remainder, the technology of choice for lengenting
SOA-based interfaces is Web services, Web Senpoagide loose coupling between
applications in comparison to similar technologeesh as DCOM [Web Service vs.
DCOM].

After the analysis on dependencies with externalliegtions is done, the respective
interfaces can be designed. As already mentionedgthnularity of such functions is
dependent on the requirement of external applicatimut also on the IT-policy that the
company follows. Therefore the ideal design is @ise interface, which can be reused
by all dependent external applications and provtasential uses for future applications.
In respect to the location, service interfaces khbe provided via the business package

TU Dresden, Le Hai Dang 55

ASP to Java Migration 6.7 Software Implementation

class. In regard to the functionalities reused hmy business package methods, such as
COM methods or SQL queries, service interfaces bancomposed of multiple
functionalities or just encapsulate a single fumttiand expose them as a service
interface. In the following illustration the desigsf SOA-based interfaces will be
presented.

Remote Call /_ Model \

BusinessPackage- 5QLQuerylList
Web service Class

Interfaces delegates Ly
| COMWrapper)

BusinessObject1 BusinessObjec2

\
¥
COMClass

Fig. 6.6.4.a : Service Interface design

/

6.7 Software Implementation

In the software implementation stage, the chosexkggge will be migrated. Therefore,
depending on the design and refinement made duhegobject refinement stage,
components of the legacy application will be mappedhe new target design. The
conduction of migration is done manually, by comwvey ASP code to Java, reusing SQL
gueries in Java classes and mapping ASP files M\V&-based file structure. In the
following the conduction of migration will be preged.

6.7.1 Mapping of ASP files to Structures

As analyzed in the software evaluation stage asyded in the object refinement stage,
the ASP applications page structures must be matagpddva classes, Java Servlets and
JSP pages. This has to be conducted in this stagecordance to the design from the
object refinement stage. This means that the epéigeflow of the chosen package must
be mapped manually to the target structures, uiagsame mapping pattern that was
identified in the object refinement stagee¢ 6.6.3 Refinement and Design of MVC
Componentis This step has to be done in the beginning tateréhe package structures
that will lead to migration. In the following an @xple of such pageflow mapping will
be presented.

TU Dresden, Le Hai Dang 56

ASP to Java Migration 6.7.2 Business Package @ld3seryList class

editMember ASP viewMember.XSL deleteMemberASP
‘edit’ ‘delete’
e
‘return” ‘return’
b Rl

View

viewMember.XSL

Model

EditMemberServiet DeleteMemberServie

MasterDataPackageClass

Member

Fig. 6.7.1.a : Example of pageflow mapping from ASk Java
6.7.2 Business Package Class & QueryList class

Independent from whether certain components wiltdaesed, converted or redeveloped,
a business package class must be created for tisercimigration package. This business
package class acts as a central class that propatEsge related business functions to
the application and other applications. Therefoeeldusiness package class will not only
contain business functions but also interfacesotormunicate with external applications.
During the implementation step, the business paekaass will be filled with business
functionality methods.

The second class which becomes necessary (whem&€)ies are used) is the QueryList
class, which encapsulates SQL queries of the legpplication. This class will contain
all the SQL queries that are used by the legac)iagion, if it was decided to reuse all
the SQL queries that are existent in the legacyiGgmn. Model, Control and View
components can use this class and business olo@ctslelegate their object oriented
method calls to appropriate SQL queries when nacgs$herefore the work to do is to
copy all SQL statements existent in the migratiackage to the QueryList class.
Following for each SQL statement, a method willgemerated which executes the SQL
guery on the database. In order to provide functatls from everywhere of the
application, the QueryList class will be implemeht&s a Singleton [Singleton]. Since
there may be a large number of SQL statementseeigt the migration package, SQL
gueries and corresponding methods must be namedsimuctured way. The naming
convention of those method will help to map SQL reeseof the legacy application to
function calls in the new application. TypicallyetQueryList class could be like this:

TU Dresden, Le Hai Dang 57

ASP to Java Migration 6.7.3 Mapping of Model code

/[Encapsulation of SQL Queries
/IQueryList class as SingleTon
class QueryList{

private static QueryList instance;
private HashTable<String,String> querytable;

private QueryList()}{

this.querytable = new HashTable<String,String >();
duerytable.put(“viewMemberList_asp_sqIQueryl” , SQLQUERY1);
guerytable.put(“viewMemberList_asp_sqglQuery2” , SQLQUERY?2);
querytable.put(“viewMemberList_asp_sqlQuery3” , SQLQUERY?3);
}
public static QueryList getinstance(){

return instance;

}

public List<Member> viewMemberList_asp_sqlQueryl 0

{
ArrayList<Member> memberList = new ArrayList<M ember>();
String query =
this.querytable.get(“viewMemberList_asp_sqlQu eryl”);

ResultSet rs = jdbc_conn.execute(query);

Return memberList;

: if(instance == null) instance = new QueryList 0;

Fig. 6.7.2.a : Example of QueryList class

Unfortunately this step can only be done manually/,an automatic tool has yet to be
developed for this task. Therefore SQL files mus¢ &y one extracted from the ASP
pages and copied to the QueryList class.

6.7.3 Mapping of Model code

The procedure how to migrate legacy Model codesotwesponding business objects,
begins with the look up for annotated Model elersentthe ASP pages. Following the
code fragments identified as Model components bélimigrated. However this depends
on the migration methods and design of the Modehmmnents. In case the code
fragment contains SQL queries, and SQL queries aieeady copied into the QueryList
class, the code fragment can be mapped by callmegréspective function of the
QueryList class. In case the code fragment is atedtas part of a business object, such
as a sequence of SQL queries to retrieve a cedt@im entity relative to the business

TU Dresden, Le Hai Dang 58

ASP to Java Migration 6.7.3 Mapping of Model code

object, the code fragment will be mapped to thertass object, which is implemented as

a JavaBean class. The code fragment itself wilinla@ped as a method of the business
object class, which calls the sequence of the Sqgrigs via the respective method of the
QueryList class. On the other side when the modelecis identified as a business

function, the code fragment will be mapped to ahwétof the business package class,
such as:

<% 'evaluate_cost.asp Funct i onNane
'‘Business Functionality: Evaluates the Estimate Co stsof a
'Project at a given Date

project_id = Request.Form(“project_id")
date = Request.Form(“date”)
'mapped as queryl
queryl = “Select project.type FROM project” &
“WHERE project.id =" & project_id
Set rs = ado_conn.execute(query)
...get project Type
If project_type = “typeA” Then
'Get Resources of the project
query2 =*“.."
‘calculate the estimated cost at given date
"Write as XML structure
Response.Write(“<Evaluation><Materials><Cost>" & mat c &
“</Cost></Materials></Evaluation>")
EndIf

/las SingleTon
class BusinessPackagel1{

... SingleTom implementation ...

public static Evaluation

evaluate_cost_asp_ Funct i onNane(Project p, Date atDate){

String projectType = QueryList.evaluate_cost_a sp_queryl(p);
if(projectType.equals(“typeA”)){

List<Resources> rL = QueryList.evaluate_cost_ asp_query2();

/Icalculate the cost

Evaluation ev = new Evaluation;
ev.materials.cost = mat_c;
return ev;

i "End of Business Function

Fig. 6.7.3.a : Mapping of Business Functions to Jav

In a different case, when COM components are imptesd instead of SQL queries, the
business functions of the components should be athpp the business package class,

TU Dresden, Le Hai Dang 59

ASP to Java Migration 6.7.4 Mapping of Controltede

and database access functions should be mappéé twusiness objects. There are two
options how COM components can be migrated, whiehcanversion/redevelopment or
encapsulation. In the first approach, the sourcke af the COM components has to be
mapped to Java. This can be done manually or atiaitp. Manual and automatic
conversion of COM codes to Java will not be diseddsy this paper, however it must be
done in that way that business functionalities &hdae converted to methods of the
business package class, and data access objge@Mnhshould be converted to business
objects.

On the other hand, when COM components should lapsalated in Java classes,
encapsulation can either be done manually or autoatig. In the manual approach the
COM class must be wrapped by the Java Native buter{IJNI). By this solution, a Java
class must be created, which calls the COM meth@dsative functions, the procedure
is complex as a Java-to-COM bridge has to be aleatieich calls the native functions of
the COM component. By this method the Java class implement native functions that
access stubs of the Java-to-COM bridge, whichfiteeist be implemented in a native
programming language [Ullenboom]. Fortunately a enefficient way to encapsulate
COM components into a Java class exists. The CO&pmar tool, called “COM4J”,
provides such functionalities by default and createtomatically Java-to-COM bridges,
which can be used to call COM functions from a Jelaas $eel7.14.2.2 COM4)J The
resulting Wrapper classes can then easily be astegs regular Java classes and
therefore should be encapsulated into the busigissts and the business package class
to make the reuse of COM components transparent.

6.7.4 Mapping of Controller code

The next step in the implementation involves thgration of Controller elements to Java
Servlets. The procedure begins with the look upGontroller elements in ASP pages
and the separation of Controller components todicdeed Java Servlet. Therefore the
ASP page will be mapped to a Java Servlet and g8F if the ASP page contains View
components) structure. Controller components cdp e converted, since ASP code
must be mapped to Java explicitly, however dat&sscevithin Controller components,
such as with SQL queries and COM objects, can lgeated as described in the previous
section. When "8 party COM components can not be encapsulated, finectionalities
must be replaced by equivalent Java services @vetoped in Java. Thereby it must be
kept in mind that the application logic and apgima structure shall not be broken by
replacing COM components or redevelopment. Sindev&lopment and replacement of
components are too specific and dependent on differases, they will be not discussed
in this paper.

The mapping of ASP code to Java Servlet can elibetone manually or automatically.
In case of a manual mapping of ASP code to Javde®ethe resulting code will be in a
better quality than a code converted via an autont@bl, since certain information can
be not processed by converters. As an examplepribldem with typeless variables of
ASP can be named. Since ASP code is interpretedjathable types within the code will
be processed during run-time. Therefore varialppesyat compile-time are processed as

TU Dresden, Le Hai Dang 60

ASP to Java Migration 6.7.4 Mapping of Controltede

“Variant” types in VBScript based ASP. As a reshl resulting code, of converters such
as J-ASP consists of Java objects of type “Variantiich is a generated Java class in
order to map variables from ASP to Java Servlet/J&Pan additional reason against
ASP to Java converters, the incompatibility of tienerated code with the designed
business object model can be named. As in the @adeASP, the tool does not really
converts ASP code to Java, but simulates ASP fomalities via Java Serviet

functionalities Java classesee 17.14.2.1 NetCoole J-ASPTherefore the codes

converted by J-ASP is incompatible to the busimdgsct model and regular Java Servlet
conventions, since variables converted are of tyfagiant” and Java Servlet conventions
are undermined by an ASP style of Java Servlettsire.

In comparison to conversion and mapping tools, auabconversion of ASP elements to
Java Servlet is more flexible. In such a case thmtated code will be mapped in such a
way, that the corresponding Java Servlet maint#es original control flow of the
application and is responsible for the validatibiput parameters and the redirection of
return values to a JSP View component. By suchetsire the code will be converted
instruction by instruction, by mapping SQL quergesdl COM objects to corresponding
business objects and business package classesiidtrid BSP objects such as “Server”,
“Request”, “Response” etc to equivalent built-invaléServlet objects. The following
figure represents the table for the mapping betwmsgh-in objects of ASP and Java
Servlet.

TU Dresden, Le Hai Dang 61

ASP to Java Migration

6.7.4 Mapping

of Controttede

ServletContext

explicit execution of ASP
page

: Java Servlet/JSP : :
ASP Object : Functionality Scope
Object
* Object representation the
ASP Request HttpServiletRequest HTTP request/respond HTTP
ASP Respond HttpServletRespond | « Contains input parameters | request/respondg
(GET/POST)
* Represents a stateful
communication between A Complete
. : client and server Client/Server
ASP Session HitpSession « Stores data appended through conversation,
out the communication until time-out
between client and server
" eesents e 12 10 | Giapany for e
ASP Application ServletContext . whole web
« Stores data that is used by the g
o application
whole application
: » Database connector to access
ASP ADO Must be mplemented database management Dynamic
specifically
systems
Functionalities must be | = Elg&tlgg_aelg:isrél:t%;r%m
ASP Server implemented specifically) Server lifecycle

Must be implemented

Offers functions on the file

Dictionary class

ASP FileSystem o Dynamic

specifically system
ASP Drive, Folder, Must be implemented | ¢ Offers functions on the file .

X g Dynamic
File specifically system

ASP TextStream Must be |m_plemented . foers functions to read text Dynamic

specifically files
ASP Dictionary Provided by Java « Associative array Dynamic

Fig. 6.7.4.a : Mapping of built-in ASP objects to dva

The last step of mapping Controller componentsaea,Jis the redirection of data to
View components. Depending on the programming stylehe ASP application, the
migrated Java Servlet must either map the existatg redirection to View components

or must create a new redirection to View componemtge latter case occurs when

Controller components and View components wereipusly mixed in the same ASP

page (hence the redirection of data to View comptm&as not necessary), therefore

data objects must be redirected to View componeiatshe “Session.setAttribute()” or
“Response.setAttribute()” methods.

TU Dresden, Le Hai Dang

62

ASP to Java Migration 6.7.5 Mapping of View code

viewProject.ASP

Sl s
z

Controller

¥

View

viewProject.JSP

Ly

response.setAttribute("project’; projectObj)

Model A Controller
MasterDataPackageClass ViewProjectServiet

!

Project

\ /

Fig. 6.7.4.b : Redirection of data to Views

6.7.5 Mapping of View code

The mapping of View components in an ASP page B®idShe last step of the procedure
to map legacy components to Java. As like withatirer MVC components the mapping
of the View component is dependent on the programgmtyle of the legacy application.
If the View component is mixed with Control compatse the mapping procedure must
map separate the View components to a JSP pagemapping procedure begins with
the look up of for annotated View components in &P application. If the View
component is mixed with other components in one A8§e, a new JSP View must be
created. Regarding the mapping of ASP codes tlsem@gain the alternative between
manual mapping and automatic mapping. However, lesady discussed automatic
mapping may not have many advantages that outwelghtflexibility of manual
mapping, but this is dependent on the quality efdabnverter used. In comparison to the
mapping process of ASP code to Java Servlet, thepmg of ASP to JSP does not
differentiate much from it, therefore the mappingl Wwe conducted line by line in the
mapping process.

In the case View components are implemented via X&insformations (XSLT), the
View components can just be reused as they ardheasView components remain
independent from the Controller components, whiehrasponsible for the redirection of
the data in the correct XML structure. Thereforenttaller components must just be
mapped in that way that they return a correct sinecof XML.

TU Dresden, Le Hai Dang 63

ASP to Java Migration 6.7.6 Implementation of V\B&yvices

6.7.6 Implementation of Web Services

Following the mapping of MVC components to the #&rdgusiness package, the
implementation of new service interfaces can baestaln this paper the implementation
of service interfaces will be done by Web Servieesl via JAX-WS for reasons of
simplicity. However in practice the choice is degent on the technical requirements of
the project. As in case of JAX-WS the implementataf Web Services is simple.
Depending on the design and requirements, businessions can be exposed as Web
Services by annotating the containing class, whidhe business package class, with the
“‘“@WebService” annotation and the respective methath the “@WebMethod”
annotation. By these 2 annotations the webservitrr@edgognize the business package
class as a Web Service with accessible web metithd®g the deployment of the
application. As an example an implementation of abWservice containing a COM
function call will be presented.

/IJava — JAX-WS Web Service

@WebService(name="COMWebSerivceTest")
@SOAPBInding(style=SOAPBInding.Style.RPC)
public class Busi nessPackagel{

@WebMethod
public String business_functionl1(int i)

: {
: COMClass com_obj = COMWerapper.create(“COMClass”);

return com_obj.business_functionl(i)

Fig. 6.7.6.a : JAX-WS Web Service
6.7.7 Business Package Dependencies

Due to the dependencies between each other residingsiness packages, one can not
migrate business packages completely. These depeedecan occur in form of

references to COM components or redirection ofdink the latter case, a Control

component can reference to an ASP component whinbtiyet migrated. In such a case
the referenced ASP page can be included to theatrogrcycle and be migrated along

the business package, but this would lead to furtbBerences to other components.
Therefore it is the best to invalidate the refeeenmtil the referenced component is
migrated or to create a dummy stub which simuldltes referenced component in a
simple way (which means simulating the potentiaghdaat are passed through session
objects and etc.). As far as COM components areeraed, wrapper classes can just be
called as long as business objects or functionsh@fto-be-migrated business package)

TU Dresden, Le Hai Dang 64

ASP to Java Migration 6.8 Software Testing

are still not implemented, but should be updatethasusiness objects and functions are
implemented in the future. In case COM componergssabject to be converted or re-

developed, the alternative would be to create ®ndplva dummies which simulate the

behavior of the functions. In the end all temporatybs have to be replaced and
integrated with the final implementations.

6.8 Software Testing

In this stage of the migration process the migrgiadkage will be tested. Since the
migration concept is based on an incremental approapecifically on the vertical
migration strategy, packages migrated from thedggaoplication can be run in parallel
to the original system as the package is functlpredparated. Therefore the migrated
functionalities can be tested whether the inteoasti with other migrated business
functionalities are working seamlessly. At evergleyall business packages have to be
tested together in cooperation with each otherclwimeans that references that have
been updated in the implementation stage have &rroe-free. At the end of this stage,
depending on the results of the tests, the proegasns to the implementation stage if
any bugs were found or it progresses to the laptat the migration cycle.

6.9 Software Integration

In the software integration stage, the Web servitedsed in the migrated package will
be registered to the enterprise service repositorpe retrievable for other applications
in the company.

In order to register the Web services to the entpservice repository, Web Services
need to be published to a global directory serwibere they can be searched and found.
This is often realized by an UDDI server, whichdeployed in the company. Generally
an UDDI server is a Web application which implensetite UDDI specifications and
provides an UDDI API for publishing and searchirighéeb Services. The most notable
interfaces are calledptiblisi and “inquiry” in the UDDI Web application. With these
two interfaces it is possible publish/inquire Wedngces, either programmatically or via
a WEB interface such as http://<servername>:<port>/publish or
“http://<servername>:<port>/inquiry (As in case of the open source Java UDDI server
[JUDDI]). In order to publish a Web service intedan UDDI, the Web service interface
must be mapped to a hierarchical structure whidchesUDDI model specification. This
model defines business publishers, services antbdmical specifications of the service
interface. For further reading a Web tutorial &@N1 UDDI] can be read. In the following
the components of that model will be presented.

TU Dresden, Le Hai Dang 65

ASP to Java Migration 6.9 Software Integration

- Specifies the Web Service provider
businessEntity - Contains information such asompany name, contact
detailand etc.

- Represents a group of min. one Web Service
- Can contain descriptions that describe the set eb W
businessService Services
- Contains meta data about the service such| as

classification names and descriptions

- Represents the Web Service
bindingTemplate - Contains technical information such as access pdmf
invoke the Web Service

- Represents the technical specification of the Web
Service
- Contains the Reference to the WSDL file or the meta
data of the Web Service specification
Fig. 6.9.a : UDDI Model for Web Services

tModel

When publishing a Web Service to a UDDI registryofammatically or via the Web
interface), the UDDI server maps the service iasgfdefined by the WSDL file to the
UDDI model, which includes the descriptions of thesiness provider, service contents,
and service names.

The migration process can end with the softwaregwation stage, or can be reiterated
from the object refinement stage to migrate furthasiness packages or to improve
existing packages.

TU Dresden, Le Hai Dang 66

ASP to Java Migration 7 Use Case: Migration of O

7 Use Case: Migration of TICOS

As a “best practice” migration project, the migoatiof TICOS was conducted at Robert
Bosch Japan. In this project the TICOS applicati@s migrated to Java according to the
primary requirements (section 1.4) and secondayyirements (section 2.2), which were
defined by the company. In this chapter the expede resulting from this migration
project will be presented.

BOSCH & Intranet

TlCOS"'ISY Development a4

Task - Information - Charging - Operation - System

Fig. 7.a: The legacy TICOS application

7.1 Migration Process
Software Evaluation

In the software evaluation stage, the TICOS apptin® software state was analyzed.
Beginning with basic metrics the application waseatted for its complexity and
structure. Thereby the application’s size, consistif about 300 ASP files with about 70
lines of ASP codes per page, and the applicatismiscture , consisting of MVC layers
which are structured in dedicated ASP pages narftedacertain conventiors¢e Fig.
7.1.a: TICOS application structurevas captured. In the next step an overview ower h
MVC components are implemented was taken. Thereébyurned out that View
components are separated in XSL files and Contralie Model components are mixed
together in ASP pages and implemented exclusival\s@L queries and ASP codes. The
structure of TICOS can be therefore described agadnin an averaged degree. However
the file structure is structured quite well (fileee named by their functionality and action

TU Dresden, Le Hai Dang 67

ASP to Java Migration 7.1 Migration Process

such as “all_project.asp” and “all_project_chegi’asvhich helps to understand the
code better.

dsdel + Contio
— — Ajan response:
bdasier Data gadr.agg PML+XSLT to innerHThL
=4 _|main.asp hauwpt asp
J\ roewollser asp]
e u idelliser.asp
export Data w eegues A T
ia export Fils -
daily 3 a.m. Repording packa
azp files "
E)de:n.ﬂ Mmi CsS5 VBScrpt
asp files ¢ JavaSciip
ACiS ®

Fig. 7.1.a : TICOS application structure

After the brief analysis on the size and structofe TICOS was conducted, the
comprehension on functionalities was attempted t® dstablished. Therefore
documentations of TICOS were studied, howeverrited out that documentations were
lacking in details and extensiveness. As for exanmgicumentations of source-code,
package structures and data model were missingefidie manual reverse-engineering
approaches were done, in which the ASP files wraen@ned for their linking structures
and functionalities. From the gathered informatsimple pageflow graphs and use-case
diagrams were developed.

Worktime

/
%

Fig. 7.1.b : TICOS Worktime management use-case digam

TU Dresden, Le Hai Dang 68

ASP to Java Migration 7.1 Migration Process

In order to understand the data model of TICOS, dambase model of TICOS was
analyzed. Thereby Entity-Relationship diagrams vadeneeloped.

Problems and Experiences

Since the migration is conducted manually, an adtgunderstanding over the legacy
application must be developed. This is however inedependent on the documentations
available and the complexity of the applicationrdigh experience it can be said that in
companies, documentations f6ustom Business Web Applicatiaren rarely be found,
thus it takes a significant amount of time to castdbe software evaluation stage.

In regard to analysis and comprehension of TICO®, manual reverse-engineering
approach taken is much more time-consuming (it t8gerson-weeks) as compared to
reverse-engineering done in automatic migrationr@gghes. However the result of
manual reverse-engineering is that codes can berheiderstood and overall application
comprehension is better. The result of the gairedprehension helps to decide which
components and application parts can be reusedgeded or redeveloped in consensus
with project requirements. Furthermore a bettereustéinding of the program leads to a
better quality when it comes to the transformatibtegacy code to new code.

In the special case of TICOS the problems of reergyineering occurred in the

comprehension and generation of pageflow modeliseSn ASP it is allowed to embed

nested ASP documents it was difficult to understdreddataflow (of session objects) in

the application. On the other side reverse-engingesf database models and general
functionalities were rather simple.

Object Modeling

In the object modeling stage, it was attemptedé¢ate an object oriented business object
model out of the procedure oriented structuresIGOS. Therefore the database model
of TICOS and the application components were aealySince TICOS is completely
implemented in a procedural manner as each ASP pagéements a business
functionality by itself, the question arises if &@én application functions should be
objectified. However this was considered not nemgssit the beginning stage of the
migration, since enhancements on the object stregtould still be done after the whole
legacy application is migrated to the new systemtl@ other side business entities have
to be objectified in order to expose them to WelviBes. Therefore the database model
of TICOS was reverse-engineered and database tablkesobjectified. The issue is that
database entities can be related to each othezsemed by different Entity-Relationship
Normal Forms, such as in the case of a N:M relatmiween 2 tables “Person” and
“Project”, an additional table “Person_to_Projec&n be generated to extend the
relationship of A and B by mapping the primary key#\ and B to each other. In such a
Normal Form it is possible to extend the relatiopstf “Person” and “Project” with an
additional “Cost Accounting” entity. However, ingad to the actual implementation,
references to the supporting table “Person_to Bfojes only used within SQL

TU Dresden, Le Hai Dang 69

ASP to Java Migration 7.1 Migration Process

subqueries, in a manner that entities of “PersorPrtoject” are never returned. Therefore
it is the goal to identify such data entities inLSQueries, so that only necessary data
entities are objectified.

In parallel to the objectification of business &afi, business packages were identified
and created. In case of TICOS the business packagesalready well defined so that
the original packages could be taken over to thve system. Therefore TICOS namely
consists of the following packagddaster Data, Project Accounting, Project Reporting,
Charging and Business Planning, Worktime ManageraedtSystem.

Problems and Experiences

In the case of TICOS it was rather simple to idgrdind objectify business objects for
Model components, which is due to the decisionetasse SQL queries and reuse SQL
gueries in a single “QueryList” class. Thereby geercan be invoked via a dedicated
method of the “QueryList” class, which returns tesult of the queries in an objectified
form. However this was not always possible in ceseController components, since
SQL queries there can return combined data endtieb as described iRig. 6.6.3.C :
SQL queries in Controller componein. summary this stage took less than a 1 person-
week to be completed.

Post-Documentation

In the post-documentation stage of the TICOS migmathe analysis of functionalities
and structures were put down on paper. Among typdoguments as specification
document, use-case or class diagrams, pageflowdatadflow graphs were created to
document the relationships between ASP pages, wdmehimportant in the software
implementation stage of the migration process. Airse-code level annotations in form
of comments were made to identify MVC components.

Problems and Experiences

Since TICOS consists of about 300 ASP files, thmetispent on this stage was
significant. Thereby for most of the pages MVC comgnts were identified and
annotated. While this is a repetitive task, it igitel problematic to identify MVC
components in the code, even though it is done albnuThe problem lies in the
distinction of Model and Controller code, which esfttimes can be mixed up. As an
example, it is very difficult to distinguish valitlen code that manages the control flow
of a function, from business logic code in whiclidation is done. Therefore this task is
error-prone, especially when a large number of ABB are given. Due to the amount of
files this task is not only error-prone but alseywgme-consuming. In the case of TICOS
it took about 4 person-weeks to conduct the whol-pocumentation of the system.

TU Dresden, Le Hai Dang 70

ASP to Java Migration 7.1 Migration Process

Object Refinement

After the analysis and the documentation stage§OH was migrated in incremental
steps. Beginning with the “Master Data” packageyimch master data such as personal,
project or customer data can be managed, the packag designed fully for the first
time. At this stage, the business object classels as “Person”, “Project” and etc. were
refined with attributes and methods that reprei@mtelationships of the business objects
to each other. Furthermore the business packags tdaster Data” was designed, in
this class Model components that were identified basiness functionalities were
designed. Thereby a naming convention relatingp@oASP filenames were used, in order
to identify the functions from which ASP page tleeyne from.

After the new Model consisting of business packelgss and the business objects are
created, the communication with Controller and \delave been designed. Thereby
Servlets were created for Controller componentshef package and JSP pages were
created for Views. An important aspect in this taskow to design the communication
between JavaBean (Model), Servlet (Controller) al®P (Views), although they
originated from only one ASP file. Therefore nevdes have to be generated in order to
pass data from Servlet to JSP. As a result the aortation and data flow between
Servlets and JSP had to be designed.

After the “Master Data” package was migrated, tbmaining business packages were
migrated step by step. In summary the time requivadigrate a package was about 2 to
3 person-weeks.

Problems and Experiences

The problems in the Object Refinement stage lieth@nselection of a fitting business

package. In the case of TICOS the first busineskage chosen was the “Master Data”
package, which consists of almost every importargiriess entity of the application.

Therefore it was simpler for the later businesskpges to be migrated, since almost
every reference to the master data of the apphicatias already migrated. By experience
there can be said, that for the start of the migmatit is a good decision to migrate

packages, which consist of many master data softiate business packages can be
migrated easier.

A major problem in the decision process, is whethactional enhancements should be
made on-the-fly or not. As the migration projecbgness, one may be attempted to not
just migrate the old components to the new systéum also implement new
functionalities or enhance existing functionalitiesone migration cycle. As an example
from TICOS, the SSO functionality for the portatagration was implemented along
with the migration of the Login mechanism. Ther&mhancements in the data model of
TICOS and business logic had to be changed a. liitethe positive side is that TICOS
can be just modernized and enhanced in one singjeation cycle. On the other side,
however this has caused changes in the migratial atther business packages, since
business logic was changed. Therefore documensatione in the previous stages/cycles

TU Dresden, Le Hai Dang 71

ASP to Java Migration 7.1 Migration Process

may be become obsolete. Thus enhancements or nwaterns of existing components
may be feasible, but should be really questionetheafy are not contra-productive in
regard to further migrations. As a result it shoblel considered whether additional
functionalities should be better implemented whee twhole legacy application was
migrated completely.

Software Implementation

Following the design phase, the packages were tedjran an incremental manner.
Thereby SQL queries of each ASP file were copiea ¢tentral static Data Access Object
(“QueryList” class) and data access calls were redpje methods of that class. The
process of the implementation began with the implaation of the “QueryList” class
and the BusinessPackage class such as the “Mas@®&xkage” class, followed by the
implementation of business object classes if nataaly implemented. Afterwards the
pageflows of TICOS were mapped to Java structwgsh as Java classes, Servlets and
XSL files (since the View components could be reljiseollowing the logic of each ASP
file were mapped manually to Servlets, therebysdallModel components were replaced
by object oriented calls from business objects,civldelegated the data access calls to
the “QueryList” class. In case the ASP code comeigitbusiness functionalities and
business logic, appropriate business functions \wepéemented in the business package
class as already designed in the object refinersege. As the last step to map ASP
pages to JSP files, data structures were mappg#itostructures and redirected to the
XSL file.

According to the requirements of the company thegliegtion has to fit the corporate

design, which was provided by the company, in anfof a JavaScript library and CSS
files. Therefore View components just as the X3¢ &nd the JavaScript files had to be
adjusted in order to fit the corporate design dmal required structure of the corporate
design libraries. As the last step of the mappthg, AJAX functions in the JavaScript

files had to be adjusted to call the newly defiSedvlets instead of former ASP pages.

In order to serve the requirements of Single Signahew log in mechanism based on
Browser Cookies were implemented. This mechanisns weovided by the SAP
NetWeaver Portal system via the two dIl librarie§SapSeculLib.dll and
“SAPSSOEXT.dlland a Java bridge to access the functions. \&éadhwo libraries the
application had decrypted the encoded cookie whiak sent by the SAP NetWeaver
Portal once the user has logged in. From the indtion retrieved the users Portal ID was
mapped to the local TICOS User ID, and authorizambaling to the roles defined to the
user.

Problems and Experiences

In the software implementation stage problems aecumostly during the code-to-code
transformation process. During such a process anodgrugs may occur frequently. In the
case of TICOS difficulties happened when codes adting ASP pages have to be
implemented. Although codes of nesting ASP pageg Imae been already transformed

TU Dresden, Le Hai Dang 72

ASP to Java Migration 7.1 Migration Process

and could be reused (by calling the associatechbssipackage method), it is a difficulty
to keep the overview over the data flow of nest&PAages, especially when the ASP
pages were not documented properly.

Testing

Following the implementation phase, the implemeitesiness package was deployed in
a test environment. Thereby the functionalitieslddae tested against the data model an
be run in parallel to the legacy application. Hoegwalthough legacy components and
migrated components run in parallel together thamyat not be integrated with each other
easily, since simple HTTP links couldn’t pass daten Java context to ASP context.

Therefore functionalities could only be tested aghithe shared database and in
combination with other migrated components. In¢hse software bugs were found, the
migration process switched back to the implememaphase, where bugs could be
removed. This procedure was repeated until all kmdwgs were removed and the

business package was tested successfully.

Software Integration

After the testing phase validated the correctnésbeobusiness package and its business
functionalities, Web Services were created on tojh® business functionalities, in order
to expose them in the Service Oriented ArchitectAdalitionally data services that were
used by other systems were modernized and publishatfeb Services. In the case of
TICOS, data were exported as textfiles throughraice which extracted the data from
the TICOS database periodically. Since this kindlafa transfer violates the goal of a
homogenous environment, an appropriate Web Sewasecreated which retrieves those
data from the database. The Web Services relieth@robjectification of the returned
data, therefore the same business object class&é®rasthe migration process were
returned. However the created Web Services coutdbadaested in practice since the
cooperating system was not migrated yet.

Update by Textfiles

Create praject

Me: E2002 - IT00005 - S/R

Create project

daemon

- export: frequently (24 times/day) by eWorks

- daemon-program search for new file open request =@ new project
+ start import
+ create project automatically
+ create e-mail if project is created

= update time (Lhour)

Fig. 7.1.c : TICOS data export via files

TU Dresden, Le Hai Dang 73

ASP to Java Migration 7.2 Problems and Advantages

7.2 Problems and Advantages

Problems

The migration concept provides a systematic wayntmgrate legacy ASP Web
applications to Java, however due to the manuatiuction, the concept inherits the
problem when it comes to the size of the applicatids experienced in the migration
process of TICOS, it was a problem to analyze awithent components of the legacy
application, when hundreds of ASP files are invdlvAs a consequence the mapping
process at the implementation phase could not bdumed as intuitive as it could have
been, because application components were notzethgnd documented well enough.
Beside this the cost of time can become a sigmfiespect. Additionally the way some
components, such as SQL statements, were migrassdstill inefficient, since each
statement had to be filtered and mapped to JavaiaignDepending on the convention
used when it comes to the mapping of SQL queriebgect functions, it could have been
a hassle for the conversion of ASP code to Javeny8QL queries had to be looked up
for their mapped method names. As a whole the psooé extracting SQL queries and
mapping of MVC components was extensive althoughctinduction was systematic and
repetitive.

Another problem which was inherent by the choicethef migration method was the
introduction of secondary requirements into theratign project. As experienced in the
migration of TICOS, secondary requirements thatoiwe an extension of existing
functionalities, such as the introduction of Sing@degn On to TICOS, can lead to
complexities when conducted along the migrationcess, because of the interference
with the design of the legacy system. This is eiglgdthe case when changes to the data
model are necessary. Depending on the scale ahtreges, new functionalities can have
impact just on the business object level, for edemyghen just a new table has to be
introduced in the data model, or have to be adaptect extensively, for example when
the structures and relationships were altered &y dktension. In such a case, the
adaptation involves the SQL queries that were presly encapsulated into DAO objects.
Therefore it should be considered extensively i§ihot better to implement secondary
requirements at the end, after the legacy apphicais migrated 1:1 to the new
environment. In this case the migration concepersfifthe opportunity to implement
secondary requirements in additional incremen&gisst

Advantages

One of the most important advantages that come thith migration concept is the
systematic approach, with which ASP applicatiores aralyzed and migrated. Although
there can be numerous ways how to transform a yed&P application into a Java
application, it is necessary to have a structureldema how to migrate from one
technology to another. This became apparent, whgrating more complex and bigger
ASP applications to Java, as experienced with TIC@Isere application components
could be migrated to Java in a straight forwardhif@s.

TU Dresden, Le Hai Dang 74

ASP to Java Migration 7.2 Problems and Advantages

The other benefit that comes with the migrationcpss is the transformation from legacy
structures to a modern MVC design in Java, thrahghmigration methods applied in the
migration concept. Therefore applications are medi with more extensibility and
flexibility. Additionally the migrated code is ofelter quality since it is readable for
humans. This is the result of the advantages ofaaua migration approach when
compared to automatic or semi-automatic migratippreaches, where generated code is
most of the time not readable and unstructured.

Additionally through the incremental migration pess (vertical migration), complex
applications could be migrated step by step andebtd incrementally. Furthermore,
application packages that are well tested can leyatgd in parallel to the legacy
application in order to ease the familiarizatiogass for users. In the following the
TICOS system is shown in the new portal environneéfiRobert Bosch Corporation.

£3ZF Gast inside [E% Login Portal v3.0.1 A Imprint @ T inside.
Bosch Group
‘“fouare here: » Bosch Globalet » Bosch Group » Organization » Regional Subsidiaries (RG] » Bosch Japan | BEE- 1 EL @&
i E ICOS2 v 1.0 rEnglish r Help *BOSCH Japan
+ Bozch Globalhlet Homepage |
* About Bosch Mew Member Search
~ Organization = = S irst Name ot Center Depatmen
e m ast Hame Il Nume C A Centar Department gi!“ve ™
v Automative Technology (UBK) _‘5 My root node == L] g I1-31 1521
¥ Industrial Technology (LB (== Made 1 et M I 1511
r Consumer Goods and Building - Mode 1.1 i o n Folegl 1821
technaiogy (UBG) b) Hode 114 : : i = :; E:l]
~ Regional Subsidiaties (RE) Mode 1.1.2 s : 2
* Bosch AT Pl) Mode 1.2 s & = o
! = = ¥ 533
» Syvitzerland L) Moce 1.3 B = — EoH
* Bosch Japan 1) Mode 2 = u —— CLH s
* United Kingdom -] Mode 3 =T i = 1513 =mployee
» Bozch India J Mode 4 i [i= 1521 =rnples
¥ Morth America =45 My Fictures fili-ph For ¥ Epeial Cuslle: ler sumiiciis 1l
» Subsidiaries (TOGE)) Thetripto lceland | (<8 . 1312 =riplvee
» Affilites (BEGE) W) Mo birthday |00 3, = Jaies S0
+ Employee Represertation eJ' Recycle Bin i —" = : L fmpl:r;'ee
ol - il T - 1521 =rmplwes
= =in it 1512 Sinplvee
Ehgs [g LE 1221 =mplves
* Topics ws Jak | 3 LR 1821 mpl oo
+ Products L i = 1521 mplayas
* Services — o =] i L] B Sroup nac
* Projects b uf] : ZILUR T
» Guidslines & Standards = A L srbldes &

Fig. 7.2.a : Deployment of a migrated business paage on the SAP Portal

TU Dresden, Le Hai Dang

75

ASP to Java Migration 8 Outlook

8 Outlook

The migration concept provides a guideline, whitbves companies to conduct their
migration projects in a systematic way. As desdribethe beginning of this paper, the
class of Custom Business Web Applications is emistem many local business
departments and their applications are managedlyodaerefore it is desirable from the
perspective of a company to provide local branetidsa migration concept which allow
their employees to migrate legacy applicationsratgiven schema. For that reason this
migration concept can be seen as an example, hgvatian tasks can be approached by
a company from an IT-government perspective anddsgned and adjusted from case
to case specifically in order to propagate migratiestructions to local departments.

As a basis for ASP-to-Java migration, this migmtiooncept provides a manual
migration process for companies, which want to atgrsmall-sized to mid-sized ASP
applications. As a manual migration approach, tigration process can be extensive for
big-sized applications and be too repetitive andfficient in some tasks, namely
documentation and code transformation. Although thanual migration brings
advantages such as a more flexible ASP-to-Java tradsformation and mapping of
MVC components in general, it could be enhancedumported by a semi-automatic
migration process. In case of a semi-automatic aign process, it was attempted to
incorporate migration tools such as the ASP-to-dJ&? “J-ASP” in the migration
process, however this failed due to the desigrhaf tool. Nevertheless it is possible to
design a tool which migrates ASP applications basethe analysis and documentation
done in the early migration stages (Software Evaloa Object Modeling, Post-
Documentation), via Metadata tags in the ASP appba. In such a tool, the migration
team would analyze the legacy application for usctionalities and relevant business
data, and annotate each MVC component of the ASHlicapon, afterwards the
migration tool would automatically transform thenatated ASP files with the inherent
information to a Java-based Web application, wiscstructured after the MVC pattern.
With such a tool the extensive task of mapping ABBes and extracting components
could be automated, which would be beneficial foy aompany with a large number of
legacy ASP applications.

In order to design such a tool, one can refer ¢ontbrk of [Ping et al], which described a
migration tool that analyses the structure of IBNet Data applications and migrates
such applications to Java-based MVC Web applicatibtmthe named work, the authors
proposed a migration tool which extracts SQL statei:m and View components from the
original application and migrates them to a Javd \Meplication based on JavaBeans and
JSP pages. Thereby the complete code had to bedpargl an Abstract Syntax Tree
(AST) had to be constructed, in order to extracL Sfatements from the code and to
transform the original code to Java/JSP constriictsase of SQL statements, dynamic
variables had to be stored into a property filecuhallows the tool to link the dynamic
variables with input parameters coming from differdSP pages. In relation to ASP
applications, the same mapping would be necessarge mixed components (MVC)
have to be separated from each other, and be lwkédeach other properly afterwards.
The problem that was not described by [Ping et wHs how to distinguish MVC

TU Dresden, Le Hai Dang 76

ASP to Java Migration 8 Outlook

components automatically in the original code, nthen to separate MVC components on-
the-fly along the migration process. Thereforephgposed methods of [Ping et al] could
be used in combination with a manual analysis amtb&tion of MVC components in
order to provide a semi-automatic migration toohiakh can be used to migrated ASP
Web applications to Java-based MVC Web applications

As a bottom line it can be said that since the garexd migration concept is based on
systematic analyses and design, it can be enhawibd semi-automatic migration
mechanisms, which would be beneficial for compatoewigrate large numbers of ASP-
based Web applications more quickly and more eifitty.

TU Dresden, Le Hai Dang 77

ASP to Java Migration References

References

Bibliography

[Brodie/Stonebreaker]
* Brodie M. L., Stonebreaker MDARWIN: On the Incremental Migration of
Legacy Information Systens993; p. 5

[Cimitile et al.]
» Cimitile A., Carlini U., Lucia A.;Incremental Migration Strategies: Data Flow
Analysis for Wrapping1998

[Gimnich/Winter]
e Gimnich R., Winter A.Workflows der Software-Migration;

[Jeenicke]
» Jeenicke M.Architecture-Centric Software Migration of Web-badeformation
Systems

[Ullenboom]
e Ullenboom C.;Java ist auch eine Insel; 5. Auflage; Kapitel 24ali&o
Computing; 2005

[Martin/Muller]
e Martin J., Muller H. A.;Strategies for Migration from C to Java;

[Nicolescu/Klappert/Krcmar 2007]
e Nicolescu V., Klappert K., Krcmar HSAP NetWeaver PortabAP Press; 2007

[Ping et al.]
* PingY., LuJ., LauT. C., Kontogiannis K., Tong Yi. B.; Migration of Legacy
Web Applications to Enterprise Java™ Environmentdlet.Data® to JSP™
Transformation, 2003

[Sneed]
e Sneed H. M.; Migration prozeduraler Anwendungssysteme in eine
objektorientierte Architektur

[Sneed 1999]
* Sneed H. M.Objekorientierte Softwaremigratiodddison-Wesley; 1999

[VIachakis/Kirchhof/Gurzki 2005]

TU Dresden, Le Hai Dang A

ASP to Java Migration References

* Vlachakis J., Kirchhof A., Gurzki T.Marktibersicht Portalsoftware 2005,
Fraunhofer IRB Verlag; 2005

Web References

[COM]
 COM: Component Object Model Technologies;
http://www.microsoft.com/com/default.mspx

[COMA4J]
« COMA4J Project Website; https://com4j.dev.java.net/

[IBM UDDI]
* Understanding WSDL in a UDDI registry;
http://www.ibm.com/developerworks/webservices/ligrevs-wsdl/

[IBM SOA]
» Develop a migration strategy from a legacy enteelT infrastructure to an
SOA-based enterprise architecture;
http://www.ibm.com/developerworks/webservices/Iigrers-migrate2soa/

[J-ASP]
* ASP to JSP/Servlet Migration Tool from Netcoole;
http://www.netcoole.com/jasp.htm

[JSF]
e JavaServer Faces Technology;
http://java.sun.com/javaee/javaserverfaces/

[JUDDI]
* Open Source Java UDDI Server,
http://ws.apache.org/juddi/

[MSDN Migration]
* Microsoft .Net/Com Migration; Migration Strategies;
http://msdn.microsoft.com/en-us/library/ms97850px@sominterop_topic4

[Seam]
e Seam Framework Website;
http://seamframework.org/

[Singleton]
» Singleton Design Pattern;
http://www.dofactory.com/patterns/PatternSinglehspx

TU Dresden, Le Hai Dang B

ASP to Java Migration References

[SUN JEE 5 Tutorial]
e« SUN JEE 5 Tutorial;
http://java.sun.com/javaee/5/docs/tutorial/docmttml

[Waterfall model]
* The Waterfall model explained;
http://www.buzzle.com/editorials/1-5-2005-63768.asp

[Web Service vs. DCOM]

e Using Web Services instead of DCOM,;
http://msdn.microsoft.com/en-us/library/aa30233@xas

TU Dresden, Le Hai Dang C

