Towards a Reusable Infrastructure for Crowdsourcing

Tenshi Hara, Thomas Springer, Klemens Muthmann, Alexander Schill
Computer Networks Group
Technische Universitdt Dresden, Faculty of Computer Science
Dresden, Germany
{firstname.lastname } @tu-dresden.de

Abstract—In the course of the last few years crowdsourcing has
received growing research focus due to its conception of solving complex
tasks with the help of a flexible group of contributors of whom each needs
to only contribute a simpler task part. Hence, the crowd can contribute by
collecting data from distributed locations, completing map information,
or voting on product ideas, et cetera. However, even though it is a
necessary conceptual feature, the participation of large numbers of users
with heterogeneous devices, generic infrastructures for crowdsourcing can
be hardly found. For example, the management of users, mobile devices
and contributed data has to be repetitively implemented in new projects.
To ease the development of crowdsourcing applications, in this paper
we propose a generic platform for simplified crowdsourcing deployment
while supporting diverse crowdsourcing scenarios, the ability to handle
large numbers of users and the involvement of heterogeneous mobile
devices. The focus therein is put on the deployment process. Hence, the
evaluation is based on an actual deployment, namely the migration of
Cyface, an existing crowdsourcing project build from scratch, into using
our proposed infrastructure.

I. INTRODUCTION

The idea of dividing complex tasks into manageable subtasks is
not new, e.g. early gatherers spread out in search of berries in small
groups. Once a promising gathering ground was located, the entire
group could focus on gathering; hence, the complex task of locating
the gathering ground was crowdsourced in simplified subtasks of
searching smaller territories.

This ancient idea of dividing and conquering complex tasks is
topical even today; however, located on a different level of tasks. The
growing complexity of modern applications, especially in mobilised
civilisations with smartphones, smart sensors, wireless sensor nodes,
etc. generates an almost insoluble mass of scenarios for data aggre-
gation, data processing, result extraction and task deployment. Often,
these kinds of challenges apply to limited resources situations, e.g.
non-profit, low budget or start-up organisations, but also education
and research. One then is dependent on the support of unsalaried or
minimal payment contributors.

And this is where crowdsourcing comes into play by providing
the crowdsourcer a means of distributing their tasks, and allowing
the contributors on demand access to individual tasks. Of course,
this requires a reliable infrastructure for task division, task distribu-
tion, result aggregation, result processing, result verification, reward
redistribution, community layout, et cetera.

A good definition of crowdsourcing was provided by Estellés-
Arolas and Gonzélez-Ladrén-de-Guevara in [1]:

Crowdsourcing is a type of participative online activity in which
an individual, an institution, a non-profit organization, or company
proposes to a group of individuals of varying knowledge, heterogene-
ity, and number, via a flexible open call, the voluntary undertaking
of a task. The undertaking of the task, of variable complexity and
modularity, and in which the crowd should participate bringing their
work, money, knowledge and/or experience, always entails mutual
benefit. The user will receive the satisfaction of a given type of need,
be it economic, social recognition, self-esteem, or the development

of individual skills, while the crowdsourcer will obtain and utilize to
their advantage that what the user has brought to the venture, whose
form will depend on the type of activity undertaken.

An example in recent years is the Berkeley Open Infrastructure
for Network Computing' (BOINC) which allows almost all of these
aspects to be addressed with exception of data aggregation. Another
example is Amazon Mechanical Turk? (MTurk); however, it is a
highly specialised solution in which control over the crowdsourcing
process must be surrendered to Amazon.

Therefore, we decided to design an open infrastructure [2], which
is deployable on standard web server infrastructures. This allows
the crowdsourcer to deploy corwdsourcing without having have to
facilitate a server dedicated to crowdsourcing alone; existing servers
can be utilised. At the same time, this enhances control over their
crowdsourcing process as it is deployed within their own sphere of
control, not on a third party server. This said, while still being able
to easily distribute tasks to an available crowd of contributors.

The paper is organised as follows: In the beginning we explore re-
quirements for a generic crowdsourcing platform and discuss related
work. Then, we present our concept for a reusable crowdsourcing
platform focussing on the deployment of crowdsourcing projects.
After that, we discuss how an existing crowdsourcing project, which
was built from scratch could profit from the migration to our generic
platform. Finally we draw a conclusion and present intended future
work.

II. REQUIREMENTS ANALYSIS

As more processes in business and research depend on the ag-
gregation and processing of quantities of data distributed in area as
well as type, we have identified some key requirements in order
to sufficiently acquit these dependencies. In our belief, a prime
factor of crowdsourcing success, is to actually make crowdsourcing
a feasible solution from the technology oblivious crowdsourcer’s
point of view. This can only be achieved when crowdsourcing is
an easily understandable and implementable process. Therefore, the
definition of crowdsourcing processes should be self-explanatory and
abstract enough in order to not derange potential crowdsourcers
in database, communication or user and data management details.
Easing deployment processes is a second step to successfully make
crowdsourcing an acclaimed process. Potential crowdsourcers must
be able to easily deploy their crowdsourcing process after having it
defined as described above. This requirement goes back to back with
abating crowd convocation; namely, the crowdsourcer should not be
burdened with finding their crowd for the crowdsourcing process.

The next requirement we believe is imperative is having the
crowdsourcers maintain control over their own crowdsourcing pro-
cess. Crowdsourcers should be enabled to have control over their

Thttp://boinc.berkeley.edu/
Zhttp://aws.amazon.com/de/mturk/

Contributor | Requester
| " SANElibrary |
|
Distributed ' Requester |
Hash | SANE library
Table
| \ SANE |
I \ |
AN
Contributor : SANE | Requester
o e | e ey |
SANE fbrary | Generic Crowdsourcing Platform | L sANEibey |
m I_ _(provided by distributed proxies) __ n

Fig. 1. Architecture of the crowdsourcing Platform

crowdsourcing process from deciding where data is aggregated, who
collects it and where it is processed, e.g. on hardware under their
own physical control.

From a more pragmatic point of view, one can simply require
lessening programming efforts for potential crowdsourcers; hence,
allowing access to crowdsourcing to potential crowdsourcers coming
from other domains than IT.

However, from the crowd’s point of view, requirements differ.
We have identified a set of functional and non-functional require-
ments which partially contradict each other. In our belief, the key
requirements include but are not limited to the following: Simple
acquisition of necessary applications, allowing installing no harder
than for any other application a user would expect; simple sign-up
process, in order to quickly start participating and acknowledging
something happens; single sign on (SSO), to seamlessly integrate
with existing applications in use; an emancipated choice of when
and where to participate in which crowdsourcing project, in order
to elevate the users’ self-awareness of what is happening on their
devices and when and where their data is transmitted or shared; choice
of anonymity towards the crowdsourcer, allowing participation and
rewarding without risk of exposure towards the crowdsourcer, ideally
allowing participation in crowdsourcing projects one would normally
not be eligible for; choice of disclosing achievements like badges,
points, high scores, et cetera in order to actively compete with other
members in the crowd and being able to ascertain one’s participation
in comparison to the rest of the crowd, or a selected subset of the
crowd; and of course, some sort of reward, be it monetary or ideally.
A non-universal requirement is abidance by highest standards of
privacy and data protection.

Combining crowdsourcers’ and the crowd’s requirements into a
set of requirements towards the system proves challenging. For the
concept presented in this paper, we have endeavoured at fulfilling the
intersecting set of maximum size.

III. CONCEPT

The basic idea of our approach is to identify functionality shared
in a multitude of crowdsourcing projects and to provide it as a
reusable component. Thus, the provided infrastructure can not relief
the requester from the burden of implementing a client component
(i.e. a Web application or mobile App) for interacting with the user
and a server component for processing submissions but we aim to
make the development and deployment of crowdsourcing projects as
easy as possible.

A. Architecture

Fig. 1 depicts the architecture of our generic platform. The main
component encapsulating the reusable crowdsourcing functionality it
called Server Access Network Entity (SANE). The responsibility of

a SANE is to handle the entire user, client device, submission man-
agement and forwarding for a multitude of crowdsourcing projects
ensuring their anonymity, security, fault tolerance and performance.

As shown in figure 1 the generic crowdsourcing platform is organ-
ised as a federation of cooperating SANE components to ensure the
scalability and fault tolerance of the platform. The SANE components
are organising themselves utilising a distributed hash table (DHT),
proven to be efficient even with a vast number of nodes. Each
SANE instance maintains an area of hash values corresponding to
unique identifiers of each client device. Thus, each client device
can be mapped to a particular SANE instance. Neighbouring SANE
instances act as backup for each other to ensure fault tolerance.
Further details about the self-organisation of SANE components can
be found in [2]. World-wide distribution of SANEs and solutions to
the problem of finding a SANE handling one’s corresponding hash
area while minimising communication distances are described naively
utilising the Domain Name System in [3], and sophisticated utilising
a location-aware DHT algorithm in [4].

The capturing of submissions at the contributors side and the
processing and assessment of submissions at the requesters side is
performed by software provided by the crowdsourcing requester. To
ease the development of the contributor and requester software SANE
functionality can be accessed using the SANE library available for
the client and server side of crowdsourcing projects. In particular, the
SANE library provides functions for creating user accounts and user
authentication as well as for creating, encrypting, signing and sending
submissions according to well defined submission types to a SANE
instance. In addition, submitters can refer to previous submissions
and are able to withdraw them.

B. Submission handling

Submissions arriving at a SANE component are encrypted, signed
and contain the contributors credentials. The SANE instance decrypts
the submission, verifies the submission type, contributors credentials
and signature and stores each submission into a local database.
It further replaces the contributors credentials with an anonymised
submitterID, signs and encrypts it with its own keys and forwards it
to the requester. Finally, the requester can decrypt the submission and
verify the signature. The anonymised submitterID does not uncover
the identity of the contributor but allows the requester to associate
submissions provided by the same submitter. After processing, an
acknowledgement message combined with a feedback about the
quality of the submission is send to the SANE. Again this message
is encrypted and signed. Based on the feedback the SANE can rate,
reward or ban contributors. Further details about submission handling
can be found in [2].

C. Deployment

The entire deployment process can be summarised into six more
or less simple steps:

1) decide which data to aggregate, thereby define variables and
desired database structure,

2) define methods and targets,

3) consolidate definitions into a single crowdsourcing properties
file (XML file) to be uploaded to a SANE of one’s choosing,

4) deploy crowdsourcing derivate on SANE by calling a special
deployment method,

5) implement receiver on server under own control, and

6) make client module available.

The first step is inevitable and has to be conducted whether utilising
our concept, or not. Hence, as crowdsourcers are required to define

properties.xml
<crowdsourcing>
<datasets>
<dataset>

<methods> _>| L
3
Crowdfunder
8
CS Module @
4
6 o
CS Mpdule —_
Processing
Server
A 4
mni
nn H

=| = 5
App Shop Crowd

Fig. 2. Simplified deployment process: 1. conceive process, 2. deploy XML
specification, 3. deploy server-side module, 4. deploy client-side module,
5. download client app, 6. fetch task from SANE DHT, 7. submit result to
SANE DHT, and 8. forward result to server.

what they want to aggregate in order to achieve their goals, it is a
simple means of specifying it in term of variables for the data and a
comprehensive means of storing the so defined data.

In the second step, the crowdsourcers need to define in what
manner the defined data shall be aggregated. There might be only one
type of data to be aggregated in one particular situation, but often
different types of datasets for different tasks and situations occur.
Defining methodical rules for these altering conditions is natural, and
this step simply formalises them into methods that can be executed
within the crowdsourcing infrastructure.

Next up, the third step simply combines the results of steps one
and two into a machine readable format; namely, an XML file. All
that then needs to be deployed into the crowdsourcing infrastructure
then is this file; hence, having the infrastructure handle the rest
automatically.

Following, the fourth step is the actual deployment of the crowd-
sourcing process within the crowdsourcing infrastructure. As the
SANEs are distributed in a self-organising Distributed Hash Table,
it is sufficient to instantiate the deployment on one SANE. The rest
can then be handled automated.

On a side note, one needs to mention that these four steps
can be provided by one integrated user-frontend. Within that, the
definition of crowdsourcing processes can be reduced to a simple
click&deploy task, ideally utilising friendly drag&drop techniques.
However, simple the interface, providing this functionality has not
been in our research focus, yet. Nevertheless, one of the next research
tasks of ours is providing this type of graphical user interface.

As easy as the first four steps present themselves, in this conceptual
design, the last two steps remain as challenges for potential crowd-
sourcers. Programming skills are required for the aggregation and
reception of data. However, corresponding server-side and client-side
modules handling the communication and distribution details of the
crowdsourcing infrastructure are currently in development, reducing

-
EVALUATION
nutiteq

Fig. 3. Example of the current Cyface client application.

the final demands to core conception and implementation tasks
that are inevitable. Easing of the provision process in this manner
helps potential crowdsourcers to focus their time and effort on the
before mentioned inevitable tasks, namely conceiving the conceptual
crowdsourcing process (what from whom, where and when?), the
conception and implementation of the data aggregation sub-process
(client-side front- and backend), the conception and implementation
of the data processing sub-process (server-side backend), as well
as the conception and implementation of the information extraction
(result computation) on the processed data (server-side frontend). —
The entire handling of the crowdsourcing process is removed from the
crowdsourcers programming scope; hence, easing the development
manifold.

The deployment process as well as an exemplary task provision
and result submission is depicted in figure2.

IV. EVALUATION

We demonstrate the applicability and advantages of our generic
crowdsourcing platform with the discussion of the migration of a
proprietary crowd sourcing system called Cyface.

A. The Cyface Crowd Sourcing Application

The Cyface Project is a service to increase cycling comfort. The
problem it tries to address is the poor quality of many streets
encountered, especially in urban areas. In contrast to cars and other
vehicles, bikes are not fitted with enough suspension to make driving
cobblestone roads for example comfortable. Additionally suspension
also requires more energy, which bikers are not so fond of spending.
This is a problem especially for E-Bikes which results in drastically
reduced range if the wrong roads are taken.

The goal of Cyface is to provide a mobile app that may be used by
the crowd to capture data about street quality via smartphone sensors.
This data is collected and aggregated to draw a complete picture of
the street quality for some region and update this picture as street
quality increases or decreases due to repairs or use. Using this data
it is possible to create a navigation software capable of providing
not only a short route but also a comfortable one. Figure 3 shows a
screenshot of how the current application looks like.

Currently our app is implemented from scratch and sends its data
directly to a central Cyface server for analysis. The same server is
also used to send the aggregated data back to the app for visualisation
purposes.

B. Cyface — SANE Integration

Integrating Cyface with the SANE infrastructure requires three
distinct adaptations to the current infrastructure.

At first we need to write the interface description as described
in Section III-C. The current Cyface mobile application provides its
data via a JSON-Array using an HTTP-REST Post request directly on
the Cyface server. There are two ways to declare this transportation
using the SANE XML description. One way would be to extract the
different variables from the JSON format and declare each one as a
separate variable. This way it becomes easier to get an overview of
the required parameters via the interface description as well as view
the raw data inside the SANE database. It also lays the foundation
for extending SANE with review functions working on the data
transmitted by the crowd. The second approach is to declare the
whole payload of one data recording in a single payload variable.
This second approach has the advantage that it becomes possible to
encrypt the whole payload as well as the advantage that the data
processing interface on server side may continue to work with the
current format.

Considering the two before mentioned options, an exemplary XML
specification matching the Cyface dataset like {axv:0.1,%ay":0.3,"az":
0.2,"gpstime":2014-09-08T14:48:27:815+02:00,"1at":23,"lon":165, "speed":5.1, "label":
"mountainbike", "vecx":3.1,"vecy":2.7,"vecz":6.5,"2z":0.1,"time":2014-09-08T13:47:
15:758+02:00}, {"ax":0.1,"ay":0.3,"az":0.2, "gpstime":2014-09-08T14:48:27:815+02:
00,"lat":23,"lon":165, "speed":5.1, "label":"mountainbike", "vecx":3.1, "vecy":2.7,
"vecz":6.5,"z":0.1, "time":2014-09-08T13:47:15:758+02:00}, ...] (1e an array of
variable element count over a defined set of variables) is shown
for the multiple variables variant in listing 1 and for the single
variable variant in listing 2. — Note, for the current version of our
XML specification, the variant using multiple variables allows fine
granular constraints in form of regular expressions for each variable,
whereas the single variable variant only supports the constraint
“JSON,” and no finer constraints can be defined for the elements of
the JSON-string. The variable amount of array elements represented
in the exemplary JSON-string are respected by the “Array(0)”
constraint (array of minimum length 0).

Iis‘tjng 1. Shortened XML for m!]]tip]e variables
<?xml version="1.0" encoding="UTF—8" 7>
<crowdsourcing xmlns:xs="http: //www.w3.o0rg/2001/XMLSchema—instance”
xmlns="http: //the—tester .de/SANE/0.1"
xs:schemaLocation="http: //the—tester .de/SANE/0.1
weoohttp://the—tester .de/SANE/O. 1. xsd™>
<name>Cyface</name>
<l — ... —
<datasets>
<dataset name="RoadQuality >
<row name="ax” type="DECIMAL(2,1)” />,
<= =
<row name="time"”
</dataset>
</datasets>

type="VARCHAR(29)" />

<methods>
<method name="submitRoadQuality” type="Setter”
dataset="RoadQuality” target="SANE”

stub="false” deprecated="false™
<description>...</description>
<optionalSystemVars />
<input>
<var name="ax” minsize="3" maxsize="3">
<constraints>\d\.\ d&& Array (0)</constraints>
<description>The X—axis acceleration.</description>
</var>
< ... >
<var name="time” minsize="29" maxsize="29">
<constraints>\d{4}\—\d{2H {2} T\ d{2} H{3}\d{3}+\d{2}:\d{2}
&:&: Array (0)</constraints>
<description>The device time (may be offset to gpstime).</description>
</var>
</input>
<outputEncoding>text/plain</outputEncoding>
</method>
</methods>
</crowdsourcing>

A second step requires the adaptation of the current mobile
application to communicate with the SANE instead of with the
Cyface server directly. This involves adding appropriate headers to

the client applications Post request. Since the SANE uses an HTTP
based communication as well the remaining adaptations should be
straight forward.

Listine 2. St | XML inele variabl

<?xml version="1.0" encoding="UTF—8" 7>
<crowdsourcing xmlns:xs="http: //www.w3.0rg/2001/XMLSchema—instance”
xmlns="http: // the—tester .de/SANE/0.1"
xs:schemaLocation="http: //the—tester .de/SANE/0.1
———-http://the—tester.de/SANE/O.1.xsd"™>
<name>Cyface</name>
<l ... —=
<datasets>
<dataset name="RoadQuality™>
<row name="data” type="VARCHAR(2048)” />
</dataset>
</datasets>
<methods>
<method name="submitRoadQuality” type="Setter”
dataset="RoadQuality” target="SANE”
stub="false” deprecated="false™
<description>...</description>
<optionalSystemVars />
<input>
<var name="data” minsize="0" maxsize="2048">
<constraints>JSON/constraints>
<description>The road quality data.</description>
</var>
</input>
<outputEncoding>text/plain</outputEncoding>
</method>
</methods>
</crowdsourcing>

Finally as a third step it is necessary to adapt the server interface
to receive SANE messages in exchange for the current direct com-
munication. For a short transition period it would even be possible
to run both interfaces simultaneously and receive messages from the
previous application as well as the new one.

In addition to the crowd based data capturing the Cyface server
provides an interface to fetch aggregated data. This interface is used to
realise the street quality visualisation and navigation functions. Since
it requires no data acquisition itself and can be used anonymously it
does not need to be proxied by SANE. Instead applications using the
Cyface data are able to access this REST interface directly as it is.

C. Advantages of the Cyface — SANE Integration

We see several advantages when using the Cyface — SANE
integration instead of the direct communication between the Cyface
application and the Cyface Server. Most of these advantages result
from the typical requirements for an m:n communication between
clients and servers, which are satisfied by using a mediator like the
SANE infrastructure. In contrast to direct communication the Cyface
application and corresponding servers are loosely coupled, which
simplifies exchanging or modifying either end of the communication.

In addition the SANE infrastructure relieves the Crowdsourcer of
managing user accounts, thereby providing the user with a hopefully
trusted third party. The big advantage for the user of the Cyface
application is increased privacy, since the Cyface server provider
gets only anonymised data from the SANE server. Due to the loose
coupling it becomes possible to move the Cyface servers from one
physical location to another, without breaking crowd data capturing.
Even though the clients are notified of the servers current inactivity,
they would still be able to transmit data to the SANE infrastructure
for intermediate storage. As soon as the server comes back online
it is able to fetch the accumulated data and continue its work on a
complete data set.

V. RELATED WORK

In IT, crowdsourcing is a rather young concept in the field
of computer science, emerging in the late 1990s or early 2000s
respectively. For example, the SETI@home project, a Crowdworking
derivate, was released to the public on 17 May 1999, making the
concept of a distributed calculation known to the general public. After

that, manifold derivates of crowdsourcing have been investigated,
e.g. [5], [6]. Commercial uses of crowdsourcing include but are not
limited to Crowdvoting, e.g. Threadless.com®, Crowdwisdom , e.g.
Wikipedia®, Crowdfunding, e.g. Kickstarter’, Crowdpurchasing , e.g.
Letsbuyit.com®, as well as Crowdworking, e.g. NASA’s 2006 Stardust
project’.

Social sensing can be considered as a particular type of crowd-
sourcing. Focussing on humans and data strongly correlated to
humans and their social surroundings [7]-[9], allowing information
retrieval in a social context.

Another IT-area of immense interest for crowdsourcing are
locations-based services. Exemplary, OpenStreetMap® utilises a
steadily growing crowd in order to create map data of high quality
within a very short time. The aggregated data even provides better
information than comparable solutions of commercial tenderers [10].
This allowedly limited list by itself already sufficiently reveals the
high potential of crowdsourcing in various IT areas. However, the
aspect of infrastructure targeted for this manifold of potential uses is
limited.

As mentioned earlier, the Berkeley Open Infrastructure for Net-
work Computing (BOINC) can be considered a well established
Crowdworking infrastructure solution. The original idea was to
provide an open source middleware for grid computing by means
of distributed private volunteers. However, in our definition this
is Crowdworking; hence, Crowdworking projects operate LAMP®
systems, providing work units to the crowd, receiving calculated
results, integrating results of different members of the crowd into one
dataset, as well as rewarding credit points. On the side of the crowd,
each client consists of shared components for BOINC communication
beneath an exchangeable client-side application logic differing from
project to project. This allows participation of one client in several
projects at the same time; processing time is shared amongst each
application following a user-definable set of rules. Nevertheless,
BOINC is entirely focussed on Crowdworking; data/information ag-
gregation, et cetera is not considered. — Here we propose a more gen-
eralised concept, supporting all derivates of crowdsourcing, including
Crowdworking. Due to the limitations of our current prototype, it
is only important to operate on TCP/IP networks with HTTP as
communication protocol and SSL/TLS encryption and authentication
at this time. Hence, our proposed concept also requires no less and no
more than LAMP servers. Further, the application logic is separated
into a client part — the ascertainment logic — and a server part — the
information extraction — for each crowdsourcer. While BOINC has
the clients communicate with the crowdsourcer’s servers directly and
provide credit information from the BOINC website, our proposal
envisages the SANE proxy to be mandatory for crowdsourcing-
related client-server communication as well as user management.
Our proposal only requires the crowdsourcer to provide data-related
functionality (aggregation and processing), while all other tasks are
handled by the SANEs within the crowdsourcing architecture.

Another well established infrastructure example is Amazon Me-
chanical Turk (MTurk). As [11] precisely summarises, this com-
mercial infrastructure can be utilised for many beneficial properties;
namely, crowdsourcing processes can be conducted very fast and with

3http://beta.threadless.com/
“http://en.wikipedia.org/wiki/Main_Page
Shttp://www.kickstarter.com/

Shttp://www.letsbuyit.com/
"http://stardust.jpl.nasa.gov/home/index.html
8http://www.openstreetmap.org/

9Web-server operating on Linux, Apache httpd, MySQL and PHP

restricted financial means, the result quality is of high acceptability,
and the diversity of workers is very good. However, Mechanical Turk
has several known drawbacks [12] which shall not be recollected
here. — Our concept differs in key aspects from MTurk. Rather than
awarding payments to the crowd, we wish to focus on subliminal
rewards. The focussed reward desire of any member of the crowd
should be fulfilled by using the infrastructure a priori, not by using
the infrastructure in order to be rewarded. Hence, from the users’
point of view, having delivered functions the crowd desires anyway,
the crowdsourcing process is merely a side product of application
utilisation. For example, using a navigation application could be the
focus of the user; by using our infrastructure, map corrections are
provided to the map service provider. In return — and this is the
reward — the user gets enhanced maps. Of course, we also strive to
support classic MTurk-like reward-based crowdsourcing processes;
however, rewarding in means of crowd points, et cetera is not
supported, yet. The challenge will be, to provide a rewarding system
with comparable rewards over diverse crowdsourcing processes.

A not to be neglected aspect of crowdsourcing processes is the
workflow and division of tasks into subtasks per crowd member.
Turkomatic [13] addresses these issues by attempting to provide a
means of crowdsourcing workflow design for MTurk. Even though
imperative, this workflow aspect is not addressed in our concept.
Of course, we deem automated division of tasks within the crowd-
sourcing infrastructure important in order for the crowdsourcer not
having have to handle division themselves, so this aspect needs to be
addressed in future updates of our concept. Another aspect currently
not supported by our concept is related to the prior. Having tasks
subdivided automatically yields the question of how these tasks are
processed. In general, parallel processing is desirable; however, one
might deem iterative processing fruitful. Exactly this problem is
addressed by TurKit [14]. Pending validation as imperative feature,
automated division into iterative processing units could prove a
desirable extension of our concept.

Very similar to our concept proves Curio [15]. Important insights
identified are equivalent to ours, and the drawn conclusion may
surpass our current conceptual state; however, Curio focusses on
observable crowdsourcing processes with real-time interventions from
the crowdsourcer, whereas we strive towards an entirely automated
crowdsourcing process in which the crowdsourcer may or may not
intervene at post-submission time'®. Additionally, Curio focusses
merely on Human processing, where in contrast our proposed solution
shall support any type of client-side application. Especially, this in-
cludes automated background crowdsourcing which does not require
user interaction; in [3] we declared these types of crowdsourcing
“Unaware Direct Crowdsourcing” (UDC) and “Unaware Indirect
Crowdsourcing” (UIC), in contrast to aware (in)direct derivates
(AxC).

Of growing interest we also identify support of mobile crowds, both
in human as well as IT resources, namely supporting devices bound to
mobile communication technologies. [16] points out some interesting
aspects to this type of support, especially in use cases of taking
advantage of current mobile abilities, e.g. location-based tracking.
However, the manifold possibilities are limited when confronted
with unsteady or slow connections, et cetera. — We aim to focus
these issues in the future; for example, by the use of a token-based
submission system, or by utilising a transport protocol optimised for
unstable (wireless) connections. From the perspective of our current

100f course, when shortening the post-submission time to a very minimum,
a quasi real-time intervention is thinkable.

SANE system, the utilised transport protocol is irrelevant to the
communication protocol used, i.e. HTTP with SSL/TLS.

VI. CONCLUSION

In this paper we presented an extensible, self-managing crowd-
sourcing infrastructure in order to ease deployment of crowdsourcing
processes. Basic requirements are fulfilled, and the successful migra-
tion of an existing application into utilising our infrastructure proves
the concept valid. However, major aspects need to be addressed
in future refinement to the concept, e.g. allowing definition of
campaigns, division of tasks, a reward system, or a more refined
constraint specification for data.

REFERENCES

[11 E. Estellés-Arolas and F. Gonzalez-Ladron-de-Guevara, “Towards an
integrated crowdsourcing definition,” Journal of Information Science,
02 2012, dOI: 10.1177/016555150000000.

[2] T. Hara, T. Springer, G. Bombach, and A. Schill, “Decentralised Ap-
proach for a Reusable crowdsourcing Platform utilising Standard Web
Servers,” in PUCAA 2013: First International Workshop on Pervasive
Urban Crowdsensing Architecture and Applications (UbiComp 2013
Workshops), 2013.

[3] T. Hara, “Towards a reliable Architecture for crowdsourcing in the Con-

text of the MapBiquitous Project,” Thesis (Diplomarbeit), Technische

Universitit Dresden, October 2012.

S. Zhou, G. R. Ganger, and P. A. Steenkist, “Location-based node

IDs: enabling explicit locality in DHTSs,” Carnegie Mellon University

— Research Showcase @ CMU, vol. 2003, http://repository.cmu.edu/cgi/

viewcontent.cgi?article=3206&context=compsci.

[5] D. Brabham, “crowdsourcing as a Model for Problem Solving — An
Introduction and Cases,” Convergence: The International Journal of
Research into New Media Technologies, vol. 14, no. 1, 2008, DOI:
10.1177/1354856507084420.

[6] J. Howe, ‘“crowdsourcing: Why the Power of the Crowd is driving
the Future of Business,” 2008, http://www.bizbriefings.com/Samples/
IntInst%?20---%20crowdsourcing.PDF.

[4

=

[7

—

R. Ali, C. Solis, M. Salehie, I. Omoronyia, B. Nuseibeh, and W. Maalej,

“Social Sensing: When Users Become Monitors,” ACM D.2.2 [Softwa-

reengineering]: Design Tools and Techniques, vol. ESEC/FSE’11, 09

2010, ACM Code: 978-1-4503-0443-6/11/09.

[8] A. Madan, M. Cebrian, D. Lazer, and A. Pentland, “Social Sensing for

Epidemiological Behaviour Change,” ACM 1.5.4 [Pattern Recognition]:

Applications;, ACM H.4.m [Information Systems]: Miscellaneous, vol.

UbiComp’10, 09 2010, ACM Code: 978-1-60558-843-8/10/09.

O. Telhan, “Social Sensing and Its Display,” Master Thesis, Mas-

sachusetts Institute of Technology, 08 2007, Bilkent Univeristy, Ankara.

[10] P. Neis, D. Zielstra, and A. Zipf, “The Street Network Evolution of
Crowdsourced Maps: OpenStreetMap in Germany 2007-2011,” Future
Internet, vol. 4, no. 1, pp. 1-21, 12 2011. [Online]. Available:
http://www.mdpi.com/1999-5903/4/1/1/

[11] O. Alonso, “Perspectives on Infrastructure for crowdsourcing,” in CSDM
2011: Workshop on crowdsourcing for Search and Data Mining (WSDM
2011), Hong Kong, China, 2011.

[12] P. Ipeirotis, “Plea to Amazon: Fix Mechanical Turk,” Blog,

10 2010, http://behind-the-enemylines.blogspot.com/2010/10/

plea-to-amazon-fix-mechanicalturk.html.

[9

—

I

[13] A. Kulkarni, M. Can, and B. Hartmann, “Collaboratively crowdsourcing
Workflows with Turkomatic,” in Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work, ser. CSCW ’12.
New York, NY, USA: ACM, 2012, pp. 1003—1012. [Online]. Available:
http://doi.acm.org/10.1145/2145204.2145354

[14] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “TurKit:
Tools for Iterative Tasks on Mechanical Turk,” in Proceedings of the
ACM SIGKDD Workshop on Human Computation, ser. HCOMP °09.
New York, NY, USA: ACM, 2009, pp. 29-30. [Online]. Available:
http://doi.acm.org/10.1145/1600150.1600159

[15] E. Law, C. Dalton, N. Merrill, A. Young, and K. Z. Gajos, “Curio: A
Platform for Supporting Mixed-Expertise crowdsourcing,” http://www.
aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/viewFile/7534/7471.

[16] D. Schlagwein and F. Daneshgar, “User Requirements of a Ccrowdsourc-
ing Platform for Researchers: Findings from a Series of Focus Groups,”
in 18th Pacific Asia Conference on Information Systems (PACIS 2014),

Chengdu, China, 2014.

