Decentralised Approach for a
Reusable Crowdsourcing Platform
Utilising Standard Web Servers

Tenshi Hara*
tenshi.hara@tu-dresden.de

Thomas Springer*
thomas.springer@tu-dresden.de

Gerd Bombach
TUD Graduate Student
gerd.bombach@mailbox.tu-dresden.de

Alexander Schill*
alexander.schill@tu-dresden.de

*

Technische Universitat Dresden
Faculty of Computer Science, Institute of Systems Architecture
Chair of Computer Networks, 01062 Dresden, Germany

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

UbiComp’'13 Adjunct, September 8-12, 2013, Zurich, Switzerland.
Copyright (© 2013 ACM 978-1-4503-2215-7/13/09...$15.00.

http://dx.doi.org/10.1145/2494091.2499574

Abstract

Crowdsourcing has gained increasing interest during the
last years as means for solving complex tasks with the
help of a flexible group of contributors. The crowd can
contribute with collecting data in the field, completing
map information or votes for ideas or products. Even
though the participation of large numbers of users with
heterogeneous devices in crowdsourcing is a highly recur-
rent task, generic infrastructures for crowdsourcing can be
hardly found. Especially the management of users, mo-
bile devices and contributed data has to be repetitively
implemented in new projects. To ease the development
of crowdsourcing applications, in this paper we propose
a generic platform for crowdsourcing supporting diverse
crowdsourcing scenarios, the ability to handle large num-
bers of users and the involvement of heterogeneous mo-
bile devices. The evaluation is based on scalability and
performance experiments in order to demonstrate the
feasibility of our approach.

Author Keywords
Crowdsourcing, Location-based Services

ACM Classification Keywords
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures

Introduction

Crowdsourcing presents itself to be a rather young concept
in the field of computer science, emerging in the late
1990s and early 2000s, e.g. the SETI@home project was
released to the public on 17 May 1999. Since then, man-
ifold derivates of crowdsourcing have been investigated

by many authors, e.g. in [3,6]. In general, crowdsourcing
can be considered a distributed process of providing res-
sources by a resource providing group of flexible size.

This construct normally identifies two types of groups:
The crowdfunders as the group interested in a ressource
(e.g. processing time) and the crowdsourcers as the group
providing the desired resource (e.g. idle processing time).

As diverse projects demonstrate, complex problems in
many domains can be solved by exploiting the knowledge
and abilities of users in the Internet. In all these systems
users are involved explicitly or implicitly (e.g. by allowing
the capturing of sensor data by their mobile devices in the
background) in the crowdsourcing process.

All these systems require means for managing large user
numbers, involving heterogeneous devices for data col-
lection and the processing and verification of submit-

ted data. Nevertheless, the potential for reusing crowd-
sourcing functionality and infrastructure components is
rarely exploited. Most crowdsourcing projects focus on
application level usage of user submissions, demonstrat-
ing the value of crowdsourcing in a multitude of domains.
Generic infrastructures for crowdsourcing and documenta-
tion thereon can hardly be found.

When investigated in detail, e.g. in [1, 4], research fo-
cusses on the benefits of the flexibility of the group of
crowdsourcers when using mobile devices such as smart-
phones, or the capabilities of involving human processing.
In our opinion, one should not value human processing to

highly, but consider crowdsourcing as an extension of the
general problem of ressource availability and resource al-
location which is present in any operating system. In this
sense, crowdsourcing is reduced to a means of locating
and allocating resources such as processing time, sensor
access, actor control, et cetera, and becomes independ-
ent of the involvement of humans. Further, this process
should be open to any kind of crowdsourcer as well as
any kind of crowdfunder; hence, it should integrate any
type of device capable of automated computation, not
only servers or desktops or smartphones, but servers and
desktops and smartphones.

The human factor can be reintroduced by extending the
actual crowdsourcing process with social aspects such

as a community with friends, awards, et cetera. Even

the original SETI@home supported a competitive com-
munity by providing a credit system and the possibility to
form competing teams, which return boosted the crowd-
sourcers’ willingness to provide processing time.

In this paper, we present an approach for providing crowd-
sourcing as a service. The main contribution is twofold:
First, we describe the concept of a generic, descentralised
and highly scalable crowdsourcing platform which simpli-
fies the development of crowdsourcing projects with spe-
cial focus on supporting heterogeneous devices as well as
any type of crowdsourcing with computable information.
For its implementation standard web technologies were
utilised. Second, we evaluate the crowdsourcing platform
with respect to scalability and performance.

Challenges

Considered as the evaluation scenario of the proposed
crowdsourcing architecture, location-based services can
profit especially from crowdsourcing. OpenStreetMap is a

prominent example of a crowdsourcing approach utilising
a steadily growing crowd of supporters, especially in well
developed areas, map data of high quality could be ag-
gregated within a very short time. According to [7], the
aggregated data provides better information than com-
parable solutions of commercial tenderers. An extension
to OpenStreetMap is the indoorOSM project?, providing
floor plans for indoor positioning and navigation. Floor
plans can be created by users. Further examples of indoor
projects are vast, e.g. OpenRoomMap [8].

Investigating existing solutions such as Amazon Mech-
anical Turk (AMT) or OpenTurk (OT), an extension of
AMT providing additional functionality for user man-
agement paying respect to the users capabilities and an
enhanced reward system, a clear demand for a reusable
crowdsourcing platform can be identified. However, solu-
tions — especially proprietary ones — generally tend to not
provide information in detail on how users are managed
and how crowdsourced data is stored, distributed and
processed on the one hand; e.g. it is unclear how data
and user information is aggregated, stored, distributed
and processed within AMT. On the other hand, undis-
closing solutions such as OT are specialised on specific
crowdsourcing domains? and therefore do not address the
general crowdsourcing demands which we want to ad-
dress. Further, the problem of who owns aggregated data
and the there from extracted information, as well as legal
issues such as privacy and data protection are not suffi-
ciently addressed, at least when applying German criteria.

Looking at the general problem of ascertaining required
data and motivating the crowd to continue participating

http://indoorosm.uni-hd.de/
20penTurk specialises on academic crowdsourcing scenarios.

in the crowdsourcing process, the following challenges can
be identified:

e client devices are used to ascertain the data,
e the crowd must be motivated,

e crowdfunding servers extract the required informa-
tion from the crowdsourced data,

e users must be identifiable in order to provide re-
wards, ban malicious users, et cetera, and

e submitted data must be traceable, reproducible and
verifiable.

Further, additional challenges can be identified by analys-
ing usage characteristics of well-established crowdsourcing
systems, such as Wikipedia, Kick-Starter, et cetera. Most
in common is a demand for posterior modification or re-
traction of submissions on the users’ side as well as a de-
mand for deterring and posterior sifting of submissions on
the crowdfunders’ side.

Important Terms

We assume the reader is aware of the basic concepts of
crowdsourcing. Additionally, we want to clarify some
terms which are important with respect to our approach:

e Crowdfunder
The person or entity requiring one or several re-
sources that are not locally available, but distrib-
uted within a flexible group of system entities, the
crowdsourcers.

e User/Crowdsourcer
An individual member of the crowd using a service
provided by the crowdfunder or an entity affiliated
with the crowdfunder, producing crowdsourced re-
sources as a side-effect of system usage or actively
providing resources to the crowdsourcing process.

http://indoorosm.uni-hd.de/

e Client
A device used by the user in order to participate in
the crowdsourcing process.

e (Crowdsourced) Data
A subset of (crowdsourced) resources. — Any type
of measurand ascertained and digitalised. Such
measurands may be physical readings, numerical
inputs, et cetera.

e (Crowdsourced) Information
Any type of knowledge extractable from (crowd-
sourced) data. Either the information is directly
contained in the data, or it can be computed as an
indirect result from the data.

e Submission
The dataset transmitted from the client containing
data on or determining the crowdsourced resources,
the user identification, a timestamp as well as some
means for legal authenticity (e.g. an electronic sig-
nature).

In general, we assume clients to transmit crowdsourced
data to the crowdfunders, whereas crowdfunders extract
information from this data. The terms ‘user’, ‘crowd-
sourcer’ and ‘client’ will be used synonymously; however,
one shall keep in mind that a crowdsourcer may use sev-
eral clients, while a client in the majority of cases should
only have one user.

Crowdsourcing Architecture

The identified challenges clearly show a demand for a
reusable crowdsourcing service interconnecting crowd-
sourcing clients and crowdfunding servers. In the follow-
ing section we give an overview of the platform and de-
scribe the details of major platform building blocks.

Crowdsourcing
Client

Crowdfunding
Server

Crowdsourcing
Client

Crowdfunding
Server

Distributed
Hash

Table SANE

Crowdsourcing Crowdfunding

Client

B ‘-Ej
\

I N

| ~

| |SANE]

|

|

Crowdsourcing as a Service
a {provided by distributed proxies)

I
I
I
I Server
I
|

m n

Figure 1: Architecture of the Crowdsourcing Platform

Platform Architecture

Following the goal to enable reuse of functionality for
crowdsourcing, we propose a general crowdsourcing archi-
tecture providing the crowdsourcing platform as a service.
An overview of the platform architecture is given in fig-
ure 1. The approach is based on a set of crowdsourcing
proxies, called Server Access Network Entities (SANE)
which act as intermediaries between Crowdsourcing Cli-
ents and Crowdfunding Servers. Thus, crowdsourcers are
not directly connected to crowdfunders but submissions
are always mediated by a SANE.

Designed as a generic component, the SANE is not be
bound to a particular crowdsourcing derivate, but provide
crowd and submission management for any derivate.
From the crowd’s perspective, members of the crowd are
able to participate in several crowdsourcing processes at
the same time using the same client device, while from
the crowdfunders’ perspective, submissions can be as-
certained from a vast and variable crowd without having
have to handle the crowd management. These aspects
are indicated as m:n-mapping in figure 1.

In the following subsections we describe the details of our
platform, namely the SANE architecture, the organisa-

tion of SANE components using a Distributed Hash Table
and how to adopt the crowdsourcing platform in a crowd-
sourcing project.

Server Access
Network Entity
(SANE)

- Client Manager
\ (Crowdsourcers)

)

Security

(client)

Crypto
Module user

= model
v |Signature

Module
| - Server Manager | |
.1 (Crowdfunders)

SANE
(O)—‘ L—4 DHT Maintainer ||
" (SANES)

Figure 2: Architecture of the SANE

Crowdsourcing Driver

(server)

Server Access Network Entity

The task of a Server Access Network Entity is to handle
the entire user, client and submission management for
multiple crowdsourcing projects by ensuring anonymity,
security, scalability, fault tolerance and performance. To
cope with these requirements, the SANE consists of a set
of modules as depicted in figure 2.

The crowdsourcing driver encapsulats any crowdsourced
read and write-access oriented towards the serverside.
It provides interfaces for crowdsourcing clients, crowd-
funding servers and to interconnect SANE instances. In

cooperation with a security module for encryption and
signature-handling, the crowdsourcing driver forwards cli-
ent related access to a client manager, and crowdfund-
ing server related access to a server manager. The latter
should conduct the actual call of setter methods on the
crowdfunding server, while the client manager would con-
duct any access to stored client data, such as the user
model representing the accessing client. As such accesses
should be legally binding and reproducible as defined for
the client access itself, it is necessary to ensure that all
involved components make use of appropriate security
modules, to the very least ensuring that all communica-
tion is signed and encrypted. In adition, the DHT main-
tainer module to enable a SANE proxy to participate in
a group of SANE proxies forming a distributed crowd-
sourcing platform as described in the next section.

Maintaining anonymity of crowdsourcing submissions to-
wards the crowdfunding servers is of imperative nature,

as well. Therefore, any write-access to the crowdfund-

ing servers is not only be proxied via the SANE, but also
re-signed and re-encrypted, ensuring that any submitted
data is traceable from the crowdfunding servers to the
SANE, only. Nevertheless, the SANE should store any
resigning and/or re-encryption, maintaining a legally bind-
ing reproducible trace of the data submitted.

Summarising, the SANE acts as a proxy for crowdsourcing
read- and write-access between clients and crowdfunding
servers, additionally storing all submissions of the clients
redundantly. Obviously, the original crowdsouring data are
stored on the crowdfunding servers. However, any submis-
sion is bound to a set of additional information, the iden-
tity of the client submitting, et cetera. These additional
data must never be stored on the crowdfunding servers
but is maintained in the user model of the SANE. Fur-

ther, the SANE shall be extensible for future community-
related additions, such as a bridge to social communities,
offering an extensible database for additional storage of
pseudonyms, email addresses, avatar images, et cetera.

For obvious reasons, granted access rights on crowdfund-
ing servers should be stored associated with user profiles.
Therefore, the SANE not only stores client related inform-
ation, but also lists of granted access rights in order to
enable any client to gather information on the granted
rights centrally.

Organisation of SANE Components

To ensure the scalability and fault tolerance of our crowd-
sourcing platform, the functionality is not provided by a
single proxy, but by a set of distributed SANE compon-
ents which cooperate to offer Crowdsourcing as a Service.
This raises questions of how to organise proxies and how
to assign crowdsourcing clients and crowdfunding servers
to particular SANE instances.

For our crowdsourcing platform we follow the approach
of proxies organising themselves utilising a distributed
hash table (DHT). DHTs have been well researched and
proven to be an efficient means of organisation of vast
numbers of nodes. Hence, it is very simple for the crowd-
funder to setup additional proxies, remove proxies or in-
tegrate a network with proxies of other crowdfunders.
For reasons of fault tolerance we suggest having SANEs
neighbouring in the DHT act as backups for each other.
The idea is depicted in figure 3, in which the ID-hash or
‘client ID’ respectively is the result of the hash compu-
tation on an exemplary ‘mylD" string. Within the DHT,
SANE 3 handles the hash area corresponding to the cli-
ent's ID-hash (solid clue); however, the neighbouring
SANE 2 and SANE 4 act as immediate backups (dashed
clues).

SANE 4 SANE1

myArea: [c-f] myhArea: [0-3]
lower: LB lower: [e-£]
upper: [0-3] upper: [4-7]
handle:] handle: [c-7]

SANE 2

SANE 3 . &)
myArea: [(5__5,‘.] % “myhrea: [4-7]
lower: [4'_—” /s lower: [0_—‘3j
upper: [c-f] upper: k?‘b,’;
handle: [®] handle:

1/
(;ifent
mylD: BeterMustermann
ID-hash: (bke29c00e7661del

fdeab795£49%bdab4
9ffcae5dd63d96d8
670b712360528c32

Figure 3: Exemplary DHT distribution of SANEs.

In our proof-of-concept implementation we utilised the
IMElIs of the smartphone client. Which identification
characteristic is used does not actually matter, it should
only be unique. — Anyhow, we are aware of the security
risks involved with basing IDs on an IMEI which is trans-
mitted unencrypted in most mobile networks. However,
for the proof-of-concept the IMEI was sufficient in or-
der to automatically provide an unique identifier for each
smartphone used in testing without having have to gen-
erate and assign usernames, et cetera. However, consid-
ering the described security and privacy issue as well as a
possible demand to expand the user profiles of the crowd-
sourcers with additional aspects such as awards, avatar

images, et cetera, introducing an unique username and
hashing over that username seems the simplest approach.

A general design problem arises in the simple DHT dis-
tribution not paying any respect to the users’ geographic
positions. However, it should be desirable to reduce com-
munication distances, hence automatically reducing com-
munication delays. When considering that Internet Pro-
tocol (IP) addresses are distributed following a well-defined
geographic schema by the Internet Assigned Numbers
Authority (IANA) and its regional internet registries, it
would make sense to use any accessing client’s |IP address
to determine their geographic location.

—_—

e
~ 00-1f.ch.sane.
example.com

/
| CHDHT

20-37.ch.sane.
example.com

.~ T40-57.de.sane.
/! example.com

/
| DE DHT

58-7f.de.sane.
example.com

/

a8-bf.ch.sane. /
example.com _ < example.com _ <

. 1

5]\ A o e

/ Client
Country-API ID-hash: (bbp29c0. . .

b8-cf.de.sane. /

DNS

Figure 4: Only two client requests are required to lookup the
geographically nearest SANE handling the client’s hash area.
The client is in Germany and not aware of local SANEs, but
knows the SANE handling its hash area in Switzerland and
contacts that SANE (1). The SANE determines that the client
is in a different region and which region that is (2 and 3). Via
the DNS the Swiss SANE locates the nearest German SANE
(4 and 5) and informs the client (6). Finally, the client
contacts the German SANE (7).

Therefore, it makes sense to divide the SANE distribution
into regional hash areas, too. When further extending
the now divided SANE distribution with a Domain Name
System (DNS) interface, easy lookup of the next nearest
SANE handling a client’s hash becomes possible. For this,
dynamic DNS host names can be utilised. The basic idea
is illustrated in figure 4.

Adopting the Crowdsourcing Platform

Considering the beforehand introduced, developing a
crowdsourcing project is very simple: The crowdsourcer
defines which data is to be aggregated and implements
an aggregation routine for the client device (e.g. logging
of gyroscope data) as well as a processing routine on the
server (e.g. extraction of movement patterns from gyro-
scope data). The rest is automatically handled by the
SANE, namely the user and submission management, and
user/client anonymisation.

To ease the setup process, we further suggest to utilise

only freely available and standardised server technology,
e.g. a server based on Linux, Apache, MySQL and PHP
(LAMP), and therefore also only standardised protocols.

Using communication based on the Hyper Text Trans-
port Protocol (HTTP) and limiting it to POST and GET
requests allows usage of existing infrastructures while at
the same time no special preparations to firewalls and
other network components are required when refraining
from using ‘exotic’ ports. Taking this idea even a level
lower, usage of XML or other special description lan-
guages can be limited to actual submission content, e.g.
a set of sensor data. All other information, especially on
success or failure of method calls, can be communicated
by the means of HTTP itself, i.e. by RFC 2616 (Section
10) status codes. Using such low level means of commu-
nication, the focus should be shifted to POST requests,

For maximum com-
patibility with existing
infrastructures and
firewalls, standard
HTTP communic-
ation as defined in
RFC 2616 (Section
10) should be utilised.

Limitation to a subset
of status codes — 200,
201, 202, 302, 303,
400, 403, 404, 409,
500, 501, 502 and
503 — accompanied
by status code ‘424
Failed Dependency’
from RFC 4918 (Sec-
tion 11) is sufficient.

Status 424 is required
in order not to simply
deny access to SANEs
for unregistered users
and crowdfunders,
but to inform of the
necessity of prior
registration.

as they transport variables within the HTTP header in
contrast to GET requests where encryption of the request
with the means of HTTPs is meaningless as the variables
and their contents remain in plain-text within the Uniform
Resource Link (URL) itself. This limitation to POST re-
quests allows simple encryption by means of secure HTTP
(HTTPs) without having the crowdfunder have to im-
plement encryption themselves. Analysing the aspect of
authenticated communication, the idea of placing signa-
tures into the HTTP packets seems rather simple, but it
is effective. — An example for the designed HTTP com-
munication is presented in figure 5.

As mentioned, the entire aspect of the actual crowd-
sourcing management — e.g. provision of rewards to the
crowd, holding back submissions for sifting, et cetera —
is provided by the proxies, enabling crowdfunders with
limited knowledge of or limited resources for crowd and
submission management to ascertain crowdsourced data.

CS-Client HTTP/1.1 POST SANE
‘ ‘

(via HTTPs)

o Crowdsourced Data |
\i Client

Client Credential Credentials
Verification

& HTTP/1.1 POST

Anonymisation (via HTTPs)
Crowdsourced Data

"7 HTTP/1.1 202 Accepted Anonymous
(via HTTPs) Submission ID Proxy
& Credentials

Proxy Credentials Verification

Submission
Processing

(via HTTPs)

—
|
|
£
3
T
5
S
8
o
x
e

Figure 5: Exemplary communication sequence for a successful
submission. Only standard HTTPs communication is utilised.

The proposed SANE unites the management of the crowd,
the management of crowdsourced data and anonymisa-

tion features. Any individual from the crowd is identified
on user and device level by unique credentials as well as a
hash identifier equally distributing all users over the DHT.
SANEs handling intersecting sets of the hash distribution
exchange user/client data via asymetrically encrypted and
signed HTTPs connections. Each device is assigned an
unique submitter identification which is transmitted to
the crowdfunder instead of the actual identification. To-
gether with unique submission identifications, deterring
and posterior sifting of submissions is enabled without
disclosing the submitters identity to the crowdfunder.
Inversly, via the unique submitter identification, reward-
ing and blocking of users is possible. Based on asymet-
ric exncryption keys, a well defined group of maintainers
is enabled to identify submitters in case of legal issues,
e.g. police requests. Of course, any individual from the
crowd can operate multiple devices; however, currently

any device can only have one user®.

Proof of Concept

The stipulated SANE was successfully implemented as

a web server application in PHP (application logic) and
MySQL (data storage), and deployed on a standard LAMP
web server; in our test setting a cloud virtual private
server (Cloud-VPS) with up to 3GHz CPU and 4GB RAM
running Linux 2.6.32-41-server x64, Apache httpd 2.0,
MySQL 5.1.63, and PHP 5.2.12-nmm4.

As memory consumption in means of RAM seems to be
the bottleneck of most Apache servers rather than CPU
speed, memory consumption was considered in the earli-
est stages of prototyping. The memory consumption of
object-oriented PHP presented itself to be much higher

30nly after our proof-of-concept implementation was com-
pleted we were made aware of this detriment by the introdcution of
Android 4.2 Jelly Bean in November 2012.

compared to structured PHP (a factor of 3 could be
measured). This can be explained by the RESTfull re-
quest/reply philosophy of the communication at hand:

e Any communication between clients and SANEs is
finalised with one request and one reply,

e in default, communication between SANEs and
servers is finalised with one request and one reply;
however, situation with two requests and replies are
possible, and

e most of the communication between SANEs is final-
ised with one request and one reply.

Therefore, no demand to keep states, objects, et cetera
over several requests and/or replies arises, especially as
all objects created when handling a request are destroyed
after finishing the computation of the reply. Even fur-
ther, the computation strategy followed is linear; hence,
object-orientation would have only created unnecessary
overhead such as object control headers, object reference
pointers, et cetera. In prevalent code classification, the
strategy followed is classified as imperative structured
programming with modularised includes*. Based in the
proxy-nature of the architecture, the application logic re-
quired can be reduced to a database extender and the
DHT organisation.

We implemented a crowdsourcing module for the Map-
Biquitous location-based service providing four use cases:
ascertainment of WLAN and GSM fingerprints, and cor-
rection of positioning data based on those two. — As de-
sired, the effort required from the crowdfunder in order to
setup the crowdsourcing process could be reduced to

e the provision of the actual crowdfunding server pro-
cessing the crowdsourced data,

4The ‘modularised includes’-part originates in the fact that the
code is organised into modules which are included on demand.

e the provision of the ascertainment logic on the
crowdsourcing clients, and

e the definition of data to be ascertained and the ne-
cessary data types thereof.

In our proof-of-concept the crowdfunding server (a WFS
server) already existed; hence, only the corwdsourcing
application logic for extraction of information from the
crowdsourced data, as well as communication with the
SANEs required implementation. The latter was a straight
forward realisation of the defined interface in HTTP.

A mobile device MapBiquitous application for the Android
operating system existed anyway, so merely the ascertain-
ment had to be added. Communication to the SANEs
could be ‘implemented’ by adding a SANE communica-
tion library to the Android application.

On the three SANEs deployed, the same crowdsourcing
module could be uploaded without any modification. This
module consisted of an interface definition containing

the required variables (i.e. names and types of data to

be ascertained) and a definition of immediate variable
tests to be conducted on the SANEs, e.g. check whether
a provided WGS 84 GPS position® was valid. The entire
rest (i.e. user and client management, et cetera) was us-
able out-of-the-box from the deployed SANEs.

Within our proof-of-concept implementation the interface
definition itself was a serialised PHP array of the data
definitions. This serialisation had to be provided to the
SANE module as is; however, for an actual deployment a
user-friendly frontend for the definition process is recom-
mendable.

5Global Positioning Ssystem coordinates are most commonly
procided in World Geodetic System (1984) format.

In summary, our proof-of-concept implementation was
able to easily prove the ease of crowdsourcing setup effort
for the crowdfunder.

Evaluation

We followed several concepts of solid evaluation to de-
termine feasibility of our proposal. From these, the feas-
ibility of crowdsourcing was investigated in context of
optimised positioning of the location-based service Map-
Biquitous in [2]. The performance and scalability of the
proposed SANE was investigated in [5]. Within this pa-
per, we want to focus on the ‘standard web servers' as-
pect of our approach by providing the evaluation results
for the Apache setup used.

The performance and scalability of our implementation in-
troduced earlier proved to follow the same characteristics
as any website deployed on comparable servers. However,
as it is hardly possible to measure scalability with hard
numbers since physical measurands are strongly correlated
to the hardware used, the connection speed, et cetera,

a comparative approach of evaluation seemed to be the
method of choice. Therefore, we compared our imple-
mentation with websites operating on the same or very
similar hardware. In terms of propagation the scalability
could then be estimated. — Measuring series for our test
setting were conducted for different amounts of parallel
client requests and were repeated ten times each. The
results were then averaged into one representative table.
The results for the test setting are visualised in figure 6
and clearly show a strictly linear correlation between the
amount of parallel client requests and the packet losses
(short-dashed, blue line) as well as the successful replies
(solid, green ‘200 OK' line as well as long-dashed, red
‘502 Bad Gateway' line). The saturation at about 5000
parallel competing requests breaks the linear correlation

and is due to the underlying Apache httpd web server
failing at that high degree of parallelism. — Note, the
packets labelled ‘502 Bad Gateway' are returned to cli-
ents whenever the request from the contacted SANE to
crowdfunding server is unsuccessful; however, the ori-
ginal request from the client to the SANE must be con-
sidered successful as it is processed and a valid HTTP
status code is returned.

-1
1000 s o e— O §*
. .
o
100 e o— 11! — i
; = o
o $
Ve
’]0_- f— .‘_.
®) 4
/
1@ B
1 10 100 1000 10000

Competing Client-Requests
@ Client received “200 OK"

@ - Client received “502 Bad Gateway"”
&~ Timeout / No Reply

Figure 6: Packet transmission statistics for the performance
and scalability test.

These results match expectations towards the underlying
web server and prove that the conceived SANE can be
considered a website deliverable by standard web servers.

Even further, the results can be matched to any website
with database usage and HTTPs communication on un-
derlying web servers with similar hardware specifications
as the database tasks at hand are comparable to those of
a content management system (CMS) or forum: Check
whether a user exists, check their access rights, retrieve or
store a submission, et cetera.

In fact, our database structure is very comparable to

that of a CMS with a forum — such as Joomla or Word-
press — with the only exception that it does not store tex-
tual posts and threads consisting of posts, but crowd-
sourced submissions (which compare to the posts) as
well as crowdsourcing processes (which compare to the
threads) encapsulating those submissions. — At no time
during our tests did the database turn into a bottleneck.

Additionally, however not unexpected, the results prove
that the architectural design of a network entity similar
to a website — i.e. using HTTPs communication with reg-
ular HTTP packets — is totally compatible with existing
infrastructures. At no time demand for modification of
firewalls, et cetera had arisen. Even further, correct func-
tionality of interfaces could be controlled with standard
web browsers such as Firefox, so no special tools were
required.

Originating in the proxy-like design of the architecture,

no significant® additional communication data overhead
emerged for clients utilising the SANE architecture for an-
onymisation purposes. However very expectedly, a proxy
delay time required to actually proxy the communication
is inevitable as the anonymisation of the clients require
that the entire connection is decrypted and verified as

60nly the identification token, a timestamp and the appropriate
signature had to be added to the request.

well as signed encrypted anew within the SANE. Due to
the interface definitions present on the SANEs, any re-
quest normally addressed towards a (crowdfunding) server
could be proxied via a SANE and therefore concealing the
originating client’s identity from the server.

Outlook

By the means of crowdsourcing complex tasks in multiple
application domains can be solved. However, even if there
is a large set of commonalities shared in many projects,
generic infrastructures introducing reusable crowdsourcing
functionality as well as user and submission management
can hardly be found. Additionally crowdsourcing is mainly
investigated at application level.

The proposed generic crowdsourcing platform relieves
crowdfunders from recurrent tasks of user and device
management, submission management, anonymisation,
traceability of crowdsourced data, et cetera with utilisa-
tion of simple existing technologies available on standard
web servers. Thus, development of crowdsourcing projects
can be simplified and reduced to the definition of data

to be ascertained and implementation of ascertainment
applications for the involved client devices.

Currently, the SANE architecture is used by the Map-
Biquitous location-based service to crowdsource WLAN
and GSM fingerprints, correct data of indoor positions,
and provide anonymisation to users not participating in
the actual crowdsourcing process.

In further research work and student theses we extend
the SANE architecture’s utilisation to an automated road
condition monitor for cyclists based on gyroscope and
positioning data, as well as an automated canteen queue
monitor based on WLAN client count and sound level.

Acknowledgments

The authors wish to thank the many contributors of the
MapBiquitous project. Jan Scholze developed the con-
cepts and prototype of the initial system and desktop cli-
ent during his student and master thesis. Students of the
practical course on development of mobile and distributed
systems, Kay Werner, Christoph KeBler and Sina Grunau
implemented and evaluated the initial Android prototype
and server-side components, enabling easy extension to-
wards crowdsourcing.

References

[1] Alonso, O. ‘Perspectives on Infrastructure for Crowd-
sourcing'. Workshop on Crowdsourcing for Search and
Data Mining (February 2011). CSDM 2011 @ WSDM
2011.

[2] Bombach, G. ‘Untersuchung von Methoden des ex-
pliziten CrowdSourcing fiir Location-based Services
in MapBiquitous'. Assignment Paper, TU Dresden,
December 2012.

[3] Brabham, D. ‘Crowdsourcing as a Model for Problem
Solving — An Introduction and Cases’. Convergence:
The International Journal of Research into New Media
Technologies 14, 1 (2008).

[4] Chatzimilioudis, G., Konstantinidis, A., Laoudias, C.,
and Zeinalipour-Yazti, D. ‘Crowdsourcing with Smart-
phones’. [EEE Internet Computing (IC '12) 16, Spe-
cial Issue (September/October 2012), 36-44.

[5] Hara, T. ‘Towards a reliable Architecture for Crowd-
sourcing in the Context of the MapBiquitous Project’.
Thesis, TU Dresden, October 2012.

[6] Howe, J. ‘Crowdsourcing: Why the Power of the
Crowd is driving the Future of Business’, first paper-
back edition ed. Crown Business, September 2009.

[7] Neis, P., Zielstra, D., and Zipf, A. ‘The Street Net-

work Evolution of Crowdsourced Maps: OpenStreet-
Map in Germany 2007-2011". Future Internet 4, 1 (12

2011), 1-21.

[8] Rice, A. C., and Woodman, O. J. ‘Crowdsourcing
world models with OpenRoomMap’. In PerCom Work-
shops (2010), 764-767.

	Introduction
	Challenges
	Important Terms
	Crowdsourcing Architecture
	Platform Architecture
	Server Access Network Entity
	Organisation of SANE Components
	Adopting the Crowdsourcing Platform

	Proof of Concept
	Evaluation
	Outlook

