On Providing Crowdsourcing as a Service

Thomas Springer, Tenshi Hara, Alexander Schill
Computer Networks Group
Technische Universitdt Dresden, Faculty of Computer Science
Dresden, Germany
{firstname.lastmame} @tu-dresden.de

I. INTRODUCTION

During the last years, crowdsourcing has been increas-
ingly used as means for solving complex tasks with the help
of a flexible group of contributors. As a result, more and
more crowdsourcing systems appear in the web. Compared
to a large number of crowdsourcing solutions build from
scratch, crowdsourcing platforms like Amazon Mechanical
Turk (AMT) or Open Turk (OT), an extension of AMT,
offer reusable services for crowdsourcing requesters and
contributors. Usually hosted in the cloud they provide
user management, allow requesters to create tasks from a
predefined set of task templates, and upload these tasks
to the platform. Contributors can search for appropriate
tasks and submit their contributions to the platform using
a web-based GUI. Submission processing is performed by
the crowdsourcing platform in the cloud, requesters can
just fetch results. In addition, rewarding of contributors is
handled by the platform.

While supporting reuse of crowdsourcing functionality,
these platforms suffer from serious limitations. Requesters
can define their tasks only dependent on the predefined task
templates of the platform which limits the type and complex-
ity of crowdsourcing tasks. In addition, since processing of
submissions is done at the platform, requesters do not have
full control over submission processing, but have to rely on
the algorithms provided by the platform. Moreover, these
platforms mainly support explicit crowdsourcing where users
actively contribute to the crowdsourcing process.

Many problem domains require more flexibility for task
definition and submission processing than provided by these
platforms. Especially, implicit forms of crowdsourcing are
required where users solve a problem as a side effect of
something else they are doing. A prominent example is
environmental sensing where a smartphone app submits data
sensed in the background. In this way users can contribute
to a crowdsourcing process just by using the app. No other
explicit activity is required by the user to participate in the
crowdsourcing process.

To overcome these limitations, we propose to separate
submission processing from basic crowdsourcing function-
ality for user and submission management. By introducing a
crowdsourcing proxy, reusable crowdsourcing functionality

fm—mm—
Contributor | : Requester
SANE library _ : | " SANE library
" |
Contributor L SANE
i : Distributed |:| | _Rf“f‘f'_stfr_
ibrary | Hash | SANE library
[SANE ||
! \\ |
Comeibwar | * | [Reauester.
SANE library I Crowdsourcing as a Service | SANE library
m L oy dtibutedproves) | n
Figure 1. Architecture of the Crowdsourcing Platform

can be provided as a service while submission process-
ing is left to the requester to support a higher flexibility.
Crowdsourcing clients can be implemented based on a
generic library for communication with the crowdsourcing
proxy to support arbitrary types of explicit and implicit
crowdsourcing.

II. APPROACH

To allow the reuse of functionality for crowdsourcing,
we propose a general crowdsourcing architecture providing
crowdsourcing as a service. To separate submission process-
ing from user and submission management we introduce
a proxy component, called Server Access Network Entity
(SANE), designed to be easily set up by anybody operating a
web server with database and SSL components. Its purpose
is to encapsulate generic crowdsourcing functionality and
provide it as a service to contributors and requesters. In
particular, the SANE handles the entire user, client device
and submission management for multiple crowdsourcing
projects to ensure anonymity, security, fault tolerance and
performance. Different to approaches as followed by AMT
or OT, submission processing is not part of the SANE
functionality. Instead, submissions are forwarded to the
requesters computing infrastructure, as shown in figure 1.

1) Crowdsourcing project setup: Since the SANE sup-
ports multiple crowdsourcing projects in parallel, as a first
step requesters have to set up a crowdsourcing project
by implementing and deploying the logic for submission
processing. Either the requesters can use their own server
infrastructure or rely on cloud resources. In addition, the
submission capturing logic has to be implemented. This

is usually done by implementing an entire application or
integrate crowdsourcing into an existing application!. Thus,
the requester can foresee any type of explicit or implicit
crowdsourcing.

As a next step, the requesters have to register the sub-
mission types they expect to be forwarded by the SANE.
A submission type is defined by an unique identifier, a
description, a version number, a complex data structure
defining the submission, the data returned in case of success-
ful submission handling, as well as a set of error information
data sets. As a final step, the contributor has to gather the
crowdsourcing application from the requester.

During the deployment of the submission types requesters
and SANE also exchange keys for asymmetric signing and
encryption. Contributors also have to register with the SANE
to be able to participate in crowdsourcing projects. The Key
exchange is part of that registration procedure. After that
contributors can start to submit data to the crowdsourcing
project.

2) Communication flow for submission handling: As
already mentioned, submissions are always indirectly for-
warded via a SANE instance. Contributors create submis-
sions according to the submission type definition provided
by the requester. They are signed, encrypted and than sent
to a SANE instance. Submission data includes also the
contributors credentials.

The SANE instance decrypts the submission, verifies
the signature and contributors credentials and stores the
submission in a local database. It also verifies the submission
data using the submission type definition>.

Before forwarding, the SANE replaces the contributors
credentials with an anonymous submitterID. In this way,
requesters can assign submissions to anonymous contribu-
tors without the knowledge of their identity. After that, the
modified submission is signed and encrypted by the SANE
and forwarded to the requester. The requester decrypts
the submission, verifies the signature and start submission
processing which may include storing submission data.

According to the processing, an acknowledgement mes-
sage with result data is sent to the SANE which is again
signed and encrypted. Part of the result data could be an
assessment of the submission quality which would allow
the SANE to rate, reward or ban contributors. Finally, the
SANE forwards the acknowledgement to the contributor.

3) Self-organization of SANE instances: To ensure scal-
ability and fault tolerance, instead of a single proxy a set
of SANE instances is used which cooperate to offer the
crowdsourcing services.

'Based on the generic SANE access library applications for different
device types can be implemented. Currently, Android apps, Web and Java
applications are supported.

>The requester can also provide a key to the contributor so that the
contributor can encrypt the submission data. However, in this way the
SANE is unable to read or subsequently verify the submission.

Therefore, SANE instances organise themselves by util-
ising a distributed hash table (DHT) as shown in figure 1.
Proven to be an efficient solution for the organisation of vast
numbers of nodes, DHTs support simple setup of additional
proxies as well as removal of proxies. The DHT contains
the hashed clientID. According to the DHT approach each
SANE instance maintains a hash area corresponding to the
client’s ID-hash. To ensure fault tolerance neighbouring
SANE instances act as backups for each other.

A general design problem results from the fact that
simple DHT distribution does not consider users’ geographic
positions. To overcome this issue, we propose to divide
the SANE distribution into regional hash areas. Clients in
different regions can than be forwarded to the local region
by using DNS entries (For details please refer to [1]).

III. EVALUATION

To evaluate our approach we implemented the SANE as
a web server application in PHP (application logic) and
MySQL (data storage), and deployed it on a standard LAMP
web server. In our evaluation setup a cloud virtual private
server with up to 3GHz CPU and 4GB RAM, running Linux
2.6.32-41-server x64, Apache httpd 2.0, MySQL 5.1.63,
and PHP 5.2.12-nmm4 has been used. As a scenario for
evaluation the MapBiquitous® project — an integrated in-
door/outdoor location-based system — has been used. In our
setup an Android client has been used for capturing explicit
and implicit crowdsourcing submissions for updating Wi-Fi
fingerprints and position corrections.

In the course of measurements carried out based on
500 to 1000 clients and 3 SANE components, our SANE
implementation showed a strictly linear correlation between
the amount of parallel client requests, successful replies and
the packet losses up to a saturation point, which was reached
at 5000 parallel requests for our setup. Thus, measurements
proved that performance and scalability of our implemen-
tation follow the same characteristics as any website with
database usage deployed on a comparable server.

IV. CONCLUSION

In this paper, a generic approach for providing crowd-
sourcing as a service has been described. Using a crowd-
sourcing proxy, we propose to separate submission capturing
and processing from basic crowdsourcing functionality. In
this way a more flexible, secure and reusable crowdsourcing
service can be created.

REFERENCES

[1] T. Hara, T. Springer, G. Bombach, and A. Schill, “Decen-
tralised approach for a reusable crowdsourcing platform utilis-
ing standard web servers,” in PUCAA 2013: First International
Workshop on Pervasive Urban Crowdsensing Architecture and
Applications (UbiComp 2013 Workshops), 2013.

3http://goo.gl/eqIkG

