
Adapting Server Frameworks to
Support HTTP/� in Proxy Settings

Master Thesis

Junyu Pu
Dresden, ��th June ���6

Technische Universität Dresden
Fakultät Informatik
Distributed Systems Engineering
Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill
Supervisor: Dipl.-Inf. Tenshi Hara, Dr.-Ing. Thomas Springer

Declaration of Authorship

I hereby certify that this thesis has been composed by me and is based on my own work,
unless stated otherwise. No other person’s work has been used without due acknowl-
edgement in this thesis. All references and verbatim extracts have been quoted, and all
sources of information, including graphs and data sets, have been speci�cally acknowl-
edged.

Dresden, ��th June ���6

Contents

� Introduction �

� Background and Related Work �
�.� HTTP/� Protocol . �

�.�.� The Limitation of HTTP/�.� . �
�.�.� New Feature of HTTP/� . 6

�.� Proxy Server . �
�.�.� Proxy Types . 8
�.�.� Proxy Server Usage . �

�.� Data Compression Proxy . ��
�.�.� SPDY Protocol . ��
�.�.� Flywheel Data Compression Proxy ��

�.� Server Access Network Entity . ��
�.�.� Crowdsourcing Platform . ��
�.�.� SANE . ��

�.� Summary . ��

� Concept ��
�.� Before Upgrade to HTTP/� . ��

�.�.� TLS and ALPN . ��
�.�.� HTTP Request/Response . �8
�.�.� Header Compression . ��
�.�.� Server Push . ��

�.� Server and Client Support . ��
�.�.� Server Support . ��
�.�.� Client Support . ��

�.� Proxy Server Support . ��
�.� Implement Feasible Proxy with HTTP/� Setting �6

�.�.� General Architecture . �6
�.�.� Requirements of HTTP/� Proxy . ��
�.�.� Additional Features Support . �8
�.�.� Adapt Squid Cache Framework to SPDY alike Proxy ��

�.� Adapt SANE to Support HTTP/� . ��
�.�.� MapBiquitous Framework Support ��

� C�������

�.�.� Concept of SANE Support . ��
�.6 Summary . ��

� Implementation ��
�.� Upgrading to HTTP/� . ��

�.�.� Header Compression with HPACK ��
�.�.� Update curl to Support HTTP/� . �8
�.�.� Apache HTTP Server HTTP/� Support ��

�.� Build Proxy with HTTP/� C Library . ��
�.� Build General SPDY alike Proxy . �6

�.�.� Architecture . �6
�.�.� Integrate Squid and nghttpx . ��
�.�.� Con�gure Client Support . �8

�.� Adapting SANE to Support HTTP/� . �8
�.�.� Adapting SANE to Downgrade Proxy ��
�.�.� Adapting SANE to Straightforward Proxy ��

�.� Summary . ��

� Evaluation ��
�.� Header Compression Ratio . ��
�.� Evaluation on Proxy with HTTP/� Setting �8

�.�.� Architecture Performance In�uence �8
�.�.� SPDY alike Proxy Performance Evaluation 6�

�.� Evaluation of SANE with HTTP/� Setting . 6�
�.�.� Feasibility Proof . 6�
�.�.� Performance Evaluation . 6�
�.�.� Security Consideration . 66

�.� Summary . 6�

6 Conclusion 6�
6.� HTTP/� and Proxy . 6�
6.� SANE with HTTP/� Support . ��
6.� Recommendations and Future Work . ��

List of Figures ��

List of Tables ��

Listings ��

References ��

� Introduction

The Hypertext Transfer Protocol (HTTP) is the foundation of data communication for
the World Wide Web. Last few decades, the Internet boosted prosperously and provided
thousands of contents and services. Nowadays, a web page may contain hundreds of
resources and other media from different domains. However, HTTP/�.� is outdated and
designed for less complexity page decades ago and is not optimal for today’s Internet. At
this very point, we need a new mechanism for faster connection, smother communica-
tion and a more data ef�cient method to transmit data on the World Wide Web.

Google introduced SPDY protocol in ���� and brought some breakthroughs improve-
ments to HTTP. Since then, the Internet Engineering Task Force (IETF) introduced HTTP/�
[BPT��] in May, ����. This �rst draft of HTTP/� is using SPDY as the working based for
its speci�cation drafts and editing. It presents a feasible mechanism to ful�ll the require-
ments of nowadays web technologies. SPDY mainly focused on improving the web page
loading time and communication ef�ciency. The adapting works are promising, most of
the Internet services and web server software already updated to support this new pro-
tocol. For example, Apache Web server and nginx web server added support for HTTP/�
with recently updates.

The HTTP/� protocol will renovate the whole World Wide Web during the next decade.
Not only the web servers and clients need to support HTTP/�, but also some underneath
services need change to embrace the new standard such as video streaming, WebRTC
and proxy which discusses mainly in this thesis.

A proxy server is a server that acts as a middle-ware between two ends. The ends can
both be clients/servers or one is client and the other is server. The proxy server can be
customized to achieve certain purpose. One particular use case is to build crowdsourcing
platform.

Crowdsourcing is a new comer in the �eld of computer science. The basic idea is to
gather information provided by the masses, then aggregate and analyze data to produce
results. An easy to understand scenario is the concept of crowdsourcing translate plat-
forms shows in Figure �.�. It gathers translation suggestions from users for a certain
word. After rating and analyzing the suggestions in crowdsourcing platform, the results
submit to the server to improve the translation quality. In this scenario, a middle-ware
between users and servers is responsible for caching and analyzing users’ suggestion,
�nally submits to server.

� I�����������

The translate crowdsourcing platform can be considered as a special con�gured proxy
with additional function. Server Access Network Entity (SANE) is introduced in paper
[HSBS��] and uses the similar concept to improve the location accuracy. One proof of
this concept is MapBiquitous [Spr��]. MapBiquitous project developed with common and
standard web technologies on the server side and also on SANE. Currently, SANE only
support HTTP/�.�. In order to improve performance of SANE, one obvious idea is to add
HTTP/� support.

Figure �.�: Translator Crowdsourcing Platform

In this thesis, the general idea and mechanism of building HTTP/� supported proxy and
research about how to gain best performance are discussed. This thesis also presents
the mechanism to adapt exist platform (SANE) to support HTTP/�. One advantage of
thesemethods is that it is compatible to current web technologies. Another perk of these
alternatives is that upgrading can be done by adding an extra layer between the frame-
works without changing other components. The twomain contributions of this thesis are
the performance study by introducingHTTP/� intoweb proxywith different scenarios and
the approach to upgrade current frameworks to support HTTP/�.

The structure of this thesis presents as following:

• In Chapter �, background and related work are discussed;

• In Chapter �, the concept and requirement to build a general proxy support HTTP/�
are discussed;

• In Chapter �, the implementation details of proxy support for different scenario are
presented and also the method to adapt SANE frameworks;

• Chapter � presents the evaluation of the concept;

• Chapter 6 includes the summarize and conclusion of this thesis, also further work
are discussed.

� Background and Related Work

�.� HTTP/� Protocol

TheHypertext Transfer Protocol (HTTP) iswildly used by the Internet nowadays. However,
the limitation of HTTP/�.� is drawing back the evolution of new Internet technologies and
has a negative overall effect on performance.

HTTP/� is the secondmajor version of HTTP and based on SPDY [BP��]. It was developed
by the Hypertext Transfer Protocol working group of the Internet Engineering Task Force
(IETF), and its speci�cation was published as RFC ���� [BPT��] in May ����. Most major
browsers added HTTP/� support by the end of ����. Simultaneously, the web server
technologies, such as Apache, nginx and Tomcat, support HTTP/� by integrated third-
party library or based on previous support for SPDY.

�.�.� The Limitation of HTTP/�.�

HTTP/�.� is a plain text request/response protocol which runs over a persistent TCP/IP
connection and has been in used by the World Wide Web global information initiative
since ����. Separate TCP connection was established to fetch each URL every time in
HTTP/�.�. Since establishing TCP connection increases load time and causes conges-
tion, TCP connections changed to persistent connection in HTTP/�.� which only termi-
nates at the end of transaction. The left Figure �.� describes how HTTP/�.� persistent
connections works: once client and server have established a TCP connection, the client
sends GET requests to the server for retrieving content without open and close the TCP
connection again. Only after the server sends back the answers, client can send new re-
quest. The drawback of this mechanism is that messages cannot send simultaneously
thus increases content exchanges latency.

After noticing the pitfall, HTTP/�.� uses HTTP pipelining to improve the connection ef�-
ciency: Multiple HTTP requests are sent on a single TCP connection without waiting for
responses. The answers from server are sent corresponding to the order of GET request.
Means, latest request will be served last. In pipeline scheme, client does not need to
wait for previous GET request to be answered. However, there is another problem raised:

6 B��������� ��� R������ W���

Figure �.�: HTTP/�.� communication Scheme. Left: non-pipelined, right: pipelined

Head-of-line Blocking. Assuming GET/1.mp4 request in the right of Figure �.� represents
a large �le (a video for instance), then the subsequent responses will get delayed since it
needs time to �nish transmit a large �le. As a matter of fact, HTTP/�.� suffers from slow
speed because of its original design: one request at a time [dSOC��]. IETF decided to ren-
ovate the HTTP protocol by introduce HTTP/�, one main task is to tackle the Head-of-line
Blocking issue.

�.�.� New Feature of HTTP/�

HTTP/� protocol provides an optimized transportation mechanism for HTTP semantic.
It supports all core concepts of HTTP/�.� and adds more features to reduce the page
loading time during web browsing. To achieve these goals, HTTP/� introduces few new
technologies as follows:

Binary Framing Layer. HTTP/�.� is a text-based protocol, means the packets exchanges
between client and server are human readable. Plain-text based has drawback since
it costs a lot of resources during transaction compares to binary code. By contrast,
HTTP/� uses binary framing, it is more informational concentrated and computer-
parse friendly. Thus, both client and server must agree this new binary encoding
and decoding mechanism in order to understand each other.

Multiplexing. In HTTP/�, all communications are performedwithin a single TCP connec-
tion. A stream is a virtual channel within a connection, which carries bidirectional
message. HTTP/� can contain multiple streams and exchanging messages in par-
allel within a single TCP connection. This solves the Head-of-line blocking caused
by pipeline in HTTP/�.�, since the message can be exchanged without interfering

P���� S����� �

each other in HTTP/�.

Header Compression. In HTTP/�.�, the header meta-data is always sent as plain text
and adds overhead per request. In most cases, HTTP headers often carry the same
values, it results informational redundancy. To reduce duplication, HTTP/� cuts the
header meta-data expense by enabling HPACK [PR��] compress algorithm.

Server Push. This new feature allows HTTP/� server to send multiple replies for a sin-
gle client request. That means instead of having an additional request from client,
server could push the additional resources to the client along side with other re-
quests.

Priority. Once an HTTP message can be split into many individual frames, the exact or-
der in which the frames are interleaved and delivered can be optimized to further
improve the performance of applications. With priorities, the client and server can
apply different strategies to process individual streams, messages, and frames in
an optimal order.

�.� Proxy Server

Web proxy server is a middle-ware setting between client and server [LA��]. A web proxy
server can behave as bothweb server and client. When clients send request to the proxies,
the proxy server needs to handle the requests and connections, which is similar to a web
server. In the meantime, the proxy itself sends requests to servers, it behaves as a client
to the destination server. Moreover, the de�nition made by Ari Luotonen formally descries
a proxy as follows:

A proxy is a special HTTP server that typically runs on a �rewall machine. The
proxy waits for a request from inside the �rewall, forwards the request to the
remote server outside the �rewall, reads the response and then sends it back to
the client.

Ari Luotonen, Kevin Altis

In Figure �.� indicates the process of general proxy communication. Clients connect to
the proxy server, and request certain service or resource, such as a �le, connection, web
page, or other resource available from different servers. The proxy server evaluates the
request as a way to simplify and control its complexity. The server responses these re-
quests back to clients via proxy server.

8 B��������� ��� R������ W���

Figure �.�: Proxy Server Architecture

�.�.� Proxy Types

F������ P����

A forward proxy is the most common form of a proxy server and is generally used to
pass requests from an isolated, private network to the Internet through a �rewall. Using a
forward proxy, requests from an isolated network, or intranet, can be rejected or allowed
to pass through a �rewall. Requests may also be ful�lled by serving from cache rather
than passing through the Internet. This allows a level of network security and lessens
network traf�c.

A forward proxy server will �rst check to make sure a request is valid. If a request is not
valid, or not allowed (speci�ed by con�guration �le), it will reject the request resulting in
the client receiving an error or a redirect. If a request is valid, a forward proxy may check
if the requested information is cached. If it is, the forward proxy serves the cached infor-
mation. If it is not, the request is sent through a �rewall to an actual content server which
serves the information to the forward proxy. The proxy, in turn, relies this information to
the client and may also cache it, for future requests.

R������ P����

A reverse proxy is another common form of a proxy server and is generally used to pass
requests from the Internet, through a �rewall to isolated, private networks. It is used to
prevent Internet clients from having direct, unmonitored access to sensitive data residing
on content servers on an isolated network, or intranet. If caching is enabled, a reverse
proxy can also lessen network traf�c by serving cached information rather than passing
all requests to actual content servers. Reverse proxy servers may also balance workload
by spreading requests across a number of content servers. One advantage of using a
reverse proxy is that Internet clients do not know their requests are being sent to and
handled by a reverse proxy server. This allows a reverse proxy to redirect or reject requests
withoutmaking Internet clients aware of the actual content server on a protected network.

A reverse proxy server will �rst check to make sure a request is valid. If a request is
not valid, or not allowed, it will not continue to process the request resulting in the client

P���� S����� �

receiving an error or a redirect. If a request is valid, a reverse proxy may check if the
requested information is cached. If it is, the reverse proxy serves the cached information.
If it is not, the reverse proxy will request the information from the content server and serve
it to the requesting client. It also caches the information for future requests.

Themain difference between reverse proxy and forward proxy is that the client does not
know the traf�c from which destination server directly in reverse proxy. In forward proxy,
the client’s request sends to the proxy, then the proxy server fetchs the resource from
destination server and forwards the response to the client. In reverse proxy, the request
from client can be balanced or changed to another destination server. The reverse proxy
server fetches the resources based on the rules and behaved as a destination server to
client.

�.�.� Proxy Server Usage

The fundamental operation of the proxy sever is to receive client requests. After the proxy
server analyzes the requests and then sends to the target servers. During this communi-
cation, proxy server can have several different functionalities [GT��]:

Security. A proxy is a special HTTP server that typically runs on a �rewall machine. The
primary usage [LA��] of proxy is to control accessibility to the web within a �re-
wall. A proxy can mask the internal network from the outside, and creates isolation
between two networks.

Improve Performance. A web cache proxy server can be used for the temporary storage
of web documents, such as HTML pages and images, to reduce bandwidth usage,
server load and perceived lag. A cache proxy server places between clients and
servers. Requests send by clients can be pre-fetched by proxy server and store
on proxy server. Another common usage of proxy for performance improvement
is data compression. A data compression proxy compresses the original data to
smaller size or excludes redundant information. By using these methods, the page
load time and size can be massively reduced.

Anonymous. An anonymous proxy server can anonymize the client’s web sur�ng infor-
mation. Since the destination server receives requests fromanonymousproxy server,
the anonymous proxy server can create new pseudonym of client, and thus server
does not gain any information of original client.

Crowdsourcing Platform. In this scenario, proxy behaves as amiddle-ware between crowd-
funder and crowdsourcer. In addition, crowdsourcing platform proxy can perfor-
mance the function which processes the data from client then produces result for
server to use.

�� B��������� ��� R������ W���

In summary, Table �.� shows the proxy usage corresponding its types.

Type Use Case Example

Forward Proxy Content-control

Anonymizer

Transcoder, e.g. convert GIT images into JPEG

Reverse Proxy Bypass, e.g. provide access to sensitive information

Web cache

Table �.�: Proxy Type and Usage

�.� Data Compression Proxy

�.�.� SPDY Protocol

In HTTP/�.�, the deliver of web pages is using multiple, persistent TCP connections for
last decades. To make the Web faster, Google proposed and developed a new transport
protocol for HTTP, called SPDY [BP��]. The goal of SPDY is to speed up the web by adapt-
ing several page loading time critical features:

Multiplexed Streams. This means SPDY works by opening on TCP connection per do-
main, then allows for unlimited concurrent streams over this single TCP connection.
The ef�ciency of TCP is much higher since fewer network connections need to be
made. Based on research [WBKW��], SPDY improves page load time signi�cantly
that track the bene�ts of using a single TCP connection.

Request Prioritization. SPDY allows the client to specify a priority level for each object.
For example, the JavaScript or cascading style sheets (CSS) may more important
than a large image for browser to present correctly web page and provide functions.
SPDYwill load higher priority resources �rst thereby preventing the connection from
being congested with non-critical resources.

HTTP Header Compression. Most sites already use compression when downloading
textual content as it provides a signi�cant performance bene�t. However, HTTP/�.�
does not support the HTTP header compression. SPDY uses the general purpose
DEFLATE algorithm for header compression. This results in fewer packets and
fewer bytes transmitted.

Server Push. SPDY experiments with an option for servers to push data to clients via
the X-Associated-Content header. This header informs the client that the server is

D��� C���������� P���� ��

pushing a resource to the client before the client has asked for it. For initial-page
downloads (e.g. the �rst time a user visits a site), this can vastly enhance the user
experience.

�.�.� Flywheel Data Compression Proxy

Flywheel [ABC+��] is anHTTPproxy service that compresses responses in-�ight between
origin servers and client browsers. The primary goal is to reduce mobile data usage for
web traf�c.

Flywheel is based on SPDY protocol. When Google start uses SPDY in ����, there are not
so many sites support SPDY. With an SPDY support proxy, we could leverage the bene-
�ts from more advanced communication between client and proxy without the needs to
upgrade the entire World Wide Web.

Figure �.�: Google Flywheel (SPDY) Proxy Communication Scheme

C����� S������

Similar to any other proxy, Flywheel acts as an additional middle box in the data transac-
tion path. It creates a tunnel between the browser and the proxy, and carries the HTTP
sessions within the SPDY tunnel, extending support for SPDY over the access link for all
destinations when requested by a supported browser.

Google uses Flywheel proxy as data saver for Chrome browser, and optimized the data
bandwidth on Google servers. When Data Server is enabled on user’s browser, the non-
encrypted HTTP connection between client and destination server is transmitted over
one of Google’s data compression proxy server. In Figure �.� shows the communication
scheme of Flywheel. By default, client connections to Data Compression Proxy (synonym
for Flywhell) uses the SPDY transport protocol, which is able tomultiplexmultiple request

�� B��������� ��� R������ W���

and response streams in parallel over a single TCP connection. SPDY is intended to im-
prove the performance by using speed-related mechanisms discussed before.

The SPDY support is universal for Flywheel users. Each client application maintains a
single SPDY connection to the Flywheel proxy over which multiple HTTP requests are
multiplexed. Flywheel in turn translates theses ordinary HTTP transactions with origin
servers.

P���� S�����

Google implemented Flywheel proxy servers all over the world [ABC+��]. Client connec-
tions are directed to a nearby data center using DNS-based load balancer. In Flywheel
server, there are two main components: Proxy and Fetch router. The proxy behaves as �l-
ter and coordinator: the proxy will match all incoming requests against URL pattern. The
proxy decides this request should induce a Safe Browsing warning or a proxy bypass. If
the request matches the pattern, a control response will be sent. Otherwise the request is
forwarded via RPC to a separate fetch serve which retrieves the resource from the origin.
After fetching the resource from origin sites, the proxy makes a decision about how to
compress the response based on its content type.

�.� Server Access Network Entity

�.�.� Crowdsourcing Platform

Crowdsourcing is a relatively recent concept in many practices. This leads to the blurring
of the limits of crowdsourcing that may be identi�ed virtually with any type of Internet-
based collaborative activity, such as co-creation or user innovation. Varying de�nitions of
crowdsourcing exist, and one de�nition from Arolars and Guevara is:

Crowdsourcing is a type of participative online activity in which an individual, an
institution, a non-pro�t organization, or company proposes to a group of
individuals of varying knowledge, heterogeneity, and number, via a �exible open
call, the voluntary undertaking of a task. [...] The user will receive the satisfaction
of a given type of need, be it economic, social recognition, self-esteem, or the
development of individual skills, while the Crowdsourcer will obtain and utilize to
their advantage what the user has brought to the venture, whose form will depend
on the type of activity undertaken.

Enrique Estellés-Arolas, Fernando González-Ladrón-de-Guevara

MapBiquitous [Spr��] is an integrated system for indoor and outdoor location-based ser-
vices which follows the concept of crowdsourcing. It is based on a decentralized infras-

S����� A����� N������ E����� ��

tructure of building servers providing information about the building geometry, positioning
infrastructure and navigation. Building servers are dynamically discovered and provided
information is seamlessly integrated into outdoor systems by the MapBiquitous client.
The participants which involved in MapBiquitous crowdsourcing service are:

• Crowdfunder. The person or entity requiring resources that can be provide from
each individual. The MapBiquitous server which gather information from clients
and provide the mapping service.

• Crowdsourcer. The individual who can proved information, data or knowledge that
crowdfunder requires. The MapBiquitous Clients provide geometry information.

�.�.� SANE

The Server Access Network Entities (SANE) [HSBS��] is a speci�ed web proxy server
which used in MapBiquitous. It acts as intermediaries between Crowdsourcing Clients
and Crowdfunding Servers. Crowdsourcing Clients provide geography information and
send to SANE for further process.

A�����������

SANE behaves as a coordinator between crowdsourcing client and crowdsourcing server.
It handles the communications and submission ofmultiple crowdsourcing data to server.
Since client does not connect to server directly, crowdsourcing clients can gain anonymity,
security and better scalability. Figure �.� depicts the modules set in SANE instance.

Crowdsourcing Driver. It provides interfaces for crowdsourcing client, crowdfunding server
and interconnect SANE instances. It encapsulates any crowdsourced read and
write-access oriented towards the server side.

Security Module. It cooperateswith othermodule to provides encryption ability andman-
ages signatures. The Crypto module is responsible for data encryption. The signa-
ture module creates and verify the signature from clients and servers.

Server Manager. It handles the requests related to access to a crowdfunding servers.

Client Manager. All the clients associated requests will be forward by Crowdsourcing
Driver to Client Manager. For example, it will store the user model representing the
accessing client.

DHT Maintainer. It maintains and organizes a set of SANE proxies to provide scalability
and fault tolerance.

User Model. It stores the information related to clients, such as data provided by clients,
client signature and device ID.

�� B��������� ��� R������ W���

Figure �.�: Architecture of the SANE

C������������ S�����

The communication in Crowdsourcing Platform only use POST and GET of standardized
Hyper Text Transport Protocol version HTTP/�.�. A example shows in Figure �.�: every
crowdsourced data proposal from clients will be POST via HTTPS connection to SANE
and attached with its credential. After SANE validates client’s credential, it assigns an
anonymous submission ID to client for anonymity reason. Crowdsourced data send to
server via HTTPS connection with anonymous submission ID and SANE proxy credential.
After the server veri�es credential of SANE, it sends response to SANE and continue sub-
mission processing. SANE forwards the response to the corresponding POST request via
HTTPS.

A�������� ��� S�������

Since the SANE functions as a proxy between clients and server, also the communication
is via encrypted HTTP connection. The anonymity from outside of SANE is provided nat-
urally. Since the SANE re-signed and re-encrypted the clients’ identity, server cannot gain
any traceable data from submitter. Hence clients have anonymity inside SANE.

The SANE stores the relation data between client and server which never stores on server
side. The permission control is also maintained by SANE. It stores list of granted access

S������ ��

Figure �.�: Communication in Crowdsourcing Platform

rights to enable any client to gather information on the granted rights centrally.

S���������� ��� F���� T��������

A set of distributed SANEs formed a scalable, fault tolerated and decentralized proxy ser-
vices. SANEs use a distributed hash table (DHT) to assign and tolerate the requests. Each
SANE is recommended to have one neighbor as backup for each other, thus for each client
or server has � SANEs to handle their requests at least.

SANE is a distributed, anonymous, scalable, fault tolerated proxy server for crowdsourc-
ing platform. It serves not only for certain client or server, but provides proxy service for
any device during crowdsourcing process. Since any proxy is an additional middle-ware
between both sides, the performance and latency is big issue for such communication.
The SANE only supports HTTP/�.� right now, it may bene�t from the HTTP/�.

�.� Summary

The background of HTTP/� is presented in this chapter, and also introduced the proxy
server in general. The relatedworks include Flywheel Data Compression Proxy and SANE.
The former brings the basic idea of how to construct a proxywith HTTP/� support. Mean-
while, SANE is one of the test bases of this thesis and the background is provide in this
chapter for reader who does not familiar with.

� Concept

This chapter will discuss the ideas about how to adapt the HTTP/� in current web server
frameworks. It starts with the prerequisites before upgrading to support HTTP/�. Fol-
low the work�ow is to upgrade the server to support HTTP/�, and also the client side.
The general architectures of proxy are discussed next. Finally, this chapter will bring the
concept of adapting SANE to support HTTP/�.

�.� Before Upgrade to HTTP/�

�.�.� TLS and ALPN

Transport Layer Security (TLS) is cryptographic protocols designed to provide communi-
cations security and privacy over networks. The protocol is composed of two layers: the
TLS Record Protocol and the TLS Handshake Protocol.

The TLS Record Protocol is responsible for securing application data and verifying its
integrity and origin. It manages the following:

• Dividing outgoing messages into manageable blocks, and reassembling incoming
messages. Compressing outgoing blocks and decompressing incoming blocks;

• Applying a Message Authentication Code (MAC) to outgoing messages, and verify-
ing incoming messages using the MAC;

• Encrypting outgoing messages and decrypting incoming messages;

• When the Record Protocol is complete, the outgoing encrypted data is passed down
to the Transmission Control Protocol (TCP) layer for transport.

The TLS Handshake Protocol is responsible for the authentication and key exchange nec-
essary to establish or resume secure sessions. When establishing a secure session, the
Handshake Protocol manages the following:

• Cipher suite negotiation;

• Authentication of the server and optionally, the client;

�8 C������

• Session key information exchange.

HTTPS uses TLS for communication secure and data integrity. It consists of communi-
cation over HTTP within a TLS encrypted connection. HTTP/� does not require connec-
tion via a TLS connection compulsorily. However, current shipping browsers only support
HTTP/�, if server support for HTTP/� is enabled and TLS is in use.

The client and the server may support multiple protocols for HTTP connection, and they
need to agree on one of the protocols to use. RFC ���� [FLP��] describes Application-
Layer Protocol Negotiation (ALPN) to solve above problem.

The ALPN is a TLS extension stands for application-layer protocol negotiation. It allows
the application-layer to negotiate which protocol should be performed over a secure con-
nection in a manner which avoids additional round trips. By using ALPN, the client sends
which application protocols it supports to the server, ordered by priority. The server se-
lects the protocol to use which depends on the protocols it supports and the client’s pri-
ority. Listing �.� shows an example of protocol negotiation between server and client.

* Connected to 46.101.99.160 port 443

* ALPN, offering h2

* ALPN, offering http/1.1

* Cipher selection: ALL:!EXPORT:!EXPORT40:!EXPORT56:!aNULL

:!LOW:!RC4:@STRENGTH

* successfully set certificate verify locations:

* CAfile: /etc/ssl/certs/ca-certificates.crt

* CApath: none

* TLSv1.2 (OUT), TLS header, Certificate Status (22):

* TLSv1.2 (OUT), TLS handshake, Client hello (1):

* TLSv1.2 (IN), TLS handshake, Server hello (2):

* TLSv1.2 (IN), TLS handshake, Certificate (11):

* TLSv1.2 (IN), TLS handshake, Server key exchange (12):

* TLSv1.2 (IN), TLS handshake, Server finished (14):

Listing �.�: ALPN Negotiation Process Example

�.�.� HTTP Request/Response

HTTP is a request-response protocol between a client and server. There are two types
of HTTP messages, request messages and response messages. For example, a web
browser may use GETmethod to request data from a speci�ed resource, and an applica-
tion can use POSTmethod to submit the data of speci�ed URI.

B����� U������ �� HTTP/� ��

Figure �.�: HTTP/� Request/Response Frame Structure and Example

In HTTP/�.�, a request message from a client to a server includes: the method needs to
be applied to the resource, the identi�er of the resource, and the protocol version in use.
The Request-Line begins with a method token, followed by the Request-URI and the pro-
tocol version, and ending with CR and LF [FGM+�6]. The request header �elds allow the
client to pass additional information about the request. These �elds act as request mod-
i�ers, with semantics equivalent to the parameters on a programming language method
invocation.

In HTTP/�, the structure of HTTP messages are changed to frames: a client sends each
HTTP request starts with a new stream; a server replies the HTTP response on the same
streamas the request. An example can be found in Figure �.�: requestGET/index.html
sends to server with steam ID: n. Server responses this request by setting the same
steam ID (n) then sends header and data in Frame ID:2. Another request sends to
server will initiate a new steam ID (m), which is different from previous one. This allows
client and server transferring data multiplexed and concurrently without interfering each
other.

This change means the communication process and frame of raw data information, and
previous version of HTTP connection header is not suitable for HTTP/�. Developing a
client to support HTTP/� header requires more efforts because the binary nature and
HPACK algorithm in HTTP/� protocol.

�� C������

�.�.� Header Compression

HPACK [PR��] is a speci�ed compression format for ef�ciently representing HTTP header
�elds in HTTP/�. HPACK is de�ned in RFC ���� [PR��] and designed to be simple and
in�exible intentionally. Once HTTP/� enabled, the header compression takes bene�ts
automatically.

S�������� �� HTTP/� H�����

HPACK uses two tables for associating header �elds to indexes. The Static Table is pre-
de�ned and contains common header �elds. The Dynamic Table is dynamic and can be
used by the encoder to index header �elds repeated in the encode header lists. These
two tables are combined into a single address space for de�ning index values.

Static Table. It consists of a prede�ned and unchangeable list of header �elds. The static
table contains most frequent header �elds used by popular web sites, with the ad-
dition of HTTP/�-speci�c pseudo-header �elds. Other unde�ned header �elds will
be added to dynamic table.

Dynamic Table. The Dynamic Table consists of a list of header �elds maintained in �rst-
in, �rst-out order. The �rst and newest entry in a dynamic table is at the lowest
index, and the oldest entry of a dynamic table is at the highest index. The encoder
maintains the dynamic table and control behave of adjustment. By using dynamic
table, encoder can omit duplicated header �elds which requested before.

E����� P������

An encoded header �eld can be represented either as an index or as a literal. For ex-
ample, an encode code 82 will be decode as :method: GET. For string literal, it rep-
resents with the Huffman Code. Figure�.� shows HPACK in practical example. In the
�rst request:method:GET, :path:/, :scheme:https: has already de�ned, only
need encode as index to: 2,4,7. Since :accept-encoding: has customized value,
the value needs to be encode with Huffman code and added into dynamic table. The
second request has slightly different from the �rst request. Since the customized value
of :accept-encoding: has already been added in dynamic table, there is no need to
encode it again.

D����� P������

A decoder processes a header block sequentially to reconstruct the original header list.
The order of header �eld is corresponding to encoded header order. In order to success-
fully decode a header, there are few addition rules to follow based on [PR��] Section �.�.
After �nishing the header representing, the decoder passes the resulting header �elds to
the application.

B����� U������ �� HTTP/� ��

Fi
gu

re
�.
�:

HT
TP

/�
Re

qu
es

t/
Re

sp
on

se
H
ea

de
rC

om
pr
es

si
on

�� C������

�.�.� Server Push

Server push allows the server to preemptively send multiple responses for a single client
request. All server push streams are initiated via PUSH_PROMIS frames and notify the
client that the server intend to sends accompanying resources with this request. Client
can decide to accept or decline push from server.

The most frequent use case is sending resources such as images, CSS and JavaScript
along with the page that includes them. For example, to optimize the web page display
result, in-line resource are normally used in HTTP/�.�. However, this in-line resource are
force pushed to client. The client has no options to decline or control resource individually.
In contrast, using server push can give client a �ne granularity control on each resource
it requested.

Server push feature bene�ts most from client-side when server needs to sendmultiple re-
source along with original request. However, most of the communications between two
participants in SANE is �nalized with one request and one reply [HSBS��]. The perfor-
mance improvement gains from server push is limited, thus the evaluationwill be focused
on header compression and only the implementation is represented in next chapter.

�.� Server and Client Support

�.�.� Server Support

The Internet is built by thousands of web servers. Based on the Netcarft’s [net�6] Web
Server Survey, nearly ��% of web server market shared by Apache, nginx and Microsoft.
As in February ���6, ��.6�% of top million busiest sites are using Apache, by contrast
��.86% of them use nginx. To adapt current widely used web server to support HTTP/�
is a better solution than creating a newweb server software. Themethods and obstacles
of adapting Apache and nginx will be discussed in this section.

A����� W�� S����� S������

Apache is one of the most used web server software. It supports a variety of features,
has many implemented features as compiled modules which extend the core functional-
ity. These can range from server-side programming language support to authentication
schemes. Some common language interfaces are supported in Apache such as Perl,
Python, and PHP.

Apache supports HTTP/� since version �.�.�� by implemented the mod_http2module.
This module relies on nghttp2 [Tsu��] which is an open source C library implementation

S����� ��� C����� S������ ��

of HTTP/�. Thismodule will be default enabled and as a coremodule after Apache �.�.��.
Listing �.� shows the example of enable HTTP/� on Apache test web server.

<IfModule mod_ssl.c>

<VirtualHost *:443>

Protocols h2 http/1.1

SSLCertificateFile /path/to/certfile

Listing �.�: Enable HTTP/� on Apache Web Server

As mentioned before, client and server need negotiation protocols by ALPN. We need to
use ��� port for HTTPS connection and indicate the path to certi�cate and key be used.

����� W�� S����� S������

nginx is a free, open-source, high-performance HTTP server and reverse proxy, as well as
an IMAP/POP� proxy server. nginx is known for its high performance, stability, rich feature
set, simple con�guration, and low resource consumption. Since nginx �.�.� [Mem��] a
new ngx_http_v2_module introduced and replaced the former SPDY support module.
The newest version provides support for HTTP/� and includes some features like HPACK
head compression and multiplexing.

To enjoy the perks of HTTP/� on nginx server, only needs change the con�gure �le. The
nginx web server supports two HTTP/� protocol same con�guration syntax in Apache:
h� and h�c. h2 is a identi�er for HTTP/� over TLS, h2c stands for using HTTP/� over
pain text TCP.

nginx web server provides two negotiationmethods, ALPN andNPN. Next Protocol Nego-
tiation (NPN) is a predecessor of ALPNwhich be used for negotiation SPDY. nginx support
NPN for legacy reason, since nginx HTTP/� support derives on SPDY and limitation of old
OpenSSL version.

server {

listen 443 ssl http2;

ssl_certificate /path/to/certfile;

ssl_certificate_key /path/to/keyfile;

}

Listing �.�: Enable HTTP/� on nginx Web Server

�.�.� Client Support

The client bene�ts more performance improvements from HTTP/� than web server. Not
only the on shipping browsers but also the mobile platforms have support HTTP/� since

�� C������

last few months. The web browser, such as Firefox, Chrome, Opera and Safari, supports
HTTP/� as default and does not need users to con�gure. Safari for iOS after iOS �.� na-
tive support HTTP/�. By contrast, Chrome for Android after version �6 supports HTTP/�
as default. For some system leveled web tools, such as curl, also support HTTP/� by
integrating third-party library.

B������� S������

Since the announce of HTTP/�, most of the browsers software both on desktop and mo-
bile operating system are adapted to support HTTP/�. The full list of HTTP/� supported
browsers from research of [can��] shows in Table �.�. By default, all listed browsers only
support HTTP/� over TLS.

IE Edge Firefox Chrome Safari Opera iOS for Safari Chrome for Android

�� �� �� �� � �� �.� ��

Table �.�: The Versions of HTTP/� Supported Browsers

�OS S������

iOS is a mobile operating system created and developed by Apple Inc. and distributed
exclusively on Apple hardware. It allows developer to create apps based on this operating
system. Since iOS � launched in September ����, it has native support for HTTP/� and
provide network API for HTTP/� connection.

The NSURLSession [nsu��] class natively supports the data, �le, ftp, http, and https URL
schemes, with transparent support for proxy servers and SOCKS gateways, as con�gured
in the user’s system preferences. Adapting the client on iOS to support HTTP/� could be
achieved by using NSURLSession API.

A������ S������

Android is amobile operating system developed by Google, based on the Linux kernel and
designed primarily for touchscreen mobile devices such as smart phones and tablets.
Since the HTTP/� speci�cation derives from Google’s SPDY protocol, the support for
HTTP/� is introduce in very early stage.Android HTTP/� request support can be achieved
through third-party frameworks, such as OKHTTP� for Android.

S����� L������ S������

For the application onweb server, the HTTP request and response are handled via system
library. libcurl [cur�6] is a client-side URL transfer library, recently add the support for
HTTP/� request and response. The libcurl library is portable and can be integrated
into many web server friendly scripts, such as PHP. It also provides a command line tool
to debug the HTTP/� communication.

�http://square.github.io/okhttp/

P���� S����� S������ ��

Figure �.�: Proxy Communication with HTTP Scheme

�.� Proxy Server Support

Web proxy server is a middle-ware setting between client and server, and the proxy has to
maintain two roles to cooperate the information transmission between client and server.
For client side, the proxy is a web server. It handles the requests and send the fetched
resource back to the client. From server perspective, the proxy behaves as a client. It
forward the request from the client, sends to the server and caches the response.

In �gure �.� shows an example of proxy communication. The client sends GET request
to proxy server, dedicates as a. The proxy server behaves as a web server for client, this
request is inside proxy server and forwards to destination server, shows as connection b.
After the destination processes by server (connection c), the proxy sends the responses
back to client (connection d). In summary, proxy server behaves as a web server in con-
nection a and d; at the same time proxy server behaves as a client in connection b and
c.

The idea of adapting a proxy to fully support HTTP/� is forward: the proxy should upgrade
the communication from HTTP/�.� to HTTP/� on all the connections mentioned above.

There are also substitute solutions for HTTP/� support in proxy setting by compromises
some connections still maintain in HTTP/�.�. We call a proxy is cross-protocol proxywhen
HTTP/� and HTTP/�.� are both used at the same time in a proxy. More details will be
discussed in the next section.

�6 C������

�.� Implement Feasible Proxy with HTTP/� Setting

�.�.� General Architecture

Despite the fact that many web server companies are developing their products to adapt
HTTP/� standard, it still needs a long time to dominate the whole Internet. During this
phase, here are three architectures to implement proxy serverwithHTTP/�. SinceHTTP/�
maintains high-level compatibility with HTTP/�.�, we assume that if a client or server sup-
ports HTTP/�, it also works �ne with HTTP/�.�. We also omit the situation of client and
server both only supports HTTP/�.�, since it not the purpose of this thesis. After analyz-
ing all the possible combination of HTTP/� and HTTP/�.� used in proxy communication,
the architecture of proxy communication with HTTP/� represents in Table �.�.

Client Proxy Server

Support HTTP/�.� HTTP/�.� Proxy Server with HTTP/� Back-
end support

Support HTTP/�

Support HTTP/� HTTP/� Proxy Server Support HTTP/�

Support HTTP/� HTTP/� Proxy Server with HTTP/�.� Back-
end Support

Support HTTP/�.�

Table �.�: General Architecture with HTTP/� Proxy Setting

Upgrade Proxy. When a proxy between a client which supports only HTTP/�.� and desti-
nation server supports HTTP/�, we call this proxy is anUpgrade Proxy. One function
of this type of proxy is to translation the former HTTP/�.� protocol to newer HTTP/�
protocol. It can bring most bene�ts to server side, since the client cannot support
HTTP/�, the performance improvement is not signi�cant when proxy and server are
tightly coupled. In order to build the bridge between client and server, Upgrade Proxy
has two main components. First component is to handle the requests from client-
side, second component is responsible for translating the requests from HTTP/�.�
to HTTP/�.

Straightforward Proxy. When client and server are both support HTTP/�, the architec-
ture of the proxy setting is less complex. The proxy behaves as a middle-ware and
without to implement other translation for HTTP requests. In this setting, both client
and server can bene�t. However, this scenario is rare for nowadays Internet envi-
ronment.

Downgrade Proxy. We call a proxy forward HTTP/� requests from client to server which
only support HTTP/�.� isDowngrade Proxywhen the communication between client
and proxy is using HTTP/�. By using this setting, server does not need to upgrade
and can maintain the same and client may gain most pro�ts.

I�������� F������� P���� ���� HTTP/� S������ ��

�.�.� Requirements of HTTP/� Proxy

To build a proxy with HTTP/� protocol support, there are few common components need
to be integrated into the current server frameworks. At the meantime, there are few dif-
ference considering the proxy architecture variation.

C����� C���������

The following components are needed to form a proxy which involved different HTTP
protocol within the communication:

Header Translator Module. The header inHTTP/�.� requests is totally different fromHTTP/�.
Asmentioned in Section �.�, HTTP/� header requires HPACK compression, different
syntax for variables, and most importantly its binary data rather than plain text in
HTTP/�.�. In order to communicate in a cross-protocol proxy, a module to translate
the header from HTTP/�.� to HTTP/� is needed.

HTTP Proxy Module. After the request translated by Header Translator Module, it will be
forwarded byHTTPProxyModule to the destination server. TheHTTPProxyModule
gets the resources from web server similar to a cache normal proxy.

D�������� A�����������

The common components is need when building a cross-protocol proxy. However, since
the architecture variation discussed in Section �.�.�. We need to con�gure the building
blocks for different type of proxies.

Requirements of Upgrade Proxy

The Upgrade Proxy can support general HTTP request and can improve the performance
by enabling HTTP/� support between server and proxy. The top Figure �.� demonstrates
the architecture of Upgrade Proxy. In this type of proxy, we do not need the client to sup-
port HTTP/�. However, the proxy server and destination server must upgrade to support
HTTP/�.

Requirements of Straightforward Proxy

Straightforward Proxywill be the ideal and �nal proxy type in next decade. Themajor proxy
server software companies and organizations are adapting their products to support this
architecture. However, all the available products are in beta version, we need to build this
from scratch.

The architecture of Straightforward Proxy is simply like the normal proxy tool which al-
ready existed in HTTP/�.�. The idea of to build a proxy support both back and end proxy
is to build a proxy server on application level.

Application proxy is easy to maintain and can also gain bene�t from the HTTP/�. The
transport layer of the communication handled by HTTP/� server. In side the server, appli-

�8 C������

Figure �.�: Upgrade Server Framework to Support HTTP/�.

cation communicates through CGI (Common Gateway Interface).

In this architecture, proxy application is considered as a client of destination server which
forward and control client’s requests. So the proxy application should be also support
HTTP/�.

Requirements of Downgrade Proxy

A Downgrade Proxy suits majority situation for nowadays Internet environment. Google’s
Flywheel Data Compression Proxy, it proves that by using this architecture, clients can
improve ��% performance of page loading time. Google’s Flywheel also employs some
addition features to reduce the data consumption. The general concept of this type of
proxy is: using proxy server to handle the HTTP/� requests between client and proxy
server. The back-end connection between proxy and server is maintain the same.

One idea to adapt current server and client setting is by adding a new layer to the current
proxy server. The implementation is similar to Upgrade Proxy. Instead adding Header
Translator Module behind the HTTP Proxy Module, we need to implement it in front HTTP
Proxy Module to enable HTTP/� connection between client and proxy server.

�.�.� Additional Features Support

General proxy programs can add extra features to support more speci�c purpose. These
features can enhance the user experience of proxy and help clients to save data or achieve
goals. The following lists few features are frequently added to a proxy:

I�������� F������� P���� ���� HTTP/� S������ ��

Cache. Cache on proxy server can store frequently requested resources. For example,
proxy stores the picture in cache after �rst client requested an image from destination
server. When later same requests arrive, the same image sends to client without addition
fetching from destination server.

Data Reduction. The response from the fetch server can be compressed on proxy server.
Since images consume huge amount of data traf�c, trans-coding the image to smaller
type can dramatically improve the page loading time. Another bene�t in Downgrade Proxy
is header compress which may not notable. For responses, header data is often much
smaller than the accompanying data, so the bene�t of header compression is small.
HTML, CSS and JavaScript can be compressed too by GZip.

Anonymity. Proxy server use pseudo identi�er of client to communicate with server to
anonymized client’s sensitive data. For example, client’s IP address can be covered by
proxy server. Proxy can modify and replace client’s cookies which can be used as track
information for most of online services.

�.�.� Adapt Squid Cache Framework to SPDY alike Proxy

Squid� is a popular caching proxy and used by hundreds of Internet providers world-wide
to bring the best web experience. It is an open sourced program and has great customiza-
tion abilities. Currently, it is not support HTTP/� protocol. The reason to adapt Squid to
support HTTP/� is a measurable method to compare the bene�cent of HTTP/� in proxy.

The solution is to form a Downgrade Proxy by adding Header Translator Module in front
of Squid cache proxy. The Header Translator Module can upgrade the HTTP/�.� requests
and responses to HTTP/� for communication between proxy and server. One thing need
to be noticed is that Squid supports non-encryptedHTTP connection by default. However,
theHTTPS connection needs SSL injection. Sincewewant to build a SPDY alike proxy, and
only study the performance improvement fromHTTP/�. HTTPSproxy does not need to be
supported. SPDY proxy �lters the HTTPS connection from normal HTTP communication,
this means we do not need to implement the SSL injection in Squid.

The architecture of a SPDY alike proxy is similar to the Figure �.�: Header Translator is re-
sponded for converting HTTP/�.� to HTTP/�; HTTP Proxy replaced by Squid cache proxy,
it handles the requests from Header Translator and cache the request from client.

�http://www.squid-cache.org

�� C������

�.� Adapt SANE to Support HTTP/�

SANE [HSBS��] behaves as a proxy server between Crowdsourcing Client and Crowd-
sourcing Server. The general architecture of Crowdsourcing Platform with SANE setting
is given in Figure �.�. Current version of Crowdsourcing Platform is still using HTTP/�.�,
one goal of this thesis is to adapt SANE to support HTTP/� in order to gain a better per-
formance.

Figure �.�: Architecture of the Crowdsourcing Platform

One speci�c project of using SANE is MapBiquitous [Spr��], a project developed in TU
Dresden. MapBiquitous is an integrated system for indoor and outdoor location-based
services. It is based on a decentralized infrastructure of building servers providing infor-
mation about the building geometry, positioning infrastructure and navigation. Building
servers are dynamically discovered and provided information is seamlessly integrated
into outdoor systems by the MapBiquitous client.

In this section, themethods of upgradingMapBiquitous will be presented. Since themain
focus of this thesis is on the HTTP/� protocol. The adapting concept of other compo-
nents in MapBiquitous is listed here for reference and implementation will be omitted.

�.�.� MapBiquitous Framework Support

M��B�������� C����� S������

MapBiquitous has implemented two different clients. Desktop client is based on Java
Standard Edition. For client to support HTTP/�, as we discussed before, we need to up-
grade the request protocol. One solution is using Jetty [jet�6]. Jetty Java library supports
HTTP/� recently. By usingorg.eclipse.jetty.http2.client.HTTP2Clientpack-
age we could enable HTTP/� support seamlessly.

A���� SANE �� S������ HTTP/� ��

On mobile platform, MapBiquitous has an Android client. The method is mentioned in
Section �.�.�.

M��B�������� S����� S������

The functionality of MapBiquitous Server has been implemented based on Apache Tom-
cat, MySQL and JSP. HTTP requests are processed by a JSP servlet, which parses the
XML requests, extracts the geo-window, queries the database to get all available building
servers in that area and generates the response messages.

With the Tomcat 8.�.� release [tom�6], one big change of this version is added support
for HTTP/� and TLS virtual hosting. Since JSP servlet is on the Tomcat, the response is
handled for HTTP/� connection by Tomcat automatically.

�.�.� Concept of SANE Support

The adaption of SANE separate into two main parts. Firstly, we need to allow SANE sup-
port HTTP/� when it communicates with client. This relies on underneath HTTP server
support. From the [HSBS��] we know that SANE is an PHP application and running on
Apache. To run PHP scripts Apache HTTP server has two widely used methods. One is
using Common Gateway Interface (CGI) and another method is running inside Apache
HTTP server as a extend module (mod_php). We need to investigate the idea that PHP
running onHTTP/� enable Apache server also can support HTTP/� communication. Sec-
ondly, we need SANE to be a HTTP/� supported client when it communicates with the
destination server or other SANEs.

A����� PHP M�����

Using mod_php� to execute PHP scripts on a web server is one of the most popular
methods in nowadays web server.

When using mod_php the PHP interpreter is embedded in each Apache process that’s
spawned on the server. This way every Apache worker is able to handle and execute PHP
scripts itself removing the need to deal with any external processes; unlike CGI or FastCGI.
This makes it very useful for sites that are PHP heavy where lots of requests are likely to
contain PHP code (such as WordPress, Drupal, Joomla, etc.) because all the requests
can be handled by Apache.

As the interpreter is started along with Apache, it allows it to run very quickly as it can
cache certain information and does not need to repeat the same tasks each time a script
is executed.

The downside to this is that the footprint for each Apache process is larger as it requires

�https://wiki.apache.org/httpd/PHP-FPM

�� C������

more system resources with the PHP interpreter embedded. Even when serving static
content such as images, text and style sheets where no PHP code needs to be executed,
the process still contains the PHP interpreter.

Since the HTTP/� handled by another module (mod_http2) using the samemechanism
as mod_php. After the requests handled and translate by mod_http2, the mod_php

execute thePHPscripts and send the response throughmod_http2back to client. Figure
�.6 shows the process of HTTP/� communication with PHP support.

Figure �.6: PHP Application Executed with mod_php

A����� F���CGI

When executing PHP scripts with FastCGI each request is passed from the web server
to FastCGI via a communication socket. To serve an incoming request, the web server
sends environment information and the page request itself to a FastCGI process over a
socket or TCP connection. After PHP scripts executed, responses are returned from the
process to the web server over the same connection, and the web server subsequently
delivers that response to the end user. The connection may be closed at the end of a
response, but both the web server and the FastCGI service processes persist. In Figure
�.� shows the executing process of PHP working with FastCGI.

Since the requests and responses are handled by Apache server by using the mod_http2
module, either choose FastCGI or mod_php can lead to the same result of HTTP/� sup-
port.

C������������

Request and response from outside of SANE are handled by Crowdsourcing Driver. The
requests origin has three different sources: Crowdsourcing Client, Crowdsourcing Server
and DHT linked SANEs. In Figure �.8 shows request from client indicates as (a); request
from server indicates as (b) and communication with other SANEs indicates as (c).

Connection (a). This connection is between Crowdsourcing Client and SANE. Without

S������ ��

Figure �.�: PHP Application Communicate with Apache Server Though FastCGI.

considering other associations, SANE behaves as a server for client. Client’s re-
quests include GET and POST. To upgrade to support HTTP/�, we only need up-
grade Apache server for HTTP communication. Another way is to translate client’s
HTTP/� request to HTTP/�.� request, by this way, we just need add a new layer to
the current SANE server.

Connection (b). It supports the communication betweenSANEandServer. Without other
connection, SANE behaves as a client of server. To build a Straightforward Proxy,
the HTTP requests send fromSANE to Server need to be update. To build a Upgrade
Proxy, the Header Translator Module should be added between client and server or
adapt the current request to support HTTP/� natively.

Connection (c). This is connection between SANEs. The situation and condition are sim-
ilar as Connection (b), because it acts as client to other SANEs.

�.6 Summary

The adapting of HTTP/� is promising even it only announced a year ago. Most of clients
and server frameworks are already embraced this new protocol.

In this chapter, the research and concept for HTTP/� support are presented. At the same
time, the challenges for HTTP/� supporting are listed in this chapter.

The methodologies of HTTP/� supporting for current infrastructures are straightforward
and easy. In order to adapt the current frameworks to support HTTP/�, this chapter came
up three different architectures of HTTP/� involved proxy. SPDY alike proxy introduced
in this chapter follows the idea of adding translation layer in front of a cache proxy. It
achieves the idea of enabling HTTP/� connection between client and server, and also
overcomes the trouble that Squid does not support HTTP/� at this moment.

�� C������

Figure �.8: SANE Connection Type

To support SANE in HTTP/�, this chapter analyzed the components inside SANE and
proposed the concept of adaption.

� Implementation

Based on the concepts and requirements discussed in Chapter �, this chapter will apply
these methods and implementations. Start from implementing the header compression
which is one of themost important features and biggest changes in HTTP/� protocol. Af-
ter discussion of header compression implementation, the client and server framework
tools upgrade to support for HTTP/� will be represented. With the fundamental building
tools support, building or adapting current frameworks to support HTTP/� can be possi-
ble. The implementation includes building three different types of proxy, SPDY alike proxy
and adapting SANE to support HTTP/�.

�.� Upgrading to HTTP/�

Switching to HTTP/� cannot happen overnight: millions of servers must be updated to
use the new binary framing, and billions of clients must similarly update their networking
libraries, browsers, and other applications.

The good thing is, all modern browsers have committed to supporting HTTP/�, andmost
modern browsers use ef�cient background update mechanisms, which have already en-
abled HTTP/� support with minimal intervention for a large proportion of existing users.

Before adding proxy support HTTP/� into server frameworks, the current clients and
server frameworks should be also updated.

�.�.� Header Compression with HPACK

In speci�cation RFC���� de�nes HPACK [PR��], a new compressor that eliminates re-
dundant header �elds, limits vulnerability to known security attacks, and has a bounded
memory requirement for use in constrained environments.

The HPACK format is intentionally simple and in�exible. It contains a list of header �elds
as an ordered collection of name-value pairs that can include duplicate pairs. Encoding
in HPACK has two types: unsigned variable-length integers and stings of octets.

�6 I�������������

I������ R�������������

Integers are used to represent name indexes, header �eld indexes, or length of strings.
Since the integer representation can start at anywhere within an octet, an integer is repre-
sented in two parts: a pre�x that �lls the current octet and an optional list of octets when
the integer values does not �t within the pre�x.

We assume the pre�x length is N , and an integer I :

If I < 2N � 1, then encode I within the N -bit pre�x,

If I � 2N � 1, set the N -bit pre�xes to �, and the value decreased by 2N � 1 is encoded
using a list of one or more octets. The most signi�cant bit of each octet is used as a
continuation �ags: its values is set to � except for the last octet in the list. The remaining
bits of the octets are used to encode the decreased value. The pseudo code for encoding
integers is listed in Listing �.�.

if I < 2^N - 1, encode I on N bits

else

encode (2^N - 1) on N bits

I = I - (2^N - 1)

while I >= 128

encode (I % 128 + 128) on 8 bits

I = I / 128

encode I on 8 bits

Listing �.�: Pseudocode to Represent an Integer I

To understand the processing better, an example is given: The encoding integer is ����
and uses a �-Bit pre�x. The �rst step is to compare the integer with the largest number
(25 � 1 = 31) which can be represented in pre�x. The remain number will be represent
in next octets. In next octet, represent the remainder after division of remain number
(1293 � 31 = 1208) by 128 with most signi�cant number is �. The last octet represented
the result of division. The diagram of encoding process corresponds to the pseudo code
shows in Listing �.�.

1239 is greater than 31,

// 5-Bit prefix can only represent 31 maxmium

I = 1239 - 31 = 1208;

1208 >= 128

1208 % 128 = 56;

encode (56 + 128) -> 10111000;

1208 / 128 = 9;

encode (9) -> 00001001

// The result of encoding 1239 is:

U�������� �� HTTP/� ��

0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

| X | X | X | 1 | 1 | 1 | 1 | 1 |

| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |

| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |

+---+---+---+---+---+---+---+---+

Listing �.�: Example: Encoding ���� Using a �-Bit Pre�x

Decoding the integer value from the list of octets stars by reversing the order of the octets
in the list. Then, for each octet, its most signi�cant bit is removed. The remaining bits of
the octets are concatenated, and the resulting values is increased by 2N � 1 to obtain
the integer value. The pseudo code for decoding HPACK compressed integer shows in
Listing �.�.

decode I from the next N bits

if I < 2^N - 1, return I

else

M = 0

repeat

B = next octet

I = I + (B & 127) * 2^M

M = M + 7

while B & 128 == 128

return I

Listing �.�: Pseudocode to Decode an Integer I

S����� R�������������

Header �eld names and values can be represented as strings. A string literal is encode
as a sequence of octets in two ways: directly encoding the string literal octets or by using
a static Huffman code. In HPACK speci�cation generates a static Huffman code table
([PR��] Appendix B) from statistics obtained on a large sample of HTTP headers. It also
add few changes to make that no symbol has a unique code length.

I�������� HPACK A��������

Based on the algorithm, the implementation ueses the API� provide by nghttp� [Tsu��].
There are also other implementations that follow the same speci�cations. However, the
nghttp�HPACKAPI ismoremature and used bymost other applications includingApache
and curl.

nghttp� provides de�ating tool for header encoding and in�ating tool for header decoding.
The de�ating toolwill be used to analyzed the header compressed ratio in the next chapter.
�https://nghttp�.org/documentation/tutorial-hpack.html

�8 I�������������

�.�.� Update curl to Support HTTP/�

curl[cur�6] is an open source command line tool and library for transferring data with URL
syntax. libcurl� is a client-side URL transfer library and supports multiple HTTP methods,
such asPOST,GET andPUT. It can be easily integrated into other languages and programs
by using the libcurl API.

B������� ����

The reason to choose curl project as a client-side tool and library for HTTP/� supporting
is that it is wildly used and supports most HTTPmethods and can be used for testing the
web and proxy server in different situations.

curl supports HTTP/� with the help of nghttp� library, thus nghttp� is prerequisite for
successful building. At the same time, system needs a supplement SSL library to handle
the ALPN and NPN.

To build the curl support HTTP/�with nghttp� installed6 and up to date SSL library shows
as following:

./configure -with-nghttp2=/usr/local -with-ssl

U���� ���� ���� HTTP/�

curl can be used in command line or as library for other applications. Internally, curl will
convert incoming HTTP/� headers to HTTP �.x style headers and provide them to the
user, so that they will appear very similar to existing HTTP [Ste].

Using curl as command tool. To use curl command line supports -http2 option to
switch on the libcurl behavior from HTTP/�.� to HTTP/�.

curl -http2 https://http2.akamai.com

Using curl in PHP.ToenableHTTP/� supportwith libcurl, set theCURLOPT_HTTP_VERSION
toCURL_HTTP_VERSION_2_0. Listing�.� showsan example of using libcurl in PHPwith
HTTP/� enabled. This script GET resource from Akamai HTTP/� test page and print the
connection header information.

<?php

$ch = curl_init("https://http2.akamai.com/");

curl_setopt($ch, CURLOPT_HTTP_VERSION,

CURL_HTTP_VERSION_2_0);

// Specify the version of HTTP

curl_setopt($ch, CURLOPT_HEADER, 1);

curl_setopt($ch, CURLOPT_NOBODY, 1);

curl_setopt($ch, CURLOPT_VERBOSE, true);

�https://curl.haxx.se/libcurl/
6Details of building nghttp� can be found at: https://github.com/nghttp�/nghttp�

U�������� �� HTTP/� ��

$verbose = fopen(’log’, ’w+’);

curl_setopt($ch, CURLOPT_STDERR, $verbose);

$result = curl_exec($ch);

if ($result === FALSE) {

printf("cUrl error (#%d): %s
\n", curl_errno($ch

),

htmlspecialchars(curl_error($ch)));

}

rewind($verbose);

curl_close($ch)

?>

Listing �.�: Testing curl HTTP/� GET Request in PHP

�.�.� Apache HTTP Server HTTP/� Support

Since Apache HTTP Server �.�.��, it adds support for the HTTP/� transport layer protocol
based onlibnghttp2�. HTTP/� support in Apache is enabled by specifyingProtocols
in con�guration �les. TheHTTP/� protocol supports two schemes: h2 (HTTP/� over TLS)
and h2c (HTTP/� over TCP). Since most of the web browsers are only support HTTP/�
over TLS, e.g. Firefox and Google Chrome. As a result, TLS with ALPN negotiation is
de-facto requirement for enabling HTTP/� in the browser.

U����� ��� A����� �� ������� HTTP/�

The test environment is based on Ubuntu, and currently there are two major LTS release
version are wildly used. The newest release Ubuntu �6.�� (Xenial Xerus) has apache
2.4.18 packages 8 available. This version of apache already supported HTTP/�. An-
other version of Ubuntu ��.�� (Trusty Tahr) only has apache 2.4.7 and cannot support
HTTP/� by default. We can build the newer apache version from source �le or uses third-
party package repository�. In Listing �.� shows the method to add third-party package
repository and upgrade Apache to latest version.

$ apt-get install python-software-properties

$ add-apt-repository -y ppa:ondrej/apache2

$ apt-key update

$ apt-get install apache2

Listing �.�: Install Apache from Third-party Repository

�libnghttp2 is an implementation of HTTP/� and its header compression algorithm HPACK in C.
8http://packages.ubuntu.com/xenial/apache�
�https://launchpad.net/ ondrej/+archive/ubuntu/apache�

�� I�������������

S���-������ SSL C����������

SSL certi�cates are required in order to run web server using HTTPS protocol. There are
two ways to gain a certi�cate: the �rst method is granted and provided by third-party cer-
ti�cate authority (CA). It uses a chain of trust, where each certi�cate is signed by a higher,
more credible certi�cate. At the top of the chain of trust are root certi�cates, owned by
CA provider. Another way is generate a self-signed certi�cate. A self-signed certi�cate is
an identity certi�cate that is signed by the same entity whose identity it certi�es.

When user visit a web site over HTTPS, web browser will receive the SSL certi�cate for
the web site. It will examine the contents of the certi�cate to see that is indeed valid for
the domain name it is visiting. After that, it veri�es the chain of trust. It will look at who
has signed the certi�cate. If that certi�cate is a root-certi�cate, it will compare it against
the ones shipped with the operating system. If it is a non-root certi�cate, it follows the
chain of trust up one more level.

For self-signed certi�cates, there is no chain of trust. The certi�cate has signed itself.
The web browser will then issue a warning, telling that the web site certi�cate cannot be
veri�ed unless client accepts this self-signed certi�cate.

One can generate a self-signed certi�cate with OpenSSL. OpenSSL is an open source
project that provides a robust, commercial-grade, and full-featured toolkit for the Trans-
port Layer Security (TLS) and Secure Sockets Layer (SSL) protocols. It is also a general-
purpose cryptography library. To generate a self-signed certi�cate using OpenSSL shows
in Listing �.6:

openssl

req -x509 -nodes -days 365 -newkey

rsa:2048

-keyout ssl.key

-out ssl.crt

Listing �.6: Generate Self-signed Certi�cate with Openssl

With self-signed certi�cate has acceptance problem on opponent parts. When a com-
munication only has two participants, it easy to solve the trust issue by accepting each
other manually. However, when a proxy involved in a communication, there is needs to
expand the trust of domain.

In top diagram of Figure �.� shows the trust domain between client, proxy and server.
Since the client and proxy using the SSL encryption connection, the data integrity and
security can be ensured. Also this result applies to the connection between proxy and
server. However there is an issue that server and client cannot trust the each other’s
identity and data integrity. One solution of this problem is to use a full-trust proxy.

A full-trust proxy is a proxy that can be trusted by client and server. Its identity is explicit to

U�������� �� HTTP/� ��

Figure �.�: Trust Domain of Client, Proxy and Client Switch

both client and server. If the client sends any data through the full-trust proxy, that means
it accept the response via proxy is genuine from the server. If the client or server do not
trust the proxy, they should never send any information through the proxy. The bottom
diagram of Figure �.� dedicates the idea of an explicit proxy.

Self-signed certi�cates has trust issues, and need end-user to valid the certi�cate by
themselves. Introducing a proxy between client and server can be a hazard for man-
in-the middle attack (MITMA)��. Only the client can accept the identity of explicit proxy,
the self-signed certi�cates can work in a HTTP/� proxy.

C�������� A����� �� S������ HTTP/�

In order to support HTTP/� in Apache, themod_http2module andmod_sslmust be en-
abled. To accept and upgrade HTTP/�.� to HTTP/�, the Apache con�guration �le should
be modi�ed. In Listing �.� gives an example to con�gure Apache to support HTTP/�.
Since Apache enables HTTP/� via protocol directive. The speci�cation of protocol
should be added in con�guration �le. Parameter h2 enables the HTTP/� protocol, h�c
enables HTTP/� protocol via plain text. For clients do not support HTTP/�, the HTTP/�.�
also need to be supported. Because of modern browsers need HTTPS for HTTP/� con-

��Man-in-the-middle attack is an attack where the attacker secretly relies and possibly alters the communi-
cation between two parties who believe they are directly communicating with each other

�� I�������������

nection, the self-signed certi�cate location needs to be inserted in the con�guration.

enable apache http2 and ssl modules

$ a2enmod http2 ssl

modify the default-ssl.conf file to support HTTP/2

protocol

<IfModule mod_ssl.c>

<VirtualHost *:443>

enable http2 protocol on apache

Protocols h2 h2c http/1.1

specify the location to the self-signed certificate

file and key

SSLCertificateFile /path/to/certfile

SSLCertificateKeyFile /path/to/keyfile

</VirtualHost>

</IfModule>

enable default-ssl site configuration

$ a2ensite default-ssl.conf

Listing �.�: Enable and con�gure Apache to support HTTP/�

Once HTTP/� protocol is enabled on Apache server, the response will be sent over the
HTTP/� connection as showing in Figure �.�. Additionally, the server push feature is en-
abled by default.

Figure �.�: Connection via HTTP/�: Response and Request Header

E����� S����� P���

The HTTP/� protocol allows the server to push resources which speci�ed by server to
a client when it asked for a particular one. Apache enables server push function by de-
fault. To specify certain resources push to a client, the con�guration can be done by edit-
ing Apache H2Push directive or dedicating in applications. Since the H2Push directive

B���� P���� ���� HTTP/� C L������ ��

settings can be found on Apache HTTP Server documentation ��, the example is omit-
ted here. The convenient way to enable server push is through application. The Link
headers of response speci�ed in RFC��88 are responsible for notifying the server which
resource should be pushed. When a Link has rel=preload attribute, it will be treaded
as a resource to push. In Listing �.8 shows an example of enabling server push by using
header() function in PHP to set the resource to be pushed in index.php page. When
a client sends the request for index.php, the CSS �le example.css will be pushed to
the client without the request of CSS reach to the server.

<?php

header(’Link:<css/example.css>; rel=preload’);

?>

<html>

...

</html>

Listing �.8: Enable Server Push Header Function in PHP

�.� Build Proxy with HTTP/� C Library

nghttp� [Tsu��] is an implementation of HTTP/� and its header compression algorithm
HPACK in C. It provides a reusable C library for enabling HTTP/� and has been used in
many frameworks through API, e.g. Apache HTTP Server, curl tools. nghttp� library also
provides a protocols translation tool called nghttpx. It can act as an essential module
for building a proxy service with complicated network setup.

In Section �.�.�wediscussed three different architecture proxies. The communication be-
tween client and proxy can be either HTTP/� or HTTP/�.�, the same between server and
proxy. Because of the encryption of HTTP/� header and hard to debug a binary encode
header values, we need a mature tool to handle the translation process. The nghttpx
from nghttp� can act as a proxy translating protocols between HTTP/� and other pro-
tocols, such as HTTP/�.� and SPDY. It has several functional modes and with additional
support we can build the proxies we need.

This section implement the reverse proxy with nghttpx to prove the concept mentioned
in Chapter �. HTTP/� connection can be established via TLS or TCP. In Table �.� lists 8
situations of HTTP/� connection with proxy setting.

Alice The client sends request and receive response from proxy (Claire). It can use HTTP
scheme or HTTPS scheme for secure connection;

��https://httpd.apache.org/docs/trunk/mod/mod_http�.html#h�push

�� I�������������

Bob The connection between Alice and Claire. It has three different protocol: HTTP/�.�,
HTTP/� via TLS (h�) or HTTP/� via TCP plain text (h�c);

Clare The proxy server, it can has three types: Upgrade, Downgrade and Straightforward;

David The connection between Claire and server (Eason), similar as Bob;

Eason The destination server, it can support scheme: HTTP and HTTPS.

Alice Bob Claire David Eason

HTTP HTTP/�.� Upgrade h�c HTTP

HTTP HTTP/�.� Upgrade h� HTTPS

HTTPS HTTP/�.� Upgrade h�c HTTP

HTTPS HTTP/�.� Upgrade h� HTTPS

HTTP h�c Downgrade HTTP/�.� HTTP

HTTP h�c Downgrade HTTP/�.� HTTPS

HTTPS h�c Downgrade HTTP/�.� HTTP

HTTPS h� Downgrade HTTP/�.� HTTPS

HTTP h�c Straightforward h�c HTTP

HTTPS h� Straightforward h�c HTTP

HTTP h�c Straightforward h� HTTPS

HTTPS h�c Straightforward h� HTTPS

Table �.�: Proxy with HTTP/� Connection

To build proxywith different architectures, nghttpx is in uses. In order to simplify the dis-
cussion and showcase of implementation, the buildingmethods as following only present
when Alice, Claire and Eason are all using secure connection.

The default mode of nghttpx works as reverse proxy for both HTTP/� and HTTP/�
clients to back-end server. The front-end connection can be either HTTP/� or HTTP/�
by the speci�cation in a program.

B���� D�������� P����

In Downgrade Proxy mode, the client communicates with proxy server by using HTTP/�
connection and the connection between proxy and server is in HTTP/�.�. This is a very
common mode in nowadays Internet service. By using nghttpx we can easily achieve
this goal. nghttpx module can be used as a proxy server or a translation module in front
of other web proxy. To build a Downgrade Proxy with other proxy will be discuss in next
section as SPDY alike proxy.

Listing �.� gives an example to enable a Downgrade Proxy with nghttpx:

B���� P���� ���� HTTP/� C L������ ��

frontend=0.0.0.0,3000

backend=127.0.0.1,8080;tls

private-key-file=/path/to/server.key

certificate-file=/path/to/server.crt

Listing �.�: Con�guration for Downgrade Proxy in nghttpx

The �rst line speci�es thePORT and allows nghttpx to accept connection fromall address.
The second line de�nes the back-end server address. HTTP/� connection between server
and proxy need to be encrypted, nghttpx needs to knows the SSL key and certi�cation
�les location which addressed in line � and �.

B���� S�������������� P����

TheStraightforwardProxymode assumes that all the communication among client, proxy
and server are HTTP/� connection. nghttpx supports this mode by con�gure the back-
end connection to server.

Based on the trust of domain expanding which discussed in last section, when using a
self-signed certi�cate, we need to expand the trust domain to includes proxy, client and
server. In another words, the client has to trust that the proxy will not connect a untrusted
server to obtain resources and also proxy connects to a trust server.

-k

frontend=0.0.0.0,3000

backend=127.0.0.1,8080;proto=h2;tls

private-key-file=/path/to/server.key

certificate-file=/path/to/server.crt

Listing �.��: Con�guration for Straightforward Proxy in nghttpx

In Listing �.�� shows the con�guration of building a Straightforward Proxy with nghttpx.
The �rst line -k speci�es that proxy would not verify the identity of destination server and
trust it unconditionally.

B���� U������ P����

The Upgrade Proxy mode is similar to the Straightforward Proxy mode with slightly differ-
ence. The connection between client and proxy is using HTTP/�.� instead of HTTP/�. The
con�guration of nghttpx is the same, but we need to specify the client to use a HTTP/�.�
connection. When a non-encrypted connection between client and proxy server is in use,
even the proxy server support HTTP/� will be rolled back to HTTP/�.� connection.

�6 I�������������

�.� Build General SPDY alike Proxy

Squid is a popular caching proxy and has similar behavior as SPDY Accelerator: the HTTP
requestwill be cached andpassed through theSquid proxy; encrypted connection (HTTPS)
will be �ltered out from the Squid. Squid does not support HTTP/� yet, in this implemen-
tation we can adapt the Squid to support front-end HTTP/� connection between client
and proxy and analyze the improvement.

�.�.� Architecture

Figure�.� shows the general architecture of the SPDYalike Squid proxywhich can support
HTTP/� connection. There are two main components in this architecture:

Figure �.�: Architecture of SPDY alike Squid Proxy

nghttpx. It handles the protocol translation process. All the connection via nghttpxwill
be switched to HTTP/�.� for Squid proxy to handle the cache process.

Squid Cache Proxy. The main task of this component is to cache the resource from re-
mote server. With additional cache control mechanism, such as Least Frequently
Used Replacement (LFUR), the most frequently resources can be cached in Squid
Cache proxy to reduce the load time.

HTTP and HTTPS connection are handled separately and differently in this proxy imple-
mentation.

HTTP Request When a client request a resource from a no-encrypted web server. The
request will be switched to an encrypted connection between proxy and client. After
switch to HTTPS, proxy and client can negotiate which protocol to use next. The
connection can be either HTTP/� if the client support or fall back to HTTP/�.� if the
client can not support. After this process the nghttpx will forward or translate

B���� G������ SPDY ����� P���� ��

further request to HTTP/�.� for Squid cache proxy. Only after the translation, Squid
proxy can understand the request and continue.

HTTPS Request When client’s request sends to an encrypted web server. The nghttpx
will forward the request to Squid without modifying the header section. Clients be-
hind an explicit proxy use the CONNECT HTTP method. The �rst connection to the
proxy port uses HTTP and speci�es the destination server (often termed the Origin
Content Server, or OCS). The Squid proxy simply acts as a tunnel, and blindly proxies
the connection without inspecting the traf�c. The connection between client and
proxy is either HTTP/� or HTTP/�.� which depends on the destination server.

�.�.� Integrate Squid and nghttpx

������� C������������

In order to integratenghttpxwith Squid cache proxyweneed to specify that thenghttpx
works in HTTP/� proxy mode. In this mode, nghttpx can handle and translate the com-
munication protocol automatically. However, it is not working as the default proxy mode
that cache and server the resource. It acts like forward proxy and assumes the back-end
is HTTP proxy server.

By default, front-end connection is encrypted. It means if clients support HTTP/� pro-
tocol the connection can be upgrade to HTTP/�, otherwise the connection maintains in
HTTP/�.�.

This mode is invoked with -http2-proxy parameter and should set the back-end port
to the Squid listening port.

S���� C������������

In order tomake the Squid works properly with nghttpx, we need to customize the Squid
directives [Sai��]. The con�guration �le of Squid is located at/etc/squid3/squid.conf
in Ubuntu.

HTTP port directive is used to specify the port where Squid will listen for client con-
nections. The address and port should be the same as the back-end server setting in
nghttpx con�guration �le.

http_port 3128; set the listen port to ���8;

HTTP access control directive is used to grant access to perform HTTP transactions
through Squid. For security reason we should only allows the Squid to accept the con-
nection from localhost.

http_access allow localhost;

�8 I�������������

Memory cache mode directive is for setting the memory cache behavior.

memory_cache_mode always; themode always is used to keep all themost recently
fetched objects that can �t in the available space;

CacheReplacement Policy. Thewebdocuments cached in themainmemory or RAMcan
be served faster compared than the hard diskswithmechanical parts. However, the space
available in RAM for caching is limited. Only most popular objects or the documents
with a high probability of being requested again. The Least Frequently Used (lru) cache
replacement policy helps Squid to keep themost popular objects in the cache, and recycle
the space by removing the oldest (since the last HIT).

memory_replacement_policy lru; enable cache replacement policy.

�.�.� Con�gure Client Support

To make Firefox or Chromium use nghttpx front-end SPDY alike proxy, user has to use
proxy.pac script �le to automatically change the proxy address. In Listing �.�� shows the
example script �le. The SERVERADDR and PORT is the hostname/address and port of the
machine nghttpx is running. Since both Firefox and Chromium require valid certi�cate
for secure proxy, client needs to accept the self-signed certi�cation.

function FindProxyForURL(url, host) {

return "HTTPS SERVERADDR:PORT";

}

Listing �.��: Proxy.pac File Example

To support HTTP/�.� clients use this proxy, one method is to maintain a HTTP header
translator locally at clients side. This translator converts client’s HTTP/�.� request to
HTTP/� request and sends to SPDY alike proxy. The further connection is similar to the
client which supports HTTP/� natively.

�.� Adapting SANE to Support HTTP/�

SANE is a highly specialized Web proxy application which behaves not the same as nor-
mal proxy. Unlike other proxies forward client’s requests and responses, SANE acts as a
fully functional application between client and server to handle the data procedure. On

A������� SANE �� S������ HTTP/� ��

client’s point of view, SANE is an application running on web server. From server’s per-
spective, SANE behaves as a client who sends request and get responses. The role of
SANE is more independent compare to regular proxy.

This section will introduce how to adapt SANE which currently only supports HTTP/�.� to
support HTTP/� in different architectures.

�.�.� Adapting SANE to Downgrade Proxy

A Downgrade Proxy with SANE means it will support HTTP/� connection between client
and proxy, but will not upgrade the connection between proxy and server. Because the
feature of decoupling client from server in SANE, the adaptmethods are easily to let SANE
application act as a proxy web server with HTTP enabled. This section introduces two
mechanisms to achieve this goal.

I�������� ������� ���� SANE �� S������ HTTP/�

An intuitive way to support HTTP/� in SANE is by adding a translation module. The re-
sponsibility of translation module is to help SANE application deal with the HTTP/� re-
quest. Since the complex and binary features of HTTP/� connection, nghttpx, a more
maturer component for translation HTTP/� request is introduced to handle the process.

As showing in Figure �.�, nghttpx is placed in front of SANE to help translating the
HTTP connection. When clients try to connect the SANE server, nghttpx will manage
this request and response for negotiation the HTTP protocol between client and SANE.
If the client accepted the HTTP/� protocol the further transaction will be carried under
HTTP/�. If the client does not support HTTP/�, the connection will fall back to HTTP/�.�
(which is not showing in Figure �.�). After nghttpx translates the POST request from
HTTP/� to HTTP/�.�, the SANE can continue the rest processing as regular SANE. The
responses also follow the same path and work�ow.

By adding nghttpx is intuitive and can adapt the current frameworks to support HTTP/�
in a Downgrade Proxy without changing other components. SANE and related server will
maintain the same. However, this addition layer can cost few more cycles for messages
to transact.

U������ A����� S����� �� S������ HTTP/� �� SANE

Additional translation layer is easy to adapt current frameworks to support HTTP/� but
may affect the performance of the application behind the translation module. Since the
Apache Web Server supports HTTP/� and based on the research from Section �.�.�, we
can upgrade the Apache Web server to enable front-end HTTP/� connection in SANE.

Once SANE is running on a Web server which supports HTTP/�, the connection between

�� I�������������

Figure �.�: Exemplary HTTP/� Communication Support with nghttpx in SANE

client and proxy is upgraded to HTTP/� automatically. The communication sequence
of SANE maintains the same from proxy and server, since the SANE application is not
upgraded to support HTTP/� as a client yet.

�.�.� Adapting SANE to Straightforward Proxy

HTTP R������ �� SANE

In a Straightforward Proxy, all connections should be under HTTP/�. The front-end con-
nection can be upgraded through the methods mentioned in previous section. In order
to reduce the latency of communication, adapting the front-end communication with
Apache upgrade is a better choice. It avoids the process time in nghttpx and provide
a more straightforward communication regardless the server’s setup. From SANE to the

A������� SANE �� S������ HTTP/� ��

destination server, the upgrading should be in the SANE since the SANE behaves as a
client of the destination server which controls the �nal connection mechanism.

SANE communicates with other components using HTTP POST and GET methods. It
sends the parameters in HTTP request body. The HTTP library locates at SANE/libs
/HTTP.php is responsible for all the further communication outside SANE no matter
the destination server is another SANE or Crowdsourcing server.

When post_request or get_request invoked by other SANE methods, the request
data, request URL and a boolean for enabling HTTPS connection are passed to the func-
tions. Then HTTP library assembles the data and sends to the request server with HTTP
or HTTPS connection based on the boolean. For get_request it recon�gures the re-
quest URL based on parameters.

I�������� ���� �� SANE �� S������ HTTP/�

The reason to use curl instead of to upgrade the header �eld directly is that HTTP/� pro-
tocol uses HPACK encoding and also needs other components to handle the APNL pro-
tocol. This kind of work is deep down to the implementation of HTTP/� protocol and is
not the purpose of using HTTP/� in proxy communication. curl provides an easy to use
API in PHP, hide HTTP/� binary nature and convert received HTTP/� traf�c to headers in
HTTP/�.� style. This allows application works in both HTTP/� or HTTP/�.� connection.

A newmethod is implemented in SANE to test thememorymodi�cation type proxy works
as expected. This method allows user to POST a message via SANE, then SANE hashes
the message and POST this hashed message to server.

<?php

$data = hash("sha256", $method_values["message"]);

include_once(getcwd()."/libs/HTTP.php");

include_once(getcwd()."/libs/Database.php");

global $_CONFIG;

$theQuery = "INSERT INTO ‘Messages‘ (‘message‘) VALUES (:

message);";

$theValues = array("message" => $data);

db($theQuery, $theValues, $_CONFIG["dbPersistent"]);

$post_to_send = array(

"method"=>"viaSANE",

"message"=> $data,

);

$response = post_request2($post_to_send,"127.0.0.1:8080",

true);

?>

Listing �.��: Method to Store Message in SANE and Send to Server

�� I�������������

This method uses upgraded HTTP request to post data. The code of HTTP post function
is listed in Listing �.��. When secure connection enabled, the post request will try HTTP/�
connection by default. If the destination server does not support HTTP/� the post will
be sent via HTTP/�.�. When the secure connection is disabled and the server supports
HTTP/� via plain text, the connection will be upgraded to HTTP/� with h2c.

This method only emulates the basic communication mechanism in SANE: data sent by
crowdfunder to SANE will be modi�ed and reconstructed before being sent to the desti-
nation server. It omit the encryption and assertion function of SANE. The reason to im-
plement method without concern of other components is that the evaluation only focus
on the performance directly related to HTTP/� connection and it is easier to investigate
the message �ow. It is easy to be integrated in further work. Since this function is imple-
mented in lower layer of the system as a library, any other methods related and invoke
HTTP library will perform the same course.

function post_request($data, $url="127.0.0.1:8080", $secure

=true){

global $_CONFIG;

if (!defined(’CURL_HTTP_VERSION_2_0’)) {

define(’CURL_HTTP_VERSION_2_0’, 3);

}

$params = http_build_query($data);

$connect = ’http’.($secure?"s":"").’://’.$url;

$ch = curl_init();

curl_setopt($ch, CURLOPT_HTTP_VERSION,

CURL_HTTP_VERSION_2_0);

curl_setopt($ch, CURLOPT_URL,$connect);

curl_setopt($ch, CURLOPT_POST, 1);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_POSTFIELDS, $params);

curl_setopt($ch, CURLOPT_HEADER, 1);

curl_setopt($ch, CURLINFO_HEADER_OUT, true);

$result = curl_exec($ch);

curl_close($ch);

header("HTTP/2 200 OK");

print_r("Send success");

}

Listing �.��: Upgrade SANE to Support HTTP/� with curl Library

S������ ��

�.� Summary

This chapter presents the fundamental methods to adapt system frameworks to support
HTTP/�. Firstly, the implementation of compressing and encoding HTTP/�.� header to a
binary header with HPACK provides a clear view of HTTP/� header structure and helps
evaluate the bene�ts from header compression. Then curl library and command tool
introduced to adapt SANE to support HTTP/�. The con�guration and implementation of
Apache server demonstrates the common way to support HTTP/� in current web server
infrastructure.

Secondly, three different architecture proxies with HTTP/� are implemented to prove the
idea derived from Chapter �. The feasibility and performance of each architecture will be
given in the next chapter. To prove the idea in amore realistic situation, a SPDY alike proxy
is implemented, this help us gain more information of the performance from HTTP/�.

Finally, a new functionmethod is introduced into SANE to study the bene�t from adapting
HTTP/� in SANE. This function allows us to study the performancewithout involving other
factors, such as system encryption overhead and memory query latency.

� Evaluation

This chapter represents the evolution of introducing HTTP/� with proxy setting. Since
the different architectures of system with HTTP involved, to analyze the performance
and prove the concept of bringing HTTP/� proxy into the current system framework can
improve the performance, the evaluation will be separated into three main parts. Firstly,
the compression ratio of header with HPACK will be represented. Header compression
is a signi�cant feature of HTTP/� and fundamental change from HTTP/�.�. By analyz-
ing the performance leads to a comprehensive understanding about the performance
related to the header compression. Secondly, the three different architecture proxies will
be evaluated to prove the feasibility and performance will also be given accordingly. A
SPDY alike proxy will be evaluated in this chapter as a supplement to prove the concept
that HTTP/� can be used in proxy setting. This gives a more common usage scenario
of proxy when web browsing. Finally, the adapted SANE, a specialized memory modi�es
proxy, with HTTP/� support will be tested and investigated.

�.� Header Compression Ratio

Header compression is a new feature brought into HTTP/� protocol. The algorithm and
implementation are discussed in Chapter � and �. For header compression performance
analyze, twomethodologies are represented in this section. The evolution of header com-
pression gives an overall view about HTTP/� header compression mechanism effects on
the performance.

H��������� R�������

The testbed website contains CSS �le, picture �les and other pages. All the requests are
homologous which means all the requests query the resource from the same website
domain. The header request are compressed in different number each time. Listing�.�
shows the �rst two original requests of the testbed website and the compressed HTTP/�
header (the value of wire key). The calculation of CompressedRatio(�H) is based on
the Equation �.�:

�6 E���������

CompressedRatio(�H) =
OutputLength

InputLength
(�.�)

The difference between two requests are only the :path values and other information is
the same, we call this kind of request isHomologous Requests. However, the compressed
ratio has a signi�cant disparity. The �rst request �H is �.6�� and the second request �H

is �.���. The reason is that HPACK usesDynamic Table to store the redundant data to save
the header space. This provides a signi�cant reduce of data during header transaction.
Figure �.� shows the number of request and corresponding ratio. As can be seen, the
ratio is decreasing, which means the performance bene�t from HPACK is increasing with
the increased number of requests from the same server domain.

//First request

"headers": [

{":method": "GET"},

{":path": "/guideline/css/pure-min.css"},

{":authority": "junyu.xyz"},

{"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X

10.11; rv:46.0) Gecko/20100101 Firefox/46.0"},

{"accept": "text/css,*/*;q=0.1"},

{"accept-language": "en-US,en;q=0.5"},

{"accept-encoding": "gzip, deflate, br"},

{"referer": "https://junyu.xyz/guideline/"},

{"connection": "keep-alive"},

{"pragma": "no-cache"},

{"cache-control": "no-cache"}

],

"wire": "3fe1...9cbf" //325 Byte

//Second Request

"headers": [

...

{":path": "/guideline/css/grids-responsive-min.css"}

...

],

"wire": "82..bf" //60 Byte

Listing �.�: Header Compression Test Set

G������ R�������

To obtain a more general idea of the average compressed ratio, the same number (��
request each site) of requests for different sites is compressed. The request headers are
varied from each other and contains different methods and values of the same key.

H����� C���������� R���� ��

0 2 4 6 8 10 12 14 16

0.2

0.4

0.6

Number of request

Co
m

pr
es

si
on

Ra
tio

(%
)

Figure �.�: Ratio of Homologous Requests

Based on the Figure �.�, the average size of header among �� different sites is ���� Byte,
and the average �H is �.���, the saving from HPACK is approximately 8�% which is ����
Byte of average header size.

Ba
idu

Fa
ce
bo
ok

Go
og
le

Lin
ke
din MS

N QQ Sin
a

Ta
ob
ao

Wi
kip

ed
ia

Ya
ho
o

0.15

0.2

0.25

0.16

0.2

0.24

0.21

0.18 0.18
0.19

0.16

0.25
0.24

Co
m

pr
es

si
on

Ra
tio

(%
)

Figure �.�: Ratio of Heterologous Requests

Overall. This shows that HPACK can dramatically reduce the header size and decrease
the traf�c from header transaction.

Dynamic Table contributes most in header compression. HPACK uses Static Table to
represent common header �elds, that reduces the header size. However, the Dynamic
Table reuse mechanism shows amore advantage of header ration decreasing. As can be
ascertained from the test of Homologous Requests, start from the second request, the
encoded header size drops dramatically.

Header Compression is related to header complexity and redundancy. The results from
Heterologous Request shows the �H is varied from different site. After analyzing the re-
quests of different sites, �H depends on the header �elds complexity and redundancy.

HPACK has security vulnerability. HPACK uses Static Table to represent frequently used
header �eld. It means the same header �eld value computes the same encoded header

�8 E���������

�eld. For example, :method: GET always encoded as 82. Since the Dynamic Table
uses Huffman Code, there is likewise the possibility for hacker to guess the header �elds
by comparing the encode results. Relying onHPACK binary feature for security is not wise
enough for nowadays Internet environment. It also means HTTPS is necessary when the
application demands a more secure setting.

�.� Evaluation on Proxy with HTTP/� Setting

In this section the evaluation of general proxy will be demonstrated. First discussion is
about the different architecture of proxies that in�uence the functioning. Second part of
this section is giving a more realistic scenario of using a proxy in web browsing and the
performance will be analyzed.

�.�.� Architecture Performance In�uence

From the concept of Chapter �, three different architectures are:

�. Straightforward Proxy which has HTTP/� connection on both side;

�. Upgrade Proxy which the connection on client side is HTTP/� and server side is
HTTP/�.�;

�. Downgrade Proxy whose connection setup is opposite of Upgrade Proxy.

These three different architecture proxies are implemented on Ubuntu ��.�� server, which
is located in Frankfurt, Germany. The test server is running Apache and has a single page
for responding the requests. For each architecture, two different variables are given: n and
c. n means that the total number of requests are sent to the destination server. c means
the number of concurrent clients. For example,�n100� c10 represents ��� requests are
sent concurrently by �� clients. In Figure �.� shows the total requests �nishing timewhen
n = 100; c = 10, n = 50; c = 5 and n = 1; c = 1. The upper �gure shows the result which
is running on a local machine and bottom �gure shows the mean request �nishing time
when requests are sent from the remote client. For remote client request, each setup runs
three times to calculate the mean �nish time to smooth the network speed �uctuation.

Overall. The result above shows the different architecture of proxies will affect the per-
formance.

HTTP/� enabled on the client side is preferable than server side. Based on the results,
different architecture proxies will affect the performance. The calculation of mean per-

E��������� �� P���� ���� HTTP/� S������ ��

Upgrade Straightforward Downgrade

0

100

200 169.72
155.14

214.85

80.04 75.64
101.92

8.42 8.02 8.56

Ti
m

e(
m

s)

Upgrade Straightforward Downgrade

200

400

447.72 437.43
467.08

370.59 381.22
411.94

87.92 80.08 99.81

Ti
m

e(
m

s)

n��� c�� n�� c� n� c�

Figure �.�: Different Architecture of Proxy with HTTP/�

formance �uctuation between two proxies is � = (SUM(T imeA) � SUM(T imeB))/3.
The mean performance �uctuation is �USLocal = 6.46 and �USLocal = 3.84. The mean
�uctuation between Downgrade Proxy and Straightforward Proxy is �DSRemote = 28.84

and �DSRemote = 26.7. If � is more close to 0 means the performance is more close to
a native HTTP/� proxy. Since�DSLocal > �USLocal and�DSRemote > �USRemote, we can
assume that the enabling HTTP/� on the client side is more ef�cient and preferred. The
reason is that the HTTP/� proxy is running on the server side, and behaves as a proto-
col translator before the server responses to the request. The abstract distance between
server and proxy is smaller than client and proxy.

Straightforward Proxy has most performance improvement. When HTTP/� is enabled
on both sides, the header traf�c reduced thus decreas the request time. With the increase
of requests number, the bene�t is more noticeable.

Header Compression is not the only factor affecting the performance. The result of re-
quest -n�� -c� from remote server shows the Upgrade Proxy uses less time than Straight-
forward. The transaction latency, additional ACK rounds for HTTP/� protocol and other
factors should be considered when estimates the performance when the test is running
in a realistic state of affairs. In other words, for real-time request should use HTTP/�
carefully.

6� E���������

�.�.� SPDY alike Proxy Performance Evaluation

This evaluation is based on the implementation of SPDY alike proxy presented in Section
�.�. The implementation has two major parts: the protocol translator which converts the
HTTP/�.� style header to a HTTP/� header for clients; the Squid proxy which behaves
as cache proxy and caches the requested resources. The test server is running on a
virtual cloud host based in Frankfurt, Germany. In order to analyze the performance im-
provements, the test sample selected �� popular websites from Alexa�� that supports
non-HTTPS connection and has a consistent request number per web page. The website
information and the request number are listed in Table �.�. From the feature of SPDY alike
proxy we know that only the HTTP requests will pass through a cache proxy. For HTTPS
request, the connections will maintain the same protocol and would not be affected by
cache proxy. HTTPS request number is also listed in Table �.� since it is a huge factor
that affects the performance of HTTP/� SPDY alike proxy.

Website HTTP Request # HTTPS Request # Page Size

Baidu �� � ���.�� KB

t.co � � �.�� KB

Onclickads 6 � ��6.�� KB

Imgurl �� 6 ����.�� KB

FC� �� �� ����.�� KB

IMDB ��� �� ����.�� KB

Aliexpress �� � ��8�.6� KB

Diply ��8 8 ���68.�� KB

Nicovideo �6 �6 ����.6� KB

Alibaba 6� �� ����.88 KB

Table �.�: Test Website Information.

In Figure �.� shows the page loading time of the websites which are listed in the table
above. The gray bar presents the mean page loading time using direct HTTP/�.� squid
proxy; the red bar dedicates the mean page loading time using HTTP/� squid proxy. The
blue line with triangle shows the deviation between two connections.

Overall, the HTTP/� Squid proxy does not show a very good improvements. The perfor-
mance is about the same and sometimes are slower than HTTP/�.� connection.

A HTTP/� based SPDY alike proxy can be constructed. The implementation based on
the concept fromChapter � is an example of proxy usingHTTP/�. Withmore fundamental

��http://www.alexa.com/topsites

E��������� �� SANE ���� HTTP/� S������ 6�

0

20

40

60

80

0

3

6

9

12

Baidu t.co Onclickads Imgurl FC2 IMDB Aliexpress Diply Nicovideo Alibaba

Δ Direct Squid Connection HTTP/2 Squid Connection

5.08

74.23

24.11

4.24

14.82

4.37

18.86

0.860.32

14.26

5.6

63.24

17.7

3.38
10.59

4.05

18.98

0.730.35

11.81 -0.52

10.99

6.41

0.86

4.23

0.32-0.120.13-0.03

2.452.45

-0.03 0.13 -0.12 0.32

4.23

0.86

6.41

10.99

-0.52

Figure �.�: SPDY alike Proxy Performance with Different Sites

tools support in next few years, a native HTTP/� cache proxy will �nally launch in the
market. However, we need a better solution for HTTPS proxy, because the proxy needs to
inject the SSL protocol and decrypt the header information for further communication. A
plain text based HTTP/� proxy is not accepted by nowadays browser by default.

HTTP/� proxy improvement is not universal. One of the reasons is the over header on
the nghttpx translator module. The nghttpx adds an extra layer before Squid proxy and
increased the message transaction time. Another reason is that the HTTPS connection
will be redirected and break the HTTP/� stream. Theweb pages contain other resource or
HTTPS connection can be the trigger to break down the currentHTTP/� connection. From
observation, most of the HTTPS connection loads at last after the HTTP/� connection is
completed. The last reason is third-party website resources, these resource does not
get huge bene�ts from HTTP/� because these requests are sent to third parties which
connections need to be reestablished and Dynamic Table cannot be used in this scenario.
For small web pages, enablingHTTP/�may increase the latency. The similar result shows
in [ABC+��] that Google’s Flywheel gets bene�ts mostly from the data reducing, which is
not the main study area of this thesis.

Single TCP connection may hurt the performance of the proxy. HTTP/� only uses a
single TCP connection. The performance relies on the reliability of that connection. Com-
pare to the HTTP/�.� connection which has multiple TCP connections, one suffers from
poor connection will not affects the whole communication. The similar result has also
been found in [dSOC��].

�.� Evaluation of SANE with HTTP/� Setting

SANE is a speci�ed proxy program which processes clients’ requests before sending to
the destination server. Based on the methods mentioned in Section �.�, viaSANE meth-

6� E���������

ods is created for the evaluation. The study of the performance improved by HTTP/� in
SANE separate in two tests: the �rst test is running on the local virtual machine to avoid
the network latency, the second is functioning on remote server which simulate a more
realistic surroundings. Finally, the security and anonymity consideration will be discussed
in this section.

�.�.� Feasibility Proof

The function of viaSANE is to simulate the basic function of SANE and simplify the data
processing to mainly focus on HTTP/� connection related factors. Adding HTTP/� sup-
port in SANE is a fundamental which all the upper layers are based on this. The feasibility
proof is formed in two parts: we need to prove that running SANE in a HTTP/� supported
framework can allow the client to communicate with SANE by using HTTP/�. Second
part is to prove that SANE can communicate with Crowdsourcing Server using HTTP/�.

To debug the HTTP/� communication and show a more readable proof, the communica-
tion between client and SANE is using HTTPS connection with SSL key injection. How-
ever, the communication between SANE and server is using HTTP plain text. The reason
is that Wireshark cannot inject SSL key in cURL or other server library which is used in
the implementation. To prove the concept and show the result, the destination server is
con�gured to accept HTTP/� protocol via plain text, which allows HTTP/�.� upgrade to
HTTP/� protocol.

Listing �.� shows the HTTP/� header between client and SANE (abbreviation HCS), the
HyperText Transfer Protocol � indicates the protocol is using. The Listing only shows the
data frame and the compressed data are repressed as commentary in the Listing.

HyperText Transfer Protocol 2

Stream: DATA, Stream ID: 13, Length 27

Length: 27

Type: DATA (0)

Flags: 0x01

0... = Reserved: 0

x00000000

.000 0000 0000 0000 0000 0000 0000 1101 = Stream

Identifier: 13

[Pad Length: 0]

Data: 6d6574686f643d76696153414e45266d6573736167653d61

//method: viaSANE; message: abcd

Padding: <MISSING>

E��������� �� SANE ���� HTTP/� S������ 6�

Listing �.�: Header of Client Sends POST Request to SANE

In Listing �.� exhibits the header information in HTTP/�.� with upgrading between SANE
and server (abbreviationHSS). InHCS , the post data is: method: viaSANE;message:
abcd and it has been compressed with HPACK. After SANE accepted the post data, it
hashes the incoming message, then stores it in the database.

After processing the POST request from client, SANE forwards the data to server using
h�c protocol. The line POST /request.php HTTP/1.1 is still showing HTTP/1.1

since the connection is using h�c. The POST sends to the destination by HTTP/�.� at �rst,
after the client �nds the server support h�c, the upgrading process continues. However,
this process will be changed when using HTTPS connection, cause protocol negotiation
process can be done during key exchange.

Hypertext Transfer Protocol

POST /request.php HTTP/1.1

...

Connection: Upgrade, HTTP2-Settings

Upgrade: h2c

HTTP2-Settings: AAMAAABkAAQAAP__

Content-Length: 87

Content-Type: application/x-www-form-urlencoded

[Full request URI: http://127.0.0.1/request.php]

[HTTP request 1/1]

[Response in frame: 34]

HTML Form URL Encoded: application/x-www-form-urlencoded

Form item: "method" = "viaSANE"

Form item: "message" = "88d4266fd4e6338d13b845fcf289579d2

09c897823b9217da3e161936f031589"

Listing �.�: Header of SANE Forwards POST Request to Server

From the above Listings, the idea of HTTP/� support in SANE is feasible. The PHP pro-
grams that running on HTTP/� supported Apache can upgrade the connection between
client and SANE to the newer protocol. From SANE to server, libcurl helps handle the
HTTP/� communications and can be easily integrated into current system frameworks.

6� E���������

�.�.� Performance Evaluation

To study the performance of SANE enabling HTTP/�, two separate testbeds are set up:
The local test environment operates client, SANE and server in the local virtual machine.
The physical connection (TP) approximates to � (which TP ⇡ 0); For the remote perfor-
mance test where the TP 6= 0, the setup locates SANE in the local virtual machine and
destination server in the remote host server.

For each test we run the similar test as Section �.�.�, post data to the SANE though vi-
aSANEmethod. After SANE forward the data successfully, SANE sends Header 200 code
to notice the client request �nished.

L���� P����������

The test runs locally and sends POST request with following parameters: -n��� -c��,
sends ��� requests with �� concurrently clients; -n�� -c�, sends �� requests with � con-
currently clients; -n� -c�, sends � request with � client. In Figure �.� shows the perfor-
mance with different setups. The blue line with round dots dedicates the performance
for ��� requests with �� clients, the red line with square dots means the total �nishing
request time for �� requests with � clients concurrently. The black line with triangle dots
presents only � request. In the x axis coordinates, the variable before slash means the
protocol, which using for front-end communication, the parameter after slash means the
protocol that using for back-end communication. For example, H�/H� means the con-
nection between client and SANE is using HTTP/� and same for the connection between
SANE and server. This indicator also applies to Table �.�.

H�/H� H�/H� H�/H� H�/H�

0

1,000

2,000

732
921

1,293

1,876

302 310 322 359

11 14 14 16

Ti
m

e(
m

s)

n��� c�� n�� c� n� c�

Figure �.�: POST Request Performance in SANE with HTTP/� Enabled

The �gure above shows a noticeable improvement where using HTTP/� connection in
SANE compare to pure HTTP/�.� connection. As can be seen, the pure HTTP/� connec-
tion is over � times faster than the pure HTTP/�.� communication when the �� clients
send ��� requests in total. In Table �.� lists the mean time consumption of ��� requests

E��������� �� SANE ���� HTTP/� S������ 6�

in each step during the communication. The de�nition of each index as following:

• Connect. The time taken to connect the server;

• Request. The time taken to receive full response after connection was opened;

• �st Byte. The time taken to get �st byte from a server.

Time(ms) H�/H� H�/H� H�/H� H�/H�

Connect ��.8� ��.�� ��.8� �8.��

Request 68.�� 8�.�� ���.6� �68.��

�st Byte ���.�8 ���.�� ���.6� �6�.��

Table �.�: Mean Time Consumption with -n��� -c��

From the table we notice that the connection time in different setup is almost the same,
however the request time and �st byte arrive time has larger difference��.

In general, HTTP/�.� performances much better than HTTP/� in �st Byte. When HTTP/�
is in use, one additional round cycle time for negotiation protocol adds to the �st byte
arrive time. As we can see from the table, H�/H� surpass H�/H�, the reason is that the
back-end connection is �nished faster when using HTTP/� on the back-end.

However, time to the �rst byte does not represent the overall performance. HTTP/�.�
starts a faster communication with SANE but the request �nish time is much worse than
HTTP/�. On the one hand, HTTP/� reduces the header size, for example, the header is
been compressed (reduced ⇡ 8�% from original request) on each request. On the other
hand, HTTP/� optimize the communication by enabling multiplexing. It avoids conges-
tion and increases throughputs when large quantity requests occur.

R����� P����������

To adapt a more realistic situation where TP 6= 0, the following experiment locates the
back-end server on remote server. In this situation, the connection time consumption
between client and SANE is approximate to zero and the connection latency is different
which depends on network connection speed. The test parameters are same as previous
tests. However, in order to reduce the affects from network connection speed, each test
setup runs � times and calculated the mean �nish time as �nal results.

Overall. Figure �.6 shows that HTTP/� can improve the performance in SANE. H�/H�
connection still performance the best either in locally or remotely. Bringing HTTP/� con-
nection either in front-end side or back-end side can also improve the throughput and
reduce the request time.

Enable HTTP/� on slower connection side can bring more bene�t. The result in Fig-
ure �.6 shows a slightly different performance than the evaluation on local machine. The
��In the case of SANE, time to �rst byte (�st Byte) measure the time from SANE to the client.

66 E���������

H�/H� connection has theworst performance thanH�/H�. Since the connection between
SANE and server has larger latency than the locally front-end connection. HTTP/� proto-
col reduces the data traf�c and allow faster concurrency connection. Enabling HTTP/�
on more time-consuming side can provide a better result.

H�/H� H�/H� H�/H� H�/H�

0

500

1,000

1,500
1,160

1,540

1,243

1,482

828

1,233

914

1,421

64
192 108 99

Ti
m

e(
m

s)

n��� c�� n�� c� n� c�

Figure �.6: POST Request Performance in SANE with Remote Server

�.�.� Security Consideration

The HTTP/� accelerated the communication process. As a matter of fact, one of the
most important features of SANE is to add security to the current crowdsourcing plat-
form. After evaluating themechanism of using the implementation the following security
consideration should be noticed.

Anonymity and security maintain the same when using HTTP/�. SANE provides an
anonymous and secure environment for Crowdfunder and Crowdsourcer. To enable this
feature, SANE encrypt the data from crowdfunder and generate a new signature assign
to the Crowdfunder. By using this mechanism, the security level depends on the strength
of encryption algorithm and the safety of private key. By introducing the HTTP/� commu-
nication into SANE will not effect these functionalities.

Enabling HTTP/� can addmore secure due to its nature. The viaSANE function only use
HASH function to mask the incoming message from Crowdfunder, the same message
has the same hashed value, this allows the attacker to recover incoming message using
brute force. The HTTPS is a stronger and essential protocol to ensure the security. As
speci�ed in RFC���� Section �.�, implementations of HTTP/�MUST use TLS version �.�
or higher for HTTP/� over TLS [BPT��]. A higher version of TLS protocol enforces security
by replacing weaker algorithm in previous protocol and adds new mode to implement
stronger encryption.

S������ 6�

Enabling HTTP/�may increase the risk of denial-of-service attack. AnHTTP/� connec-
tion can demand more resources to operate than an HTTP/�.� connection. The header
compression and other features of HTTP/� can cause system resources consumption
increasing dramatically with huge amounts of requests. Without monitoring the requests
process, using HTTP/� is more easily to cross over the capacity of system.

�.� Summary

In this chapter, the hypothesis of header compression performance in�uence has been
veri�ed. The study on the compression ratio gives us a clearer idea how HTTP/� leverage
the size of header �elds. The homologous requests from the same site can help to reduce
large amount header overhead. The heterogeneous request shows an average header
compression ratio, this proof the idea about using HTTP/� can give bene�t to the general
web browsing behaves.

With proxy in HTTP/� enabling, the test shows the different architecture can affect the
performance improvements. Combining the experiments in SANE, it shows pure HTTP/�
proxy has the best performance, and in a cross-protocol environment replace the con-
nection in the slower connection can give a better performance improvement. The test
with Squid proxy, proof the feasibility of building a HTTP/� proxy with current frameworks.
However, the performance is suffered from the complexity of the Internet environments.
It also proves the results mentioned in [WBKW��]: With HTTP/�.� and HTTP/� request
at the same time, it will hurt the performance. Another consideration is HTTPS connec-
tion in proxy setting. Since the security nature of HTTP/�, it is hard to apply some proxy
that can be fully trusted by clients and servers. One solution is explicit proxy described in
[Peo��]. However, it is still a draft and the implementation is close to the protocol standard
level.

The experiment in SANE shows how HTTP/� can give us bene�ts on application-layer.
The single TCP connection increases the throughput and the header compression de-
creases the overhead. The security canmaintain the same lever without further changes.

6 Conclusion

After more than two decades, the HTTP/�, a brand new protocol for World Wide Web, is
�nally standardized and will change the future browsing experience during the next few
years. However, it still needs several years to fully replace the network infrastructures
across the Internet. The progress of HTTP/� adaption is promising and accelerating with
new software supports HTTP/� every other day.

HTTP/� protocol is a fundamental protocol for most Internet service infrastructures. Be-
cause the complexity of fully implementations, the development of HTTP/� are domi-
nated by main participants of HTTP/� standard maker. Fortunately, upper layer applica-
tions that are based on HTTP/� can bene�t from the new standard without making many
changes.

Since the change of HTTP/� is dramatic fromHTTP/�.�, there are only few proxy software
programs that support HTTP/� natively currently. One reason is the complexity of HTTP/�
standard, another is the encryption scheme needs a better solution with proxy setting
which is suggested in [Peo��] and [JU��]. In order to support HTTP/� in proxy at this
moment, further adaption on both client-side and server-side are still needed. In most
cases, the adaption process is seamless and compatible with most frameworks.

Since the new protocol hasmore complicity than its predecessor, it resultsmost adaption
mechanisms are based on the early developing library and third-party software. Adapting
current frameworks to support HTTP/� in proxy setting is possible either by adding extra
translate layer or integrate with third-party tools.

The evaluation shows by enabling HTTP/� can improve the communication ef�ciency
and the pro�t is vast enough to make the efforts on this adaption.

6.� HTTP/� and Proxy

Header compression contributesmost in performance improvement. Header compres-
sion is one of themost signi�cant features of HTTP/�. Enabling header compression can
reduce the header �elds size, thus reduces the traf�c bandwidth. HTTP/� enabled header
compression by default. The compressed header �eld is binary and the scheme is differ-

�� C���������

ent from previous HTTP protocol. Due to the binary nature of HTTP/� header, it is a barrier
for application to migrate seamlessly and adds complexity to build a native HTTP/� ap-
plication. One way to handle this is by integrating third-party HTTP/� supported library.
The evaluation shows the performance improvement surpasses the performance degra-
dation caused by introducing third-party library. Another assumption can be made from
evaluation is that avoiding heterologous (requests from a different origin) can optimize
the header compression.

HTTP/� support is easy to adapt and integrate. HTTP/� does notmodify the application
semantics of HTTP in any way. All the core concepts, such as HTTP methods, status
codes, URIs, and header �elds, remain the same as HTTP/�.� [Gri��]. Currently, most
software or third-party library already support HTTP/� with limitation or near �nish. It is
easy to adapt system frameworks to support HTTP/� either by upgrading themselves or
integrated with third-party library. By choosing a mature and well-developed third-party
library can limit the overall overhead.

Application supports HTTP/� relies on underneath infrastructure. Since the core con-
cepts are still the same in HTTP/�. It eases the burden for developer and keeps the de-
veloping process straightforward without considering system compatibility. For example,
to support HTTP/� in iOS system, developer can easily switch to an API which supports
HTTP/� by default.

Cross-protocol proxy is feasible and performance in�uenced by different architec-
tures. Supporting HTTP/� in proxy setting is a new topic when the release of HTTP/� only
a year ago. There is no full solution at this stage. One feasible way to adapt system frame-
works to support HTTP/� is to change the system architectures with cross-protocol. The
solutions are:

• Upgrade Proxy. It supports HTTP/� connection between client and proxy by adding
HTTP Translate Module in between.

• Downgrade Proxy. In this architecture, in order to support HTTP/� between proxy
and server, the system framework integrates the HTTP Header Translator Module
in between.

HTTP/� enabled proxy gains performance improvement due to the header compression,
multiplex streaming and other features brought by the new protocol. In cross-protocol
proxy, the performance improvement is larger when using HTTP/� on slower (has ob-
servable network latency) connection side. Although cross-protocol proxies compromise
some features in HTTP/�, it still shows potential performance enhancement compare
to pure HTTP/�.� proxy. The research from Dropbox [dro�6] uses HTTP/� enabled Nginx
to terminate SSL connection and perform load balancing. The results show the ingress
traf�c bandwidth was reduced nearly ��%when HTTP/� is enabled on canary machines.
This practical example proves that by using HTTP/� in proxy can reduce the bandwidth
and improve the performance.

SANE ���� HTTP/� S������ ��

Straightforward Proxy performance surpasses the cross-protocol proxy. It supports
native HTTP/� among client, server and proxy. Since Straightforward Proxy bene�ts from
HTTP/� on both client and server side, its performance overcomes the cross-protocol
proxy in general. No doubts that the Straightforward Proxy will be the mainstream proxy
type during the next few years when a better and fully HTTP/� implemented software is
launched on the market.

SPDY alike proxy bene�ts mostly from data compression not HTTP/� in universal test
environment. Before the Squid is developing its software to support HTTP/�[Jef] na-
tively. By adapting the communication between client and proxy to support HTTP/� can
turn Squid to an SPDY alike proxy which architecture is similar to a Downgrade Proxy.
The SPDY alike proxy adaption is a feasible example of how to make current framework
support HTTP/�. In general, the result shows when introduced HTTP/� connection into
a complex network setup cannot bring a huge improvement to the system. One major
problem is HTTPS connection handling. Since the SPDY alike proxy �lters out all HTTPS
connection and creates a tunnel between client and destination server when HTTPS is in
use. On the other hand, the performancemay also suffer from the single TCP connection
feature of HTTP/� sometimes.

6.� SANE with HTTP/� Support

Adapting SANE to support HTTP/� is feasible. SANE is a memory modi�cation proxy,
which behaves differently from forward proxy or reverse proxy. It does not manipulate the
requests from clients, instead, it acts as masker of client from its destination server to
provide anonymity and robustness. The SANE acts as server from client’s point of view
and client fromserver’s point of view. Two roles of SANEare separated anddonot interfere
each other. This characteristic helps the integration of HTTP/� support process become
easier. Adapting SANE to support HTTP/� in server role can be achieved by upgrading
the infrastructure that is running SANE. The client role part gains HTTP/� support by
integrating third-party library. In exception, if PHP supports native HTTP/� methods, the
third-party library can be omitted, then a better performance can be achieved.

SANE with HTTP/� support can reduce traf�c bandwidth and improve throughput. The
analysis shows a promising performance bene�t from using HTTP/�. It gains nearly two
times performance in a Straightforward Proxy when requests concurrence and quantity
are large. The same tendency also appears in the cross-protocol SANE. Header compress
helps reduce a large amount of header size, speeds the overall request response time.
Multiplexing solves the congestion problem of HTTP/�.� and increases the throughput
for concurrent request handling. Single TCP connection also contributes to the improv-
idence. Comparing to HTTP/�.� establishes TCP connection on each request, HTTP/�

�� C���������

has fewer connections to maintain and start. Overall, adapting SANE to support HTTP/�
is worthwhile considering the effort puts in.

The security and anonymity of SANE do not jeopardize with HTTP/� enabled. Since
HTTP/� security nature and does not alter the core concept and communication mech-
anism of SANE, the security and anonymity still can be guaranteed.

Caveat, for latency sensitive request should be careful about enabling HTTP/� in the
system. HTTP/� has about one additional round trip time for getting the �st byte from
a server. When the system is sensitive about the response time and requests appear
sporadically, enabling HTTP/� on client-side is not always optimal.

6.� Recommendations and Future Work

In the author’s opinion, it is recommended to upgrade current system frameworks to sup-
port HTTP/�. Since the HTTP/� is approved by IETF, there is no need for developers to
worry about the compatibility issues and the trend is to support HTTP/� for majority soft-
ware in the future. Also, HTTP/� protocol improves the network transaction ef�ciency and
reduces the web page loading time, therefore applications and infrastructures will enjoy
these perks!

However, due to the fact that most of the software provide HTTP/� support are still un-
der development and enable only a few HTTP/� features. Majority web server software
or third-party library such as Apache and nghttp� are still in an experimental stage, per-
formance may suffer from bugs and unknown issues, also some features of HTTP/� are
not fully supported. With a better support HTTP/� in future, adapting system frameworks
could be further developed in a number of ways:

Adapting Cache Proxy support HTTP/� on back-end. A native HTTP/� cache proxy are
not available yet, and the most popular cache proxy, Squid, is still under developing [Jef].
With more underneath library release, there is a possibility to extend current SPDY alike
proxy to support HTTP/� on back-end. The performance improvement is promising for a
straightforward cache proxy based on the study.

Adapting MapBiquios with HTTP/� support. SANE is the prototype of INSANE which
is used in MapBiquios system as the proxy of crowdsourcing platform. Other compo-
nents are not supportedHTTP/� yet. Following the concept andmethod of adaptingMap-
Biquious components to support HTTP/� from Chapter � and �, can bring MapBiquious
performance to next level.

List of Figures

�.� Translator Crowdsourcing Platform . �
�.� HTTP/�.� communication Scheme. Left: non-pipelined, right: pipelined 6
�.� Proxy Server Architecture . 8
�.� Google Flywheel (SPDY) Proxy Communication Scheme ��
�.� Architecture of the SANE . ��
�.� Communication in Crowdsourcing Platform . ��
�.� HTTP/� Request/Response Frame Structure and Example ��
�.� HTTP/� Request/Response Header Compression ��
�.� Proxy Communication with HTTP Scheme . ��
�.� Upgrade Server Framework to Support HTTP/�. �8
�.� Architecture of the Crowdsourcing Platform ��
�.6 PHP Application Executed with mod_php . ��
�.� PHP Application Communicate with Apache Server Though FastCGI. ��
�.8 SANE Connection Type . ��
�.� Trust Domain of Client, Proxy and Client Switch ��
�.� Connection via HTTP/�: Response and Request Header ��
�.� Architecture of SPDY alike Squid Proxy . �6
�.� Exemplary HTTP/� Communication Support with nghttpx in SANE ��
�.� Ratio of Homologous Requests . ��
�.� Ratio of Heterologous Requests . ��
�.� Different Architecture of Proxy with HTTP/� . ��
�.� SPDY alike Proxy Performance with Different Sites 6�
�.� POST Request Performance in SANE with HTTP/� Enabled 6�
�.6 POST Request Performance in SANE with Remote Server 66

List of Tables

�.� Proxy Type and Usage . ��
�.� The Versions of HTTP/� Supported Browsers ��
�.� General Architecture with HTTP/� Proxy Setting �6
�.� Proxy with HTTP/� Connection . ��
�.� Test Website Information. 6�
�.� Mean Time Consumption with -n��� -c�� 6�

Listings

�.� ALPN Negotiation Process Example . �8
�.� Enable HTTP/� on Apache Web Server . ��
�.� Enable HTTP/� on nginx Web Server . ��
�.� Pseudocode to Represent an Integer I . �6
�.� Example: Encoding ���� Using a �-Bit Pre�x �6
�.� Pseudocode to Decode an Integer I . ��
�.� Testing curl HTTP/� GET Request in PHP �8
�.� Install Apache from Third-party Repository ��
�.6 Generate Self-signed Certi�cate with Openssl ��
�.� Enable and con�gure Apache to support HTTP/� ��
�.8 Enable Server Push Header Function in PHP ��
�.� Con�guration for Downgrade Proxy in nghttpx ��
�.�� Con�guration for Straightforward Proxy in nghttpx ��
�.�� Proxy.pac File Example . �8
�.�� Method to Store Message in SANE and Send to Server ��
�.�� Upgrade SANE to Support HTTP/� with curl Library ��
�.� Header Compression Test Set . �6
�.� Header of Client Sends POST Request to SANE 6�
�.� Header of SANE Forwards POST Request to Server 6�

References

[ABC+��] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben
Greenstein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bo-
lian Yin. Flywheel: Google’s data compression proxy for the mobile web. In
��th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ��), pages �6�–�8�, ����.

[BP��] Mike Belshe and Roberto Peon. Spdy protocol. ����.

[BPT��] Mike Belshe, Roberto Peon, and M Thomson. Rfc ����: hypertext transfer
protocol version � (http/�), ����.

[can��] Can i use... support tables for html�, css�, etc. https://caniuse.com,
����.

[cur�6] curl and libcurl. https://curl.haxx.se/, ���6.

[dro�6] Enabling http/� for dropbox web services: experiences and observations.
https://blogs.dropbox.com/tech/2016/05/enabling-http2-f

or-dropbox-web-services-experiences-and-observations/,
���6.

[dSOC��] Hugues de Saxce, Iuniana Oprescu, and Yiping Chen. Is http/� really faster
than http/�.�? In Computer Communications Workshops (INFOCOM WK-
SHPS), ���� IEEE Conference on, pages ���–���. IEEE, ����.

[FGM+�6] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. Hypertext transfer protocol–http/�.�, ����.
RFC�6�6, ���6.

[FLP��] Stephan Friedl, AdamLangley, and Andrey Popov. Transport layer security (tls)
application-layer protocol negotiation extension. Transport, ����.

[Gri��] Ilya Grigorik. High Performance Browser Networking: What every web devel-
oper should know about networking andweb performance. O’ReillyMedia, Inc.,
����.

[GT��] David Gourley and Brian Totty. HTTP: the de�nitive guide. O’Reilly Media, Inc.,
����.

[HSBS��] Tenshi Hara, Thomas Springer, Gerd Bombach, and Alexander Schill. Decen-

https://caniuse.com
https://curl.haxx.se/
https://blogs.dropbox.com/tech/2016/05/enabling-http2-for-dropbox-web-services-experiences-and-observations/
https://blogs.dropbox.com/tech/2016/05/enabling-http2-for-dropbox-web-services-experiences-and-observations/
https://blogs.dropbox.com/tech/2016/05/enabling-http2-for-dropbox-web-services-experiences-and-observations/

8� R���������

tralised approach for a reusable crowdsourcing platform utilising standard
web servers. In Proceedings of the ���� ACM conference on Pervasive and
ubiquitous computing adjunct publication, pages ��6�–����. ACM, ����.

[Jef] Amos Jeffries. Feature: Http/�.� support. http://wiki.squid-cac

he.org/Features/HTTP2.

[jet�6] Jetty - servlet engine and http server. http://www.eclipse.org/je

tty/, ���6.

[JU��] Jeff Jarmoc and DSCT Unit. Ssl/tls interception proxies and transitive trust.
Black Hat Europe, ����.

[LA��] Ari Luotonen and Kevin Altis. World-wide web proxies. Computer Networks
and ISDN systems, ��(�):���–���, ����.

[Mem��] Faisal Memon. Open source nginx �.�.� released with http/� support. ht

tps://www.nginx.com/blog/nginx-1-9-5/, ����.

[net�6] February ���6 web server survey. http://news.netcraft.com/ar

chives/2016/02/22/february-2016-web-server-survey.html,
���6.

[nsu��] Nsurlsession class reference. https://developer.apple.com/li

brary/ios/documentation/Foundation/Reference/NSURLSess

ion_class/, ����.

[Peo��] Roberto Peon. Explicit proxies for http/�.�. ����.

[PR��] R Peon and H Ruellan. Hpack: Header compression for http/�. Technical
report, ����.

[Sai��] Kulbir Saini. Squid Proxy Server �.�: Beginner’s Guide. Packt Publishing Ltd,
����.

[Spr��] Thomas Springer. Mapbiquitous–an approach for integrated indoor/outdoor
location-based services. In Mobile Computing, Applications, and Services,
pages 8�–��. Springer, ����.

[Ste] Daniel Stenberg. http� explained. http://http2-explained.haxx.

se/content/en/part11.html.

[tom�6] Apache tomcat 8 (8.�.�) - documentation index. http://tomcat.apa

che.org/tomcat-8.5-doc/, ���6.

[Tsu��] Tatsuhiro Tsujikawa. Nghttp�: Http/� c library - nghttp�.org. https://ng

http2.org/, ����.

[WBKW��] Xiao SophiaWang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. How speedy is spdy? In ��th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ��), pages �8�–���, ����.

http://wiki.squid-cache.org/Features/HTTP2
http://wiki.squid-cache.org/Features/HTTP2
http://www.eclipse.org/jetty/
http://www.eclipse.org/jetty/
https://www.nginx.com/blog/nginx-1-9-5/
https://www.nginx.com/blog/nginx-1-9-5/
http://news.netcraft.com/archives/2016/02/22/february-2016-web-server-survey.html
http://news.netcraft.com/archives/2016/02/22/february-2016-web-server-survey.html
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSURLSession_class/
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSURLSession_class/
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSURLSession_class/
http://http2-explained.haxx.se/content/en/part11.html
http://http2-explained.haxx.se/content/en/part11.html
http://tomcat.apache.org/tomcat-8.5-doc/
http://tomcat.apache.org/tomcat-8.5-doc/
https://nghttp2.org/
https://nghttp2.org/

	Introduction
	Background and Related Work
	HTTP/2 Protocol
	The Limitation of HTTP/1.1
	New Feature of HTTP/2

	Proxy Server
	Proxy Types
	Proxy Server Usage

	Data Compression Proxy
	SPDY Protocol
	Flywheel Data Compression Proxy

	Server Access Network Entity
	Crowdsourcing Platform
	SANE

	Summary

	Concept
	Before Upgrade to HTTP/2
	TLS and ALPN
	HTTP Request/Response
	Header Compression
	Server Push

	Server and Client Support
	Server Support
	Client Support

	Proxy Server Support
	Implement Feasible Proxy with HTTP/2 Setting
	General Architecture
	Requirements of HTTP/2 Proxy
	Additional Features Support
	Adapt Squid Cache Framework to SPDY alike Proxy

	Adapt SANE to Support HTTP/2
	MapBiquitous Framework Support
	Concept of SANE Support

	Summary

	Implementation
	Upgrading to HTTP/2
	Header Compression with HPACK
	Update curl to Support HTTP/2
	Apache HTTP Server HTTP/2 Support

	Build Proxy with HTTP/2 C Library
	Build General SPDY alike Proxy
	Architecture
	Integrate Squid and nghttpx
	Configure Client Support

	Adapting SANE to Support HTTP/2
	Adapting SANE to Downgrade Proxy
	Adapting SANE to Straightforward Proxy

	Summary

	Evaluation
	Header Compression Ratio
	Evaluation on Proxy with HTTP/2 Setting
	Architecture Performance Influence
	SPDY alike Proxy Performance Evaluation

	Evaluation of SANE with HTTP/2 Setting
	Feasibility Proof
	Performance Evaluation
	Security Consideration

	Summary

	Conclusion
	HTTP/2 and Proxy
	SANE with HTTP/2 Support
	Recommendations and Future Work

	List of Figures
	List of Tables
	Listings
	References

