
A Framework for Dependency Based Automatic

Service Composition

Abrehet M. Omer and Alexander Schill

Chair for Computer Networks, TU Dresden,01062 Dresden, Germany
omer@rn.inf.tu-dresden.de, alexander.schill@tu-dresden.de

Abstract. Developing service based complex applications (service com-
position) has become an important area of research in SOA. In spite of
this, there has been little effort to understand and to manage the dif-
ferent forms of dependencies that occur in applications that are built
from services. Moreover, doing composition (semi-) automatically is a
crucial aspect in overcoming problems arising due to dynamic nature
of a runtime environment. In this paper, we argue that automation of
process model creation is one of the critical tasks to achieve dynamic ser-
vice composition. We propose and present a framework for performing
automatic service composition by exploring and managing dependency
between services making use of semantic web service descriptions.

Keywords: Service composition, Service dependency.

1 Introduction

In Service Oriented Architecture (SOA) the task of creating composite services
from component services brings dependencies between the component services.
Primarily these services are created by same or different providers and they
are meant to be accessed and work independently. However, establishment of
composite services necessitates interaction, communication, cooperation and co-
ordination of services. The process of combining available component services
to create a composite service is called service composition. A composite service
can be regarded as a combination of services invoked in a predefined order and
executed as a whole and that has more functionality than its components.

1.1 Overview of Composition Techniques

The service composition process comprises different sub activities. In this paper
three major sub-activities are considered: (1) Creation of process model, which is
a model that simplifies the representations of activities and their enactment. (2)
Service binding. (3) Execution (invocation) of composite service. Service compo-
sition could be done statically, semi-dynamically or dynamically. In static com-
position the process model is created manually and service binding is done at
design time. Whereas, in dynamic composition the process model is created au-
tomatically and service binding is done at runtime. All methods between these
two extremes are categorized as semi-dynamic [1]. Due to shortcomings of static

D. Ardagna et al. (Eds.): BPM 2008 Workshops, LNBIP 17, pp. 517–523, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

518 A.M. Omer and A. Schill

composition techniques, nowadays, there is a growing tendency for shifting to
(semi-) dynamic service composition techniques. This requires not only run time
service binding, which has been achieved by many researchers, but also (semi-)
automatic process model creation. The automatic process creating part is not
thoroughly tackled by researches. For example, in the work by [2], and [3] process
model generation is done by automated chaining of services or graph representa-
tion of all discovered services. The main limitation with such kind of methods is
scalability. Specially chaining methods may insert degree of uncertainty regard-
ing semantic correctness & the search space is very large [4].

WSDL [5] describe only requirements and capabilities of web services. It pro-
vides only a comprehensive technical description of a service. But a dynamic
Web services composition needs semantic descriptions of services. Approaches
like OWL-S [6], SA-WSDL [7] and WSDL-S [8] are being discussed in seman-
tic Web service community. WSDL-S extends WSDL by defining new elements
and annotations for already existing elements. It connects WDSL and OWL.
OWL[9] is a W3C standard based on RDF(S) and it has been designed to meet
the need for a web ontology language. OWL-S is an ontology represented in OWL
which contains a bunch of classes and property definitions. SA-WSDL is based
on WSDL-S and provides semantic characterization to Input and Outputs of
web services by defining a small set of WSDL extension attributes. Such seman-
tic descriptions could help in enhancing existing service composition techniques
and in developing new automatic service composition mechanism that involve
the usage of semantic knowledge in the composition process.

In addition, during service composition, beside automatic creation of process
model, its modification or re-generation might be required due to runtime failure
of a composite service. Such failures can occur due change in service landscape,
or service failure. Researchers considered different adaptability techniques to
overcome limitations of their developed service composition techniques. For ex-
ample the work by [10] and [11] can be mentioned. Late-binding and re-binding
are the main solution strategies considered by researchers. But these strategies
fail in circumstance of service failure or removal and when it is not possible to
get a replaceable service. In such cases process model re-generation is suggested
as solution strategy in the work by [11].

Thus, it can be seen that the complexity of creating the process model au-
tomatically is one of the main bottle necks towards achieving dynamic service
composition. Consequently, its generation, modification or re-generation during
service composition is a critical task that needs research focus.

1.2 Overview of Dependencies

The concept of dependency is principally explored in component based systems,
particularly for component based systems management [12]. However, there are
some research works that recognize its importance in SOA, specifically in service
composition. For example,[13] looks for service dependencies from a composite
service management point of view. Their approach shows that dependencies
could be tracked from log files which normally are available in SOA audit files.

A Framework for Dependency Based Automatic Service Composition 519

Another work by [14] discusses the possibility of deploying and reusing com-
posite services based on service dependency. In their research, the composite
service is described in terms of elementary service dependency extracted from
a pre-existing process model. And the invocation of the composite services is
done by managing these dependencies. At a composite service level, dependen-
cies between services arise from the connection among component services and
constraints on their interaction, such as input/output, temporal and functional
dependencies. These relationships involve data and control flow. Determining the
data and control flow from dependencies is actually equivalent to the creation
of process model. A thorough investigation of works for process model creation
in service composition shows that all methods try to extract implicit or explicit
dependencies. For example, in graph-based and chaining algorithms for service
composition input/output relationships between services are explicitly searched.
In workflow-based techniques the programmer identifies implicit and explicit de-
pendencies manually. In case of AI-based methods input/output, temporal and
some other logical relationships are considered by using domain knowledge.

Therefore, in this paper, we try to establish an automatic process model cre-
ation method based on web service dependency and with the support of statically
available semantic knowledge about services and semantic description of request,
with intent of reaching dynamic composition. Moreover, the proposed method
takes into account the establishment of runtime adaptability techniques after
deployment based on service dependency.

1.3 Problem Description

As it is described above there are many issues and knowledge gaps that hinder the
transition towards achieving dynamic composition. Specifically, lack of runtime
process model creation techniques complicates the intent for (semi)dynamic ser-
vice composition. In earlier researches the usage of service dependency in service
composition was not significant. Therefore, there is a clear research need to get
more refined means to understand, identify, represent, analyze, and use service
dependency for automatic process model creation. Consequently, developing a
framework for automatic process model creation will be the main research prob-
lem. Moreover, we consider developing runtime process adaptability techniques,
which could be process model modification or re-generation, based on kinds of
failure during service binding.

2 Proposed Approach

Composite service structure description holds information about service compo-
nents and how they interconnect. Both structural and behavioral relationships
among component services of a composite service can be determined by extract-
ing their dependency. The dependency extraction would be supported by the
semantic description of services. This section describes the overview of the pro-
posed architecture followed by detailed mechanism description using example
scenario. A travel scenario is used to illustrate the proposed methodology. Let

520 A.M. Omer and A. Schill

us say an imaginary user wants to travel to city A, stay there for 3 days and rent
a car during the stay. Moreover, for one free afternoon he wants either to take
a boat tour or watch a movie depending on weather condition. Figure 1 shows
the proposed two layered architecture. In the architecture, it is assumed that a
formal user request description is available.

Fig. 1. Architecture

Although a user-request is in the
form of natural language there are
natural language processing tech-
niques that parse a request and con-
vert it into a formal description. This
formal user request can be formulated
as web service with semantic descrip-
tion. The semantic description can
be found from the user request con-
straints or as an additional compo-
nent a query facility can be provided
to receive more input from the user.

This description contains (IOPE)
inputs, outputs, preconditions, ef-
fects, goals, and constraints as it is

defined in OWL [9]. But in the future we plan to investigate a mechanism to in-
corporate an additional annotation that describe association attributes between
different goals which can be found from constraints or query facility. Such de-
scriptions can be used in service discovery, matching and extraction of service
dependencies and help in limiting the search space during match making process.
Therefore, the IOPE matching technique that will be used during dependency
extraction will be supported by the additional semantic annotations incorporated
inside the user request description. In the architecture the first layer consists of
two data repositories and a service matching module. The first data repository
contains a formal user request description as it is explained above. The second
data repository contains a statically available list of semantic service descrip-
tions. Although service descriptions have the same format as user request, for
dynamic composition that we wish to achieve, in service descriptions seman-
tic annotation of service dependencies are not expected to be included. This
is because one, it requires prior knowledge about composition requirements of
services at design time and this limits flexibility. Two, a service could have a
varying dependencies for different composition requests. This means achieving
a comprehensive prior knowledge is unlikely. Therefore, incorporating semantic
dependency description in service description is unpractical.

The matching module outputs a list of service descriptions that are required
for the composite service. This module is based on semantically enabled match-
making techniques that have the capability to find services required for compo-
sition from service descriptions and a formal user request description. For the
above travel scenario these 7 required services could be discovered: WS1(Flight
booking), WS2(weather forecast), WS3 (boat tour booking), WS4(Movie ticket

A Framework for Dependency Based Automatic Service Composition 521

purchase),WS5(Hotel reservation), WS6(Car rental), WS7(Payment). The sec-
ond layer consists of one data repository and six modules which are responsible
for creating the process model using the output of the first layer. The depen-
dency repository contains services dependencies occurring during composition.
The role of each module is described as follows:

1. Service dependency generator: this module extracts service dependencies upon
receiving a formal description of a user request and a list of semantic service
descriptions required for the composition. The dependency extraction is based
on two inputs received from layer 1; these are semantic description of services
and user request with additional annotation that enables the dependency gen-
erator to extract different dependencies. Specifically, we believe the semantic
description of requests with additional annotation minimizes the search space
of dependency generator. Then, the extracted dependencies will be represented
in an appropriate data structure to be stored in the dependency repository and
will be ready for further use or re-use when needed. For the travel scenario the
booking boat tour or buy movie ticket services are dependent on weather fore-
cast, which can be identified from constraints specified by user and part of user
request description. And other dependencies among services and between ser-
vices and user request can be found by using IOPE matching with support of
semantic user description.
2. Dependency analyzer: this module takes the service dependencies stored by
the dependency generator as input and it analyses the dependencies to put them
in understandable and interpretable format. The analyzer has a key role in pro-
cessing and converting raw dependency data into data that is more applicable.
Anticipated application areas are alternative process model generation, devel-
opment of process adaptability or composite service management. For example
one way of analysis can be counting the number of services dependent on it or
the dependency between a service and user request which possibly provide the
priority level of a service. For the travel scenario WS1 and WS5 have higher
execution priority because they take input directly from user request. Moreover,
other services are dependent on them.
3. Process Model generator: in this architecture the dependency analyzer is
assumed to work interactively and iteratively when it is necessary to provide
enough processed data for the algorithm running in the process generator. There
can be sequential, alternative, concurrent or iterative coordination mechanisms
to form the process model. Thus, by taking the analyzer output the process
model generator will further interpret and associate it with any of the coordina-
tion mechanisms. By doing so the process model generator creates all possible
process models for the intended composite service. For the travel scenario this se-
quential process model can be reached by simply sorting based on number of ser-
vices a particular service dependent on.WS1⇒WS5⇒WS6⇒WS2⇒WS3⇒WS4
4. Validator: this is responsible for checking the correctness of the generated pro-
cess model(s) based on extent of user request satisfaction. When the generated
process model does not fully or partially satisfy the user request then it should
be excluded. And another process model can be generated if necessary.

522 A.M. Omer and A. Schill

5. Evaluator: by taking valid process models from the validator this module eval-
uates and rank them using selected non-functional properties.
6. Corrector (Process adaptability): when there is a failure this module receives
feedback from the service discovery and binding phase. Here process model re-
generation or modification, based on the stored dependencies, will take place.
It may be necessary to update the dependency matrix when a described service
lost which may intern be needed to update the service description repository.

3 Conclusions

Dependencies reflect the potential for one service to affect or be affected by the
elements of other services that compose the application. Analysis and tracking of
dependencies is important in SOA management. However, there is limited work
done towards the usage of service dependency in automatic service composition
and for development of process adaptability techniques. In this paper we argue
that semantic description of web services and user request enables detection of
dependencies between services. And this allows automatic creation of composite
services. We believe that the proposed architecture will allow seeing service com-
position as service dependency identification and analysis problem. This opens
ways for developing more flexible and scalable applications from smaller and
semantically described services. Currently we are working on implementation of
the architecture making use of case studies to test its applicability. For future
work, it is necessary to implement all components of the architecture to validate
and prove the proposed concepts.

References

1. Matthias, F., Ivo, J.G., Neil, P.T., Edmundo, R.M.: Challenges and Tech.on the
Road to Dyn. Compose Web Services. In: ICWE, pp. 40–47. ACM, California
(2006)

2. Ramasamy, V.: Syntactical & Semantical Web Services Discovery & Composition.
In: Proc. of the 8th IEEE Int. Con. On E-Commerce Tech. & 3rd IEEE Int. Con.
on Enterprise Comp. E-Commerce and E-Services, p. 68. IEEE Press, California
(2006)

3. Ponnekanti, S.R., Fox, A.: SWORD: A developer toolkit for web service composi-
tion. In: Proc. of the 11th Int. WWW Conf., Hawaii (2002)

4. Ulrich, K., Micro, S., Birgitta, K.: A Classification of Issues and Approaches in
Automatic Service Composition. Int. Work. on Engineering Service Compositions
(2005)

5. Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl
6. OWL-S: Semantic Markup for Web Services,

http://www.w3.org/submission/owl-s

7. Semantic Annotation for WSDL&XML, http://www.w3.org/TR/sawsdl\&WSDL-S
8. Web Service Semantics-WSDL-S, http://www.w3.org/submission/WSDL-S
9. OWL Web Ontology Language Guide, http://www.w3.org/TR/owl-guide/

10. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The meteor-s approach
for conf. &executing dyn. web processes. Technical report, LSDIS LAB (2005)

http://www.w3.org/TR/wsdl
http://www.w3.org/submission/owl-s
http://www.w3.org/TR/sawsdl\&WSDL-S
http://www.w3.org/submission/WSDL-S
http://www.w3.org/TR/owl-guide/

A Framework for Dependency Based Automatic Service Composition 523

11. Meyer, H., Kuropka, D., Tröger, P.: ASG - Techniques of Adaptivity. In: Proceed-
ings of the Dagstuhl Seminar on Autonomous and Adaptive Web Services (2007)

12. Bixin, L.: Managing Dependencies in CBS Based on Matrix Model. In: Proc. of
Net Object Days (2003)

13. Basu, S., Casati, F., Daniel, F.: Web Service Dependency Discovery Tool for SOA
Management. In: IEEE Intern. Conf. on Services Computing, Utah (2007)

14. Zhou, J., Pakkala, D., Perala, J., Niemel, E., Riekki, J., Ylianttila, M.: Dependency-
aware SOA & Service Composition. In: IEEE Int. Conf. on Web Services, Utah
(2007)

	A Framework for Dependency Based Automatic Service Composition
	Introduction
	Overview of Composition Techniques
	Overview of Dependencies
	Problem Description

	Proposed Approach
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

