
Department of Computer Science Institute for Systems Architecture, Chair of Computer Networks

Master Thesis

GRAPHICAL DISCUSSION SYSTEM

Kaijun Chen
Born on: 18th September 1990 in China
Matriculation number: 3942792
Matriculation year: 2013

to achieve the academic degree

Master of Science (M.Sc.)

Supervisor

Tenshi Hara
Iris Braun
Supervising professor

Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill

Submitted on: 22nd July 2016

Department of Computer Science Institute for Systems Architecture, Chair of Computer Networks

Statement of authorship

I hereby certify that I have authored this Master Thesis entitled Graphical Discussion Sys-
tem independently and without undue assistance from third parties. No other than the
resources and references indicated in this thesis have been used. I have marked both lit-
eral and accordingly adopted quotations as such. They were no additional persons involved
in the spiritual preparation of the present thesis. I am aware that violations of this declara-
tion may lead to subsequent withdrawal of the degree.

Dresden, 22nd July 2016

Kaijun Chen

CONTENTS

1. Introduction 11
1.1. Motivation . 11
1.2. Goals and Research Questions . 11
1.3. Thesis Outline . 12

2. State of the Art 13
2.1. Modern Web Development . 13

2.1.1. Evolution . 13
2.1.2. RESTful Web Service . 17

2.2. Graphics on the Web . 18
2.2.1. Canvas . 18
2.2.2. SVG . 19
2.2.3. Comparision . 19

2.3. Real-Time Communication . 20
2.3.1. Long polling . 20
2.3.2. WebSockets . 21
2.3.3. WebRTC . 21
2.3.4. Advantages . 21

3. Conception 23
3.1. Aims and Objectives . 23

3.1.1. Basic Functionalities . 23
3.1.2. High Interactivity . 26

3.2. General Concept . 27
3.2.1. Architecture . 29
3.2.2. Communication . 30

3.3. Data Definitions . 30
3.3.1. General Data Model . 31
3.3.2. RESTful API Definitions . 32
3.3.3. WebSocket Definitions . 35

3.4. Graphical Data Serialization . 35
3.4.1. Canvas over SVG . 36
3.4.2. Storable and Reversible Canvas Data 36

9

3.4.3. Drawing Tool . 38
3.5. Real-Time Demand . 40

4. Implementation 43
4.1. General . 43

4.1.1. Platform and Framework . 43
4.1.2. Architecture . 44
4.1.3. Automatization . 45
4.1.4. Storage Structure . 47

4.2. Server of Graphicuss . 48
4.2.1. Architecture . 48
4.2.2. Model Layer Implementation . 49
4.2.3. Authentication . 51
4.2.4. WebSocket Implementation . 52

4.3. Client of Graphicuss . 53
4.3.1. Architecture . 53
4.3.2. Composition of Components . 55
4.3.3. Data Flow . 57

4.4. Drawing Tool for Graphicuss . 59
4.4.1. Objectified Canvas . 59
4.4.2. Drawing Tool . 60

5. Evaluation 65
5.1. Usability . 65

5.1.1. System Usability Scale . 65
5.1.2. Interview based Usability Test . 66

5.2. Data Model Evaluation . 69
5.2.1. Evaluation Approach . 69
5.2.2. Analysis of Result . 70

5.3. Graphical Rendering Performance . 71

6. Conclusion and Future Work 75
6.1. Conclusion . 75

6.1.1. Modern Web Application . 75
6.1.2. Objectified Canvas . 75
6.1.3. Real-time communication . 76

6.2. Future Work . 76

List of Figures 77

List of Tables 79

List of Codes 80

A. System Usability Scale Table 83

B. System Usability Interview 84

References 84

10

1. INTRODUCTION

1.1. MOTIVATION

With the rapid development and popularization of the internet and technology, the tradi-
tional educational activities are moving to the online platforms.

A discussion of the teaching content or the educational material is always essential for
both tutors and students in the teaching activities. However, the traditional approach of
discussing shows its limitations. Not all the students have the same question and the tutor
is able to offer explanation for only one question at the same time. Moreover, a discussion
can only be performed normally after courses also requires the absence of the students as
well as the tutor.

Therefore, a discuss system with intense interactivity as well as in crowdsourcing way
is highly needed. To achieve high interactivity, a discuss system with graphical tool and
real-time data communication is proposed. Students are able to contribute their questions
and answers to get to the bottom of his deficiencies of teaching content and the educational
material. In addition, students who have the same questions are able to acquire the best
solution instantly which is recommended and approved by the community.

1.2. GOALS AND RESEARCH QUESTIONS

This work focuses on the development of a Web-based graphical discussion system, which
features storable and quotable graphical discussion contribution. In addition, in order to
improve the interactivity of the system which plays a significant role for the educational
purpose,real-time communication is also designed.

Within this thesis the following research questions will be addressed in order to allow the
conception, implementation and evaluation of the both client and server sides of graphical
discussion system.

• How to construct and implement the system with modern Web technologies.

11

• How to design the data model of graphical contribution which is able to be persisted
and restored back to sketch board.

• How to apply the real-time communication technology to improve the interactivity of
the system.

1.3. THESIS OUTLINE

This master thesis has the following structure.

Chapter 2 gives general introductions of modern Web technologies. The new development
process and architecture of Web application are discussed. Afterwards various graphics on
the Web are presented and compared. Finally, alternatives of real-time communication
technologies are listed.

Chapter 3 considers the general concept of the system. The first section deals with the
requirements and mockups with expected functionalities. Thereafter the conception of
general architecture is described. In addition, the concept of data model within the system
is defined. Finally a feasible concept of serialized graphical data for storing is designed.

Chapter 4 covers the implementation of both client and server application of the graphical
discuss system. Firstly, general overview about the application structure is given. The
storage structure and relation of the data model are shown. At last, the implementation of
drawing tool which provides user interfaces for drawing is presented.

Chapter 5 obtains the evaluation of system usability and graphical data model. The mea-
surement methodology is introduced and test results are analyzed.

Chapter 6 is the epilogue with a summary of the thesis. The final section discusses future
work or researches.

12

2. STATE OF THE ART

The following chapter gives an overview of state of the art. To achieve the high interactivity
and responsiveness in the graphical discussion system, a lot of modern Web technologies
should be applied.

However, there are always plenty of alternatives for each technology which could differ
from system to system. So it is important to investigate and analyze the existing solutions
and capture an overview about different alternatives of technologies. It is also vital to
understand the benefit and drawback of the technologies used.

First of all, the general modern Web technology and development workflow will be intro-
duced, which goes through the whole development and has a great impact on the develop-
ment efficiency. The next part describes the different graphical technologies on the Web.
Then an overview of the real-time communication technologies is illustrated and evaluated.

2.1. MODERNWEB DEVELOPMENT

2.1.1. EVOLUTION

With the increasing complexity of a Web app and high demand of agile development, peo-
ple are always thinking about how to improve patterns of the workflow in Web development
as well as the architecture of a Web app. To achieve better scalability, maintainability and
ubiquity of a Web app, the architecture of an entire Web app was involved in the past
several years.

EARLY AGE

At the early age of Web development, the back-end did all jobs for both client side(browser)
and server side, such as rendering, calling system service, composing data, etc. Figure
2.1 shows the overview of Web architecture: The advantage of this pattern is clear: The
development and deployment are simple and straightforward, if the business logic doesn’t

13

Figure 2.1.: Web architecture in early age

become complex. But with the increasing complexity of the product, the problems show
up:

1. Development of front-end heavily depends on the whore development environment.
Developers have to start up all the tools and services for testing and debugging only
some small changes on view. In most cases, the front-end developer who isn’t famil-
iar with the back-end needs help while integrating the new views into the system.
Not only the efficiency of development, but also the cost of communication between
front-end developer and back-end developer are huge problems.

2. The own responsibility of front-end and back-end mess up, which could be expressed
by the commingled codes from different layers, for example, there is no clear bound-
ary from data processing to data representing. The maintainability of the project
becomes worse and worse with the increasing complexity.

It’s really significant to improve the maintainability of code, as well as the efficiency and
responsibility of the division of work from both front-end and back-end in the whole Web
development phase. In the section below, an evolution of the technical architecture will
reveal how these problems are solved.

WEB 2.0

Along with the birth of Gmail1 in 2004, which is noted for its pioneering use of Ajax, the
Web application started to behave more interactively. Browser began to take over the job
of data fetching, processing, rendering, such a sequence of workflow which could only be
done by the server side formerly.

1https://mail.google.com/ - accessed 25 May 2016

14

The architecture in the Web 2.0 generation is presented in figure 2.2.

Figure 2.2.: Web 2.0 architecture

By using Ajax, the client has the ability to fetch data stream asynchronously, after which the
client will consume the data and render it into the specific section of view. Usability was
dramatically improved, because the entire view represented to users will not be refreshed
and the front-end is able to process and render the data in its own intension, which means
more flexible control of the consumption of data.

SINGLE PAGE APP

With the evolution of Web technologies and promotion of these technologies in modern
browsers by browser vendors, a new Web development model called SPA was proposed
and caught the developers’ eye. The back-end is no more responsible for rendering and
view controling, it only takes charge of providing services for the front-end.

The structure in figure 2.3 shows that the client side has the full control of view rendering
and data consumption after data acquisition through Web services which is released by
back-end with promised protocol. All rendering tasks were stripped off from the server
side, which means that the server side achieves more efficiency and concentrate more on
the core business logics[1].

But more responsibility in front-end means more complexity. How to reduce the complex-
ity and increase the maintainability of a front-end project becomes a significant problem.
Developers come up with a new evolved variant of SPA as demonstrated in figure 2.4.

In general, the architecture is componentized and layered into the template, controller and
model. Each component is isolated and has its own view as well as correlated logics.
Front-end frameworks like Ember.JS, Angular.JS, React.JS are providing such an approach

15

Figure 2.3.: SPA architecture

Figure 2.4.: Components in SPA

16

and development pattern for developers to build modern Web apps. With this approach,
a giant and complex front-end app is broken up into fine grained components, therefore,
components are easy to reuse if the components are well abstracted in a proper way. In
addition, the maintenance of each component is also effortless.

TRADE-OFF

To summarize, a single-page app has a lot of benefits:

1. Rational seperation of works from front-end and back-end: client takes charge of
view rendering and data representation, as well as slight data processing if needed;
the server focus on providing services of the core logics, persistence of data, and
also computational tasks.

2. High interactivity and user experience in client side: asynchronous data fetching
and view rendering implies no more need of hard reloading the page which user is
viewing and the current states of the page could also be preserved.

3. Efficiency in server side: rendering tasks are stripped off from server side.

4. Ubiquity: with the separation of services provided by server side, not only the Web
browser, but also other clients in other platforms such as Android, iOS apps is able to
access and consume the services.

But SPA also has its deficiencies:

1. SEO unfriendly: because the page are not directly rendered by server side, and the
Web crawlers are not able to run JavaScript codes like a browser does, the site could
not be crawled properly under normal circumstances. So if SEO results really matter
for the app, SPA is obviously not the best choice.

2. Excessive http connections: all the data is acquired from different services through
diverse APIs, thus multiple HTTP connections are established and performed paral-
lelly, whose initial time of connections for partial data could be much more than a
single connection in the traditional way. So it’s highly needed to merge the services
and find a balance between data model complexity and time consumption.

2.1.2. RESTFUL WEB SERVICE

REST stands for REpresentational State Transfer. More than a decade after it was intro-
duced, REST has become one of the most essential technologies for Web applications[2].
REST is Web standards based architecture which uses the HTTP Protocol for data commu-
nication. It centers upon resource and a resource is accessed by a uniform interface using
HTTP standard methods.

In REST architecture, a REST Server simply provides access as well as operations of re-
sources, while a REST client accesses and manipulates the resources by using different
methods. Here URIs are used to locate the resources.

17

The key principles, which make RESTful applications to be lean and fast, are listed as
follows[3].

• URI as an identifier for resource: Through a RESTful Web service, clients inter-
act with the targets of the resources exposed. URIs are used as the identifier for
resources, which provide a global addressing space for resource requesting and ac-
quisition.

• Uniform interface: A fixed set of four create, read, update, delete operations is used
for manipulation of resources, which could also be represented by HTTP standard
methods: PUT, GET, POST, and DELETE. Retrieving the current state of a resource
could be achieved by GET. PUT is for creating a new resource, which can be removed
by using DELETE. A new state onto a resource is transferred if POST is used.

• Self-descriptive messages: Resources are decoupled from their representation. As
a result, the content of the resource can be accessed in a variety of formats, such as
HTML, plain text, JSON, and others.

• Stateful interactions through hyperlinks: Every interaction with a resource is state-
less. However, several techniques are able to be applied to achieve the exchange of
state, such as URI rewriting, cookies, and hidden form fields. State can be embedded
in response messages to point to valid future states of the interaction[4].

2.2. GRAPHICS ON THE WEB

2.2.1. CANVAS

Canvas, which is added in HTML5 as a standard, is an element defined in HTML code with
width and height attributes. Graphics can be drawn on Canvas by using HTML5 Canvas
APIs via scripting in JavaScript. A full set of drawing functions and helper functions could
be used for accessing or rendering pixels on the Canvas area, which also means graphics
can be generated dynamically and programmatically.

Every HTML5 canvas element must have a context. All HTML5 Canvas API to be used are
defined within the context. There exist two different types of context in Canvas: 2d context
for drawing 2D graphic and 3d context for 3D graphics. The latter is actually called WebGL
and it’s based on OpenGL ESs[5].

The coordinate system of Canvas sets the origin offset at the upper-left corner of the can-
vas, with X coordinates increasing to the right and Y coordinates increasing toward the
bottom of the canvas. Which means, the Canvas space doesn’t have points with negative
coordinates.

The significant features of Canvas are listed as follows:

• Interactivity: Listeners for keyboard, mouse or touch event are able to be created in
the context of Canvas. Users’ actions can be captured and response will be made
according to the action.

18

• Flexibility: A variety of shapes like line, rectangle, circle or even text are able to be
painted on the Canvas using the native methods. It is also possible to add animations,
even video or audio could to the Canvas[6].

• Browser/Platform Support: Unlike Other graphic technology like Flash or Silverlight,
which has a very restricted platform support, Canvas is supported by all major browsers
which follows the HTML5 standard. In addition, it can be accessed on mobile devices
via browser environment.

• Performance: Rendering pixels on Canvas is much faster comparing to other graphic
technologies on Web[7].

2.2.2. SVG

SVG is an XML language, similar to XHTML, which can be used to draw graphics, such
as the ones shown to the right. It can be used to create an image either by specifying
all the lines and shapes necessary, by modifying already existing raster images, or by a
combination of both. The image and its components can also be transformed, composited
together, or filtered to change their appearance completely[8].

Similar to HTML, which provides various elements for defining different styles, SVG pro-
vides elements for circles, rectangles, and simple and complex curves. A simple SVG doc-
ument consists of one <svg> element as its root element and several children elements of
basic shapes. The composition of elements in SVG builds the graphic. The code listing 2.1
shows a simple example of a SVG element with one rectangle, one circle and a text inside
it.

1 <svg width ="300" height ="200" >
2 <rect width="100%" height ="100%" fill="red" />
3 <circle cx="150" cy="100" r="80" fill="green" />
4 <text x="150" y="125" font -size="60" fill="white">SVG </text >
5 </svg >

Listing 2.1: Simple Example of SVG elemnt

SVG is natively supported in all modern browsers and also has a good compatibility with
old broswers[9].

2.2.3. COMPARISION

REFERENCES TO ALREADY DRAWN ELEMENTS

Since HTML5 Canvas is simply a drawing surface for a bit-map and renders the graphics
pixel by pixel, Canvas has no knowledge of the graphics it drew: It doesn’t persist any
information of the graphics’ properties such as shape, position or size after the graphics
were successfully drawn.

On the other hand, SVG maintains references to each object that it renders. Because each
SVG element is created and appears in real DOM element on HTML. By default, this allows

19

tracking the SVG elements easily and manipulating the every existing element, for example,
changing the size of an element or moving the element to another position.

RENDERING PERFORMANCE

A testing of rendering performance with both Canvas and SVG in different dimensions is
performed by Boris Smus[10]. The figure 2.5 illustrates the results.

Figure 2.5.: Performance comparison of Canvas and SVG[10]

The result of the first experiment, which tested the rendering time of Canvas and SVG
with increasing amount of components drawn on it, clearly shows that SVG performance
degrades dramatically in the number of objects. However, Canvas performance remains at
a near-constant low. The reason is that Canvas is just a bitmap buffer, while SVG has to
maintain additional references to each element of the object rendered.

On the right of the figure, the second experiment reveals that canvas performance de-
grades significantly with varying the size of the drawing area. On the other side, SVG per-
formance is not affected completely. Canvas rendering performance seems to decrease
linearly with the amount of pixels in the canvas area. However, combining two dimensions,
Canvas still achieves the better rendering performance.

2.3. REAL-TIME COMMUNICATION

2.3.1. LONG POLLING

HTTP Long-polling is a technique used to push updates from server to client. Establishing
a connection to the server using long polling is like AJAX, but the difference is that the
keep-alive connection opens for a certain time period. During the connection persisted, the
client can retrieve data from the server connected. In case that the connection is closed or
timeout unexpectedly, the client has to keep requesting periodically in order to reconnect
to the Server. On the server side, long polling requests are still treated as HTTP requests
same as AJAX.

20

Since long polling only uses normal HTTP requests, it is supported in all major browsers.

2.3.2. WEBSOCKETS

WebSockets is an advanced technology that provides the possibility to open an interactive
communication session between client and server[11]. With the WebSockets API, mes-
sages are able to be transmitted to a server and event-driven responses can be returned to
the client without having to poll the server for a reply.

Starting a WebSockets connection will create a TCP connection to server in the first place,
and keep it as long as needed. The connection can be easily closed by either by server
or by client. After the HTTP compatible handshake process has succeeded, data could be
exchanged bi-directionally between server and client. Therefore, WebSockets is suitable for
the heavy requirements on frequent data exchange bi-directionally. In addition, message
sent through WebSockets is simply encrypted[12].

2.3.3. WEBRTC

WebRTC is an industry and standards effort to put real-time capabilities into browser to
browser communication and make these capabilities accessible to Web developers via stan-
dard HTML5 tags and JavaScript APIs[13]. WebRTC is used to enable the communication
between multiple clients. By design, WebRTC allows to transport data in reliable as well
as unreliable ways. This is generally used for high volume data transfer such as video/audio
streaming where reliability is secondary and few frames or reduction in quality progression
can be sacrificed in favor of response time. Both sides (peers) are able to push data to each
other independently.

2.3.4. ADVANTAGES

The primary advantage of WebSockets is that the connection is not a normal HTTP request,
but the proper message based communication protocol. That allows you to achieve huge
performance and architecture advantages. Comparing to long polling, there is no need
to start connecting multiple times while using WebSockets. Since the time consumption
of establishing a connection is the major part of the total time consumption of a request,
reducing the connection numbers will significantly improve the performance and efficiency.

However, WebRTC is only used for peer to peer connection, but not client to server. There-
fore, it is out of the scope of this thesis in general.

21

3. CONCEPTION

In this chapter a conception of the discuss system, including both client and server side will
be described. In the first section, the requirements of the system are analyzed. Mockups
with expected functionalities are attached during the analysis of requirements. Afterwards,
the general architecture of the system and the data definitions within the system are con-
cepted. At last, the approach of serializing the graphical data for persistence purpose is
introduced.

3.1. AIMS AND OBJECTIVES

Before starting with the concept the graphical discuss system, it’s necessary to analyze
requirements and objectives behind the origin motivation in the first place. It should be de-
fined at first, what kind of functionalities should be achieved and how the system behaves.

3.1.1. BASIC FUNCTIONALITIES

As a graphical discuss system for the educational purpose, the system should contain basic
functionalities on the prototype of a forum which could be organized by classes. So class
management, question management and answer management are the three essential pa-
rameters to be designed at the start.

COURSE MANAGEMENT

Each question should have a certain domain of its content, so the questions are organized
by classes initially. The features of course management should be:

1. Create Course: The user who is identified as a tutor is able to create courses and
maintain the courses he created. While creating the course, the tutor can define the
name of the course and upload an image as a background of the course for better
recognition. In addition, concrete description of the course could also be added to
the description area.

23

Figure 3.1.: Mockup: Submit a new course

2. Search Course: After a course is created, a corresponding unique identifier code for
the course will be generated at the same time. The students are able to find the
course through the identifier code.

Figure 3.2.: Mockup: Search course with code

3. Favor Course: If a student is interested in a certain course, he is capable to add the
course to his favorites list so that it’s easy to find and access the course he liked later.

24

Figure 3.3.: Mockup: Favor course

QUESTION MANAGEMENT

1. Submit/Edit/Withdraw Question: The student who is confused with the teaching
content can submit his own question with detailed description in a certain course.
The user is also permitted to edit the question if he wants to add more precise in-
formations or modify the unclarity he made to the question. Withdrawing of his own
question is also possible, but only when there’re no contributes made to the question.

Figure 3.4.: Mockup: Submit a new question; withdraw or modify own question

2. Upvote/Downvote Question: An assessment of a question is decisive for building a
better community with high-quality contents. So the user is able to upvote or down-
vote of a question and determines if the question is helpful for other members in the
community or not.

3. Favor Question: If the student considers the question as a helpful and useful content
and want to review this question in the future, he can favor the question and locate it

25

Figure 3.5.: Mockup: Upvote/Downvote a question or answer

in a certain list.

4. Accept Answer: The owner of the question has the right to accept the most useful
answer in his opinion, which will be shown up at the top of the answer list.

ANSWER MANAGEMENT

1. Submit/Modify/Remove Answer: User who has experience with the question can
submit his answer to the question. After the submission, the modification or removal
of the user’s own question is possible.

2. Upvote/Downvote Answer: As mentioned above in subsection of question function-
ality, a similar idea of assessment should also be applied to answers. Answer with
the highest vote will be listed at first.

3. Quote Answer: Answers are able to be quoted so that the user can supplement
information on the top of the original post or point out the deficiency of the contribute.

3.1.2. HIGH INTERACTIVITY

Building with the basic functionalities is far not enough. To fit the system for educational
purpose and improve the interactivity for arousing enthusiasm of students, a drawing tool
and real-time functionality should be integrated into the system.

DRAWING TOOL

Normally, some of the thoughts can’t be simply expressed by textual description, so a
drawing tool should be designed to enable the user to compose not only text but also
different components such like rectangle, circle, line and so on, which helps the user to
express his question more precisely. The ideal drawing tool should have following features:

26

Figure 3.6.: Mockup: Submit/Quote an answer

1. Drawing Diverse Components: Not only text but also diverse components could be
drawn while posting a contribution. The styling of a component such as size tuning,
color changing is also the essential, which will help emphasize the important part the
user expressing.

2. Drawing History: During drawing, the user might make mistakes or change mind af-
ter placing a component or text. So a history list of drawing actions bundled with undo
and redo functionalities will dramatically improve the usability of drawing process.

REAL-TIME

How to ease the approach of content acquisition and improve the interactivity for arousing
enthusiasm of students, is also a key point while designing the discuss system. So two
major real-time functionalities are featured as follows:

1. Real-time Question List: Without requesting the question list initiatively, all new
questions posted by other users will be pushed to user automatically. The user
doesn’t have to concern himself with acquisition of the new content anymore.

2. Real-time Answer Ordering: Without refreshing the page, the answers will be
re-ordered as new vote action is triggered.

3.2. GENERAL CONCEPT

Before the whole conception of the system, a general conceptual architecture of the sys-
tem should be defined initially. In order to help understanding how the system works, the

27

Figure 3.7.: Mockup: Drawing editor with drawing history

Figure 3.8.: Mockup: Notify with new question automatically

28

Figure 3.9.: Mockup: Auto re-order answer if vote contributions changed

primary data flow between different domains will also be described.

3.2.1. ARCHITECTURE

According to the analysis result of Single-Page-App in chapter 2, and considering the de-
mand on high interactivity and ubiquity as well as scalability in the graphical discuss sys-
tem, leveraging SPA architecture will benefit a lot and accelerate the implementation of the
system.

In general, the entire system will be divided into two parts: namely client and server-side.
Each side is basically fully independent to the other and has its own responsibility.

• Client: The client is totally responsible for initial view rendering and view re-rendering
as the view model changes.

• Server: The server is in charge of core business logic, data processing, data persis-
tence and also provides the client interfaces for data acquisition.

The general architecture of the system is described in figure 3.10, the only bridge between
the client and server-side is data transmission service. Complete separation of both sides
will also accelerate the development flow in the implementation phase. Once the protocol
of data transmission services is fully confirmed and defined, development of each side
is able to be performed parallelly. Furthermore, technical choices on both sides are more
flexible. Both sides are able to apply the technologies which fit them most without coupling
to each other, the only thing they should obey is to follow the protocol of data transmission.

29

Figure 3.10.: General architecture in conception

3.2.2. COMMUNICATION

As mentioned above in section 3.2.1, data communication is the only coupling factor in the
general architecture. In this system, there exist two different types of protocols: standard
HTTP using REST architecture and WebSockets with persistent connection. Each data
transmission protocol has its own responsibility and usage scenario.

• HTTP with REST architecture: Data which is requested initiatively is transferred
over HTTP. The HTTP connection will be closed as soon as the data is successfully
transferred.

• WebSocket with persistent connection: Reactive data with real-time need is trans-
ferred over WebSocket. After the persistent connection is established, clients are
able to receive the data at the first moment as the state of data is updated.

As the figure 3.11 shows, in case data for view model is acquired from the server despite
transferred over HTTP or WebSocket, the views are re-rendered. Comparing with HTTP, the
specialty of data acquisition over WebSocket is: a listener for specific resource with unified
processes of data processing and automatic view re-rendering will be created.

3.3. DATA DEFINITIONS

In this section, data modelling of the system, including definitions of data domain, data
fields for each domain, and relation between domains will be performed in the first place.
In the following subsection, APIs corresponding to related operations on data models will
be assigned.

30

Figure 3.11.: General data communication

3.3.1. GENERAL DATA MODEL

DATA DOMAIN

In general, the data in the system could be divided into 4 primary domains:

• User: personal information as well as user identifier for accessing the system.

• Course: a container with own course information as well as a collection of questions
classified in this context.

• Question: data with information of questions submitted by users.

• Answer: data with information of answers, also has graphical data within the data
model.

Users are able to assess the contributions made by other users and mark it as useful or
useless, which will affect the contributions’ order priority while rendering the views. Voters
should also be aware of what kind of vote he has marked to the contribution. Therefore,
additional 2 data models VoteAnswer and VoteQuestion should also be considered.

The relation between domains is illustrated in the following figure 3.12. Each data model
has a unique identifier, which is referenced in another data model when they have a con-
nection.

31

Figure 3.12.: Relations between data domains

DATA FIELDS

More detailed definition and description of fields in each data model should be made for
a better understanding of the structure as well as the behavior of a data model. Table 3.1
describes key fields of general domains.

3.3.2. RESTFUL API DEFINITIONS

As mentioned in section 2.1.2, RESTful architecture is a an excellent technical choice for
data transferring. Because of its simplicity and clear semantic description of HTTP methods
comparing to other protocols such like SOAP, it will dramatically simplify and clarify our data
transmission services[14].

MAPPING OF HTTP METHODS TO DATA MODEL BEHAVIOR

The data model defined above can directly map to the definition of resources in RESTful.
The HTTP methods on each resource domain can also represent the data model behaviors,
User Model is taken as an example:

In table 3.2, resource entry in persistent storage can be executed with specific action
while requesting resource URI through different HTTP methods. A semantic description of
connection between CRUD and HTTP methods on RESTful will make the data transmission
services more understandable and unified[1].

GENERAL RESTFUL API DEFINITIONS

Requesting a specific resource can only succeed through its URI, through which the client
and server-side could connect to each other actually. Therefore, a definition of APIs which
describes URI of the resources and its functional responsibility should be proposed in the
first place.

32

Domain Field Description

User

email unique identifier of a user for authentification, also as con-
tact way to user.

password string for user authentication to prove identity or access ap-
proval

username user identifier shown to other users
isTutor flag which determines if the user is a student or tutor

Course

name name of the course
desc description of the course
creator id of the user(tutor) who created this course
code unique code for the quick search purpose which is generated

automatically as the course is created

Question

title title of the question
content content of the question
course id of the course to which the question belongs
vote vote count of the question
creator id of the user who submitted this question

Answer

content content of the answer
question id of the question for which the answer is made
quoted id of the original question which is quoted
vote vote count of the answer
creator id of the submitter

Vote
type enum values of up-voting or down-voting actions
handler id of the handler
question/answer id of the question/answer to which the vote action is applied

Table 3.1.: Fields for Each Data Domain

Method Operation of data model collection

GET Query and return a specific user from the user model collection.
POST Create a new user entry and insert into the user model collection.
PUT Update a specific user in the user model collection.
DELETE Delete a specific user in the user model collection.

Table 3.2.: HTTP methods on User resource

33

• User Authentication: the major actions of user authentication include signup, login,
logout. To protect the user information, POST method which doesn’t expose informa-
tion via the URL, is highly recommended.

URI Method Description

/auth/login POST User login action, request with login information.
/auth/signup POST User signup action, request with registration information.
/auth/logout GET User logout action, no data submission is needed.

Table 3.3.: User Auth APIs

• Courses: acquisition of courses and new submission of a course is possible. In
addition, CRUD operations on a specific course should also be achieved through a
single URI with various HTTP methods.

URI Method Description

/courses GET/POST request the whole collection of courses; create a
course with data submitted

/courses/:courseId GET/PUT/DELETE request, modify, remove specific entry of course

Table 3.4.: Course Resource APIs

• Questions: in a real sense question resource is attached to the course resource.
According to the best practice of RESTful API design[15], question resource could
be touched under course URI, /courses/:courseId/questions/:questionId. But in the
real world, question resource has its own collection, and questionId is the unique
identifier, through which a specific question entry could be selected without using
courseId. So an optimized conception is simply using /questions as URI instead. And
pass courseId as a query parameter while requesting collection of question entries
under a specific course.

URI Method Description

/questions?courseId=:id GET/POST request the whole collection of questions
belonging to a specific course; create ques-
tion under a specific course

/questions/:id GET/PUT/DELETE request, modify, remove specific entry of
question

/questions/:id/vote/:type POST vote actions with different vote types ap-
plied to specific question

Table 3.5.: Question Resource APIs

• Answers: the general API design of answer is totally same as the approach applied
in question resource. A independent API for voting functionality should also be de-
signed. And multiple possibilities of vote types could also be passed through the
API.

34

URI Method Description

/answers?questionId=:id GET/POST request the whole collection of answers be-
longing to a specific question; create an-
swer under a specific question

/answers/:id GET/PUT/DELETE request, modify, remove specific entry of
answer

/answers/:id/vote/:type POST vote actions with different vote types ap-
plied to specific answer

Table 3.6.: Answer Resource APIs

Once all APIs with different HTTP methods are defined, a more concrete data structure
over the APIs between two sides should be promised and confirmed. By following defined
APIs and promised data structure, developments on both client and server-side could be
executed parallelly.

3.3.3. WEBSOCKET DEFINITIONS

As the requirements defined in section 3.1, users could be informed as new question is
posted or the order of answers with rating priority changes. Basically, only two different
types of listeners are needed in this case: one for listening to the new questions under
a specific class and one for responsive order of answers under a specific question. With
WebSocket, URI should also be defined as an identifier for the persistent connection be-
tween client and server. And different events within a connection of one URI should also
be designed. Table 3.7 defines these two WebSocket specifications.

URI Event Response

/ws/courses/ questions-changed data of new question posted by others
/ws/questions/ answers-changed data of answers in new order

Table 3.7.: WebSocket APIs with namespace

3.4. GRAPHICAL DATA SERIALIZATION

Graphical content is the most efficient and intuitive way to deliver the explanation of an
answer to other users comparing with pure textual content. In this section, Choices for
graphical technologies on the Web will be analyzed in order to figure out which is the ideal
and fit the graphical discussion system most. And a feasible approach of storing graphical
data will be proposed. At last, a drawing tool will also be designed to offer user interfaces
for drawing elements on the drawing board.

35

3.4.1. CANVAS OVER SVG

It seems that both Canvas and SVG are good candidates as a graphic technology for the
graphic discussion system. Both of them provide native methods to render rich varieties of
elements like the path, circle, rectangle and so on. Which would be a better choice above
the context of discussion system, should be analyzed at first.

As mentioned in section 2.2.3, the rendering efficiency is the primary deficiency happening
to SVG.

And graphic technologies are not only simply used for rendering a static graphical content
in the system. Dragging, resizing or deleting an element are the basic features of a draw-
ing tool, which provides input of graphical content. All these features are only able to be
accomplished by re-rendering the elements on the drawing board.

Considering that all contributions in the system are made with graphical contents, efficiency
plays a significant role, especially on mobile devices with old hardware. Choosing Canvas
will give users better usability while viewing the contributions as well as using the efficient
drawing tool without janky feeling.

3.4.2. STORABLE AND REVERSIBLE CANVAS DATA

A focus point in the thesis is how to store the graphical content submitted by users. In
the traditional way, graphical data could only be stored either in the file system or in the
database with encoded format, for example Base64 encoded images.

DEFICIENCY OF CANVAS - STORABLE IMAGE DATA

Canvas provides a native method called getImageData() to export the whole Canvas con-
text, including the size of Canvas and pixels on Canvas to an image data. The image data ex-
ported by canvas represents the underlying pixel data with the format of Uint8ClampedArray.
The Uint8ClampedArray typed array represents an array of 8-bit unsigned integers clamped
to 0-255 [reference], which implies the position of the pixel as the index of array and the
color of pixel as value from 0 to 255. An example is taken in figure 3.13 shows a Canvas
with size of 100x100 and its simplified ImageData.

Restoring with the exported ImageData is also possible in Canvas by using its native
method called putImageData(). Basically, the concept of putImageData() is traversing the
ImageData exported by Canvas, and re-drawing each pixel at the position according to the
index in the Uint8ClampedArray and applying the color to the pixel based on the value from
0 to 255 stored in the array.

Natively exported result of image data could basically meet the storing demand, however,
the data redundancy in the native exported format representing the properties of each pixel
is still very huge. Storing such kind of data will cause high demand on storage space when
plenty of graphical contributions are made in their system.

Additionally, it is expected that users are able to remove, resize and modify the elements
in the canvas while quoting others’ contributions. However, the natively exported result

36

Figure 3.13.: Canvas to native ImageData

of image data could only describe each pixel, but not each element on the Canvas, which
means the modification of the elements is not possible even though the whole canvas
could be reproduced with graphical content by others.

Therefore, a workable solution should be concepted and new data model describing the
graphical content in Canvas should be designed to meet the demands mentioned above.

SOLUTION - OBJECTIFICATION OF ELEMENTS IN CANVAS

Even though Canvas has native methods to draw different shapes of elements, but Canvas
only renders them pixel by pixel, it knows nothing of the shapes that are drawn. Therefore,
removal or modification of a already drawn element is not possible. In this condition, a
feasible solution is to wrap the Canvas and objectify the original elements which could be
stored and persisted in a stack. Furthermore, the wrapper on Canvas should also provide
methods to render, modify, remove the custom elements.

The general conception of the objectified Canvas is illustrated in figure 3.14.

The objectified Canvas has a list of objectified elements which are visible on Canvas. Now
there are new definitions for rendering, modification of an objectified element:

• Rendering Canvas: the list of elements maintained by objectified Canvas will be
traversed and each element will be rendered by calling the native drawing method
of Canvas. Position and style of the element in Canvas refer to the properties of its
object.

• Modification or Removal: In case the methods for modifying or removing provided
by element object in objectified Canvas are fired, the whole Canvas will be re-ren-
dered in the same way of rendering the Canvas initially.

Now rendering means that the list of elements maintained by objectified canvas is traversed
and each element is

37

Figure 3.14.: Concept of objectified Canvas

DATA MODEL EXPORTED BY OBJECTIFIED CANVAS

Since the objectified Canvas maintains a list of objects for elements, which also contain the
properties such as position, color, size and so on, so the exporting of image data is now
really simple. A composition of all objectified elements’ properties is already enough to
describe the whole canvas. Figure 3.15 reveals the approach and data model output from
objectified canvas.

After converting all elements in objectified canvas, the new data model is much more effi-
cient for storing comparing to the raw image data. The objectified Canvas will also provide
a method to restore the output data, create new objectified elements by giving the proper-
ties of the data model, and re-render the elements into original Canvas pixel by pixel. With
this approach, the feature of modification on elements while quoting other contributions
could also be achieved.

3.4.3. DRAWING TOOL

After the conception of a feasible objectified canvas as the base of the container for all
elements, a drawing tool which provides user interfaces to draw variable shapes as well as
texts should be designed in the next step.

First of all, user interfaces for selecting different drawing mode like drawing circle, rectangle
or line should be designed. Buttons for toggling various drawing modes are the best choice
in this case.

38

Figure 3.15.: Export and import of Canvas context with objectified elements

39

Because drawing elements in different shapes has distinct behaviors, so listeners for each
specific drawing mode should be defined. When the button for toggling drawing mode
is clicked by users and specific drawing mode is activated, the correlative listener will be
initiated. Clicking events or moving events of the mouse on Canvas will be captured and
processed. Meanwhile, drawing behaviors are also performed according the mouse events
fired by users.

Figure 3.16 illustrated the conception of drawing tool with user interfaces and life cycle of
event listeners for each drawing mode.

Figure 3.16.: Lifecycle of drawing tool

3.5. REAL-TIME DEMAND

Real-time communication as mentioned in subsection 3.2.2 is used for reactive data, which
requires WebSocket for establishing persistent connections to enable the bi-directional
communication between client and server.

All users are able to subscribe arbitrary course for new submission of a question as well as
arbitrary question for updated order of answers, and server could also push real-time data
to those users who has subscribed the resource with specific identifier. However, only
two WebSocket services: /ws/courses and /ws/questions are defined as the entry points
according to the definition in subsection 3.3.3. The approach how the server broadcast data
precisely to the users who subscribe resources they require should be resolved.

A feasible solution is that the server maintains a list of user ids and resource ids subscribed
by users. Afterwards, as a specific resource is updated, the server can get all users who
have subscribed this resource from the maintained list using the resource identifier.

Figure 3.17 represents the whole workflow of establishing the connection over WebSocket.
In the first place, the server starts listening for requests over WebSockets protocol with
specific URI. Then the user starts a connection to server for subscribing the resource he
requires. As soon as the connection is successfully established, the client will emit the

40

Figure 3.17.: Sequence diagram of establishing a WebSocket connection

resource id to the server side, and resource id from the client will be mapped to the user
id in a list maintained by the server.

After that, the server has the information of which user has subscribed which resource,
and is able to emit real-time data precisely.

41

4. IMPLEMENTATION

In this chapter, a prototype of graphical discussion system will be created and make use
of the previously developed approach as a "proof of concept". Firstly, the implementation
details of both client and server application are described. Afterwards, the implementation
of a drawing tool with the functionality of drawing various shapes takes place.

4.1. GENERAL

On the whole, the implementation can be divided into two parts: client and server. Since
they are fully separated, each part is considered and structured as an independent project.
The implementation on the client side is basically data fetching and template rendering,
while data persistence and core business logic is implemented on the server side. For con-
venience, the graphical discuss system is named "Graphicuss", which stands for graphical
plus discuss.

4.1.1. PLATFORM AND FRAMEWORK

To achieve a better performance of view rendering on client side running in the browser,
React.js1 is taken as the front-end framework. Componentization, the main philosophy
of ReactJS, also helps organize the views and view model logics. On the server side,
ExpressJS2 as a Web framework is adopted for its efficiency and productivity of building
RESTFul APIs.

Since both client and server projects are primarily implemented in JavaScript, NodeJS3 is
the single development environment for either project implementation or project manage-
ment on both sides.

1https://facebook.github.io/react/ - accessed 10 July 2016
2http://expressjs.com/ - accessed 12 July 2016
3https://nodejs.org/ - accessed 12 July 2016

43

FILE STRUCTURE

To have a basic understanding of the whole project, including the server side and client
side, a file structure of the project Graphicuss is listed in figure 4.1:

• client/: independent front-end project built on top of ReactJS

• server/: independent back-end project implemented by using ExpressJS

• dist/: compiled back-end project integrated with compiled and compressed static
view files from front-end project

• node_modules/: source of referenced third party libraries

• package.json: definition of third party libraries for client and server side

• webpack.config.json: config of specific behaviors in automated development or
building process

Graphicuss

client/

server/

dist/

node_modules/

package.json

webpack.config.js

Figure 4.1.: Overview of Graphicuss’ file structure

MODULE MANAGEMENT

Node.JS provides native module management, which is called npm4. Third party libraries,
which are published in the official remote repository, can be installed conveniently by only
using npm’s command line. There is also a list of names of all modules and dependencies
in the file package.json. Installing all dependencies and modules can be simply achieved
by using only one command line npm install, which will significantly ease the setting up
process of the project freshly on a new machine.

4.1.2. ARCHITECTURE

An architectural overview of Graphicuss is illustrated in figure 4.2.

While the client starts requesting a specific URL for data from the server, a HTTP connec-
tion will be established. The server program receives the HTTP request and forwards it to

4https://www.npmjs.com - accessed 12 July 2016

44

Figure 4.2.: General architecture

its router, in which rules for matching URLs have been pre-defined. By analyzing headers
of HTTP request, the router will check if the request matches any pre-defined rules.

Not only the URL but also the parameters passed by the client, for example the identifier of
a resource, could also be extracted from HTTP headers. The server runs correlate business
logics according to the rule of matched URL and executes operations of databases for data
persistence. Afterwards, the results are returned from the server.

As soon as the data is successfully returned, the HTTP connection will be closed. The client
processes data acquired from the server, and represents it by re-rendering views. So far,
an entire request over HTTP is accomplished.

4.1.3. AUTOMATIZATION

To accelerate the developing as well as building process of the project, an automatization
tool called Webpack5 is used.

Webpack is a tool which could analyze the dependencies of the project and bundle modules
with the app. In addition, it can also do tasks like compressing JavaScript codes to reduce
the size of the client app, or compiling modern JavaScript as well as CSS codes to achieve
the compatibility for old browsers.

AUTOMATED DEVELOPMENT PROCESS

To make the development of client app independent, it will start a dev server on its own for
development purpose. However the dev server started by client app and the actual server
are running on different ports. Which means that the communication between them will
cause CORS problem.

CORS means, a resource makes a cross-origin HTTP request when it requests a resource
from a different domain than the one which the first resource itself serves. For security
reasons, browsers restrict cross-origin HTTP requests initiated from within scripts. [16]

5https://webpack.github.io/ - accessed 13 July 2016

45

Through configuring the dev server started by Webpack, a proxy could be established to
forward requests to the actual back-end server. As figure 4.3 shows, the client is able now
to request APIs under the same domain, and requests will go though the dev server, after
that they are forwarded to the actual server.

Figure 4.3.: Proxy for client development server

AUTOMATED BUILDING PROCESS

For the client app, multiple tasks are executed during the building process by using Web-
pack: transforming modern JavaScript code, pre-processing the modern CSS code and
bundling the static files. All these tasks will significantly reduce the size of client app and
also improve the compatibility of the app.

Webpack also helps accelerate the building process by defining various automated building
tasks. It will bundle all dependencies with the server app and client app. After processing
on both sides, the final output of the files will be extracted into the dist directory men-
tioned in 4.1, which is now ready for deploying and serving. The whole building process is
represented in figure 4.4.

Figure 4.4.: Automated building process with Webpack

46

4.1.4. STORAGE STRUCTURE

In section 3.3, data domains and fields of data domains have already been defined.

For all data persistence storage on the server side a MongoDB6 database is used. Mon-
goDB is a non-SQL database, which uses document oriented storage and JSON style data
model[17]. That will make it easy to implement as well as scale data models. In addition,
An ORM framework called Mongoose7 is also applied to the implementation, which en-
capsulates the native database operations of MongoDB[18]. With the help of the ORM
framework, definition of schema and query on database will be quite simple. In figure 4.5,
the more concrete the data models and their relationships are defined.

Figure 4.5.: Table of data model

6https://www.mongodb.com/ - accessed 13 July 2016
7http://mongoosejs.com/ - accessed 13 July 2016

47

4.2. SERVER OF GRAPHICUSS

4.2.1. ARCHITECTURE

MVC PATTERN & PROJECT STRUCTURE

To separate the different layers of model, view and controller, MVC pattern is used as the
basic pattern of the architecture. In the model layer, all data model related concerns such as
data schema definitions, data model validation as well as database operations are defined.
And Controllers contain the core domain logics, process the data from model layer, and
pass the result to view layer.

Since the templates are rendered on the client side, the view layer is just simply stripped.
Therefore, basically the controllers response processed data to client side directly without
rendering it to views. Figure 4.6 shows the overview of the server’s file structure which is
featured with MVC pattern.

server

config/

index.js

routes.js

models/

controllers/

index.js

...

Figure 4.6.: Overview of server app’s file structure

• index.js: the entry point of the whole server app. It will create a server instance and
set up configurations for the server. In addition, a connection from server instance
to database will be established. After all configurations are done, the server instance
will start listening port and waiting for the requests from client.

• config/index.js: config as well as constants for the server. It persists apiConfig
for example the common prefix of API URL and version of the API. And config for
database including the database URL will be defined here as well. In addition, keys
for encryption are also stored in the config file.

• config/routes.js: rules for URL matching. All URL matching rules are defined in this
file. Controllers are referenced here and a dispatcher for router will be instantiated.
If any request meets the defined rules, the request will be forwarded to a correlative
controller.

• controllers/*: controllers for processing specific requests.

• models/*: data model definitions. Files under this directory are organized by different
data domain.

48

ACHITECTURE OF SERVER

The figure 4.7 illustrates an overview of the server architecture. Requests from the client
side are handled with Router component in the first place. HTTP headers are parsed and
analyzed, afterwards, the request is dispatched by Router according to the URL matching
rules and then forwarded to the correlative Controller.

Controller layer requests as well as operates the data records stored in database by using
the methods defined in Model layer. As the request is successfully handeled and data is
prepared, Controller responds with an HTTP response message to the client.

Figure 4.7.: Server architecture

4.2.2. MODEL LAYER IMPLEMENTATION

In subsection 4.1.4 an overview of the storage structure has been described. In following
subsections, more concrete implementation of data model layer is explained and example
codes are represented.

DATA MODEL SCHEMA

Not only the fields of each data model are defined, but also the data type of each field
should also be restricted. Mongoose will check the type of fields within a data model
according to the definitions before a record is inserted into the database.

49

1 import mongoose from ’mongoose ’
2 const userSchema = mongoose . Schema ({
3 username : String ,
4 email: {type: String , lowercase : true , trim: true , unique : true},
5 password : {type: String , select : false },
6 faculty : {type: String , default : ’’},
7 tutor: {type: Boolean , default : false },
8 admin: {type: Boolean , default : false }
9 }, { timestamps : true });

Listing 4.1: Example: user schema definition within Mongoose

Code list 4.1 takes UserSchema definition as an example. Fields like username, email,
password and faculty are defined as String type. Fileds like tutor and admin are using
Boolean type for determining the role of a user. In addition, the default value of a field could
also be given if record is added without value in this field. And Mongoose also provides a
set of configurations for processing the entry inserted. In the example, setting lowercase
on email will transform all characters to lowercase, while setting trim will stripped space
symbols out of a string. Mongoose will not only validate the type of data model, but also
check the uniqueness of the data field in the entire database if unique is set to true.

METHODS ON MODEL LAYER

In most cases, various operations are executed to acquire data from the database, modify
data and even remove data in the database. Therefore, these data fetching or data pro-
cessing tasks are implemented in the data model layer, which will also achieve the goal of
separation of concern. An example of Course data model is taken in the following code list
4.2.

1 courseSchema . statics .list = function () {
2 return this.find ().sort(’-createdAt ’). populate (’creator ’).exec ()
3 }
4 courseSchema . statics .load = function (_id) {
5 return this. findById (_id). populate (’creator ’).exec ()
6 }
7 courseSchema . method .edit = function (fields) {
8 return this. update (fields).exec ()
9 }

10 courseSchema . method . remove = function () {
11 return this. remove ().exec ()
12 }

Listing 4.2: Example: defining static methods of data model within Mongoose

Other data models like Question and Answer are quite same as Course. Method list() is
defined for querying all records of a collection under the data domain. In addition, sort-
ing and referencing other model with foreign key will also be done before returning the
result. load() method is for querying a specific entry. Methods edit() and remove() means
modification or removal of an entry in database.

50

4.2.3. AUTHENTICATION

The goal of authentication is confirming the identity of a user and controlling the access of
resources by checking the privilege of a user. So an authentication system is also designed
for security reasons.

JWT BASED AUTHENTICATION

JSON Web Token (JWT)8 is an open standard (RFC 7519) that defines a compact and
self-contained way for securely transmitting information between parties as a JSON object.
This information can be verified and trusted because it is digitally signed.

Figure 4.8.: JWT authentication process

The basic idea of JWT based Authentication in the server side of Graphicuss is shown in
figure 4.8. After that the user sends a request to login with its identifier and password.
After that the authentication is successfully verified, JWT will encode the user information
with a secret key to a token.

1 var token = jwt.sign(userInfo , authConfig . jwtSecret)
2 response . cookie (’token ’, token);

Listing 4.3: JWT encodes user information with secret key

After that the authentication is successfully verified and Cookies are written with JWT
token, every request started from the client side will be sent with Cookies. All the requests
will go through the authMiddleware and the tokens inside Cookies from requests will be

8https://jwt.io/ - accessed 15 July 2016

51

decoded with the secret key. With the payload of user information which is decoded from
the token, server is able to deal with resources for the specific user.

1 jwt. verify (token , authConfig .jwtSecret , function (err , decoded) {
2 var userInfo = decode
3 })

Listing 4.4: JWT decodes user information with secret key

ROLE CONTROL & ACCESS CONTROL

As defined in section 4.1.4, each user has two fields called tutor and admin. An admin has
full control of all resources while a tutor is able to create a course and manage all resources
under his course. Same as a normal user without any privileges, he could only maintain
resources submitted by himself.

So a if statement will be executed before the operations on resources in order to determine
the role of the user, or to verify if a user has the access to the specific resource.

4.2.4. WEBSOCKET IMPLEMENTATION

For the implementation of real-time functionality, a library called Socket.io9 which a fast and
reliable real-time engine is used.

As described in section 3.5, at the start of server, an instance of Socket.io will be created
for listening for WebSockets requests within a specific namespace. Following code list 4.5
shows the main process of listener created for real-time questions under a specific course.

1 var courseWS = io.of(’/ws/ courses /’);
2 var courseSocketMap = {};
3 courseWS .on(’connection ’, function (socket){
4 socket .on(’course -to - listen ’, function (courseId){
5 if(courseSocketMap [courseId]){
6 courseSocketMap [courseId]. push(socket)
7 }
8 else{
9 courseSocketMap [courseId] = [socket]

10 }
11 });
12 });
13
14 courseWS .on(’disconnection ’, function (socket){
15 Object .keys(courseSocketMap). forEach (function (courseId) {
16 var index = courseSocketMap [courseId]. indexOf (socket)
17 if (index > -1) {
18 courseSocketMap [courseId]. splice (index , 1);
19 }
20 });
21 });
22 /* --- Listening for Question is the same approach --- */

Listing 4.5: Server starts listening for requests over WebSocket protocol

9http://socket.io/ - accessed 15 July 2016

52

After the WebSocket listener is started, it will monitor the the event called course-to-listen.
As it is triggered, courseId received from client will be mapped to the a list of socket objects
which represent the users who are listening to this resource. After the client disconnects
from the WebSocket, his socket object will be removed from the listening list.

1 var sockets = courseSocketMap [courseId];
2 sockets . forEach (function (socket){
3 socket .emit(’questions - changed ’, newQuestions);
4 });
5 /* --- Listening for Question is the same approach --- */

Listing 4.6: Server broadcast to all sockets who has subscribed the certain resource

If the questions under the specific course are changed, all sockets which could be ref-
erenced from courseSocketMap by using the courseId will emit an event with payload of
changed question resources. Those clients who has subscribed this course will be informed
and receive the new questions passively. Code list 4.6 demonstrates the process.

The approach of real-time order of answers under a specific question is quite same as the
approach mentioned above.

4.3. CLIENT OF GRAPHICUSS

4.3.1. ARCHITECTURE

For the implementation of the client application, React.js which aims to solve the challenges
involved when developing Web application with complex user interfaces, is applied. To have
a better concept of how Graphicuss’s client application is implemented, an overview of the
file structure is listed in the figure 4.9.

PROJECT STRUCTURE

• components/: all components are defined by extending basic React.Compoent. Each
custom component has an index.js, which processes the logics of view rendering and
applies view models to the template. style.css defines the CSS style of the HTML
DOMs within a component.

• containers/: containers are compositions of components.

• models/: in model directory, data models for the components are defined. In addition,
the definition of APIs and processing after data acquisition also take place here.

• index.js & index.html: index.js is the entry point of the app, which will instantiate
the React instance and render the views into a specific DOM defined in index.html

ACHITECTURE OF CLIENT

An overview of the client application’s architecture is revealed in figure 4.10.

53

client

components/

AppBar/

index.js

style.css

...

containers/

models/

utils/

index.js

index.html
...

Figure 4.9.: Overview of client app’s file structure

Figure 4.10.: Overview of client architecture

54

In the React application, Router is also regarded as a component, in which different match-
ing rules of the URL are defined. If the URL requested by the user is matched, a correlate
view will be rendered according to the definition of routes. Code list 4.7 shows the imple-
mentation of defining a Router component.

1 <Router history ={ history }>
2 <Route path="/" component ={ App}>
3 <Route path="auth" component ={ AuthView } />
4 <Route path=" courses " component ={ CoursesView } />
5 <Route path=" courses /: courseId " component ={ QuestionsView } />
6 <Route path=" questions /: questionId " component ={ AnswersView } />
7 </Route >
8 </ Router >

Listing 4.7: Router in client app

Containers such like CourseView, QuestionsView or AnswersView are compositions of
components in fact. The way how component acquires view model is that the parent
component passes values to its child component by defining the properties of the child
component. So the data flow starts from the root component and goes through every child
component.

How to manage the data flow and control the rendering behavior will be discussed later in
the sub section 4.3.3.

4.3.2. COMPOSITION OF COMPONENTS

REACT COMPONENT

Defining a new Component with React.js must extend the React.Component class and
implement the render() function, which will be called when the component is instantiated.
Afterwards, the template as well as the composition of components are rendered to plain
HTML. A simplified example of building a CourseView component is represented in code
list 4.8.

1 class CoursesView extends React. Component {
2 render () {
3 const courses = this.props. courses
4 return (
5 <div >
6 {
7 courses .map((course) =>
8 <CourseCard course ={ course } key ={ course ._id}></ CourseCard >
9)

10 }
11 </div >
12);
13 }
14 }

Listing 4.8: Rendering CourseView with multiple CourseCard components

As mentioned above, the parent components pass data through as the properties of child
components. Within the CoursesView, courses could be read from its properties which is

55

defined while CourseView is composed. In the render() function of CourseView, courses
are traversed and each single course will be passed into the CourseCard as its property.
Which means, as CourseView is rendered, all CourseCard components within it will also
call their own render() functions with the data model passed in. Data flows from top to
bottom, likewise, views are rendered from parent to child components.

COMPOSITION

Components are the core of React. All each view and its view model of the client application
is represented as a React Component. And the whole client app is actually a composition
of React components. An example of CoursesView is taken in figure 4.11.

Figure 4.11.: Composition of components in courses’ page

At the top of the view is a component called AppBar, which is also composed with another
component SearchBox. ContentSection is a container for the main content, which will
be replaced and re-rendered if the context of router changes. In this example, the route
/courses is applied, and the component CourseView is rendered into ContentSection.

CourseView is also a composition of components: a list of CourseCard components and
also other components such as submit button component and popover component for
creating new courses.

In principle, building other views is the same approach. Composition of components con-
structs the all views. With fine-grained components, the client app becomes much exten-
sible and maintainable.

56

4.3.3. DATA FLOW

Since data is passed as properties of components from top to bottom in the React appli-
cation, maintaining data models between components and the data flow through compo-
nents is a problem. Flux10 is a architecture which aims to solve this problem. Data flows
in a single direction, which keeps the process simple and ensures the correctness of view
rendering.

There are four main concepts of Flux architecture:

• View: view layer which references the data model and renders the data model into
the template.

• Action: action made by view, trigger for processing data model, for example a mouse
click event.

• Dispatcher: receives the actions and run callback functions to modify the data model.

• Store: stores the states of data, if the states of data are changed, store will notify
the views to re-render with the new state of data.

Figure 4.12.: Data flow in Flux architecture

The main process of data flow in Flux architecture is illustrated in figure 4.12. The key of
Flux is unidirectional data flow. For example, a user wants to submit a new answer to a
certain question in Graphicuss system, as soon as the new answer is synchronized with the
server side, the new answer will be rendered into the answer list attached to the question.
The process of data flow in this case is described as follows:

1. User submits a new answer, Action(NEW_ANSWER) is triggered.

2. Action requests the API for submitting new answer.

3. Dispatcher receives the Action(NEW_ANSWER) and inserts an entry of this new an-
swer into the answers state which is stored in Store.

4. Since the state of answers is changed, Store starts notifying the views to re-render.

5. Views re-render the templates with the new state of answers which contains the
new submission of answer.

To validate the final result of the implementation on client side, screenshots for two repre-
sentative views: CourseView and QuestionsView are taken in figure 4.13 and 4.14.

10http://facebook.github.io/flux/ - accessed 18 July 2016

57

Figure 4.13.: Screenshot of course view

Figure 4.14.: Screenshot of questions view within a class

58

4.4. DRAWING TOOL FOR GRAPHICUSS

In this section, the implementation of converting Canvas to a storable data with JSON
format is introduced. Afterwards, a drawing tool which provides user interfaces to draw
various elements on Canvas is implemented.

4.4.1. OBJECTIFIED CANVAS

FABRIC.JS

Fabric.js11 is a powerful and simple Javascript HTML5 canvas library, which provides interac-
tive object models on top of canvas elements. Since native Canvas only provides low-level
APIs for creating elements, but not maintains the life cycle of elements on itself. Fabric.js
solves this problem with objectifying native elements and encapsulating native methods
for drawing elements.

Instead of dealing with low-level APIs natively provided by Canvas, Fabric.js provides objec-
tified model for elements with different shapes on top of native methods. It takes charge
of canvas state and rendering, make it possible to manipulate objects directly.

SERIALIZED CANVAS

Since all elements on the Canvas drawn by Fabric.js can be maintained as an object with
properties like position, size and styles. So the Canvas within Fabric.js can be simply serial-
ized to a JSON object or other formats.

Fabric.js provides a helper function called toJSON(), which will serialize the canvas with
canvas properties as well as all object models on the canvas. Code list 4.9 is an example
that shows how the serialized output looks like if a rectangle object is created by using
Fabric.js.

1 var canvas = new fabric . Canvas ();
2 canvas . backgroundColor = ’red ’;
3 canvas .add(new fabric .Rect ({
4 left: 50,
5 top: 50,
6 height : 20,
7 width: 20,
8 fill: ’green ’
9 }));

10 console .log(JSON. stringify (canvas));
11 /* --- Output of serialized Canvas ---
12 {" objects ":[{" type ":" rect "," left ":50 ," top ":50 ," width ":20 ," height ":20 ," fill ":"

green "," overlayFill ":null ," stroke ":null ," strokeWidth ":1 ," strokeDashArray
":null ," scaleX ":1 ," scaleY ":1 ," angle ":0 ," flipX ": false ," flipY ": false ,"
opacity ":1 ," selectable ":true ," hasControls ":true ," hasBorders ":true ,"
hasRotatingPoint ": false ," transparentCorners ":true ," perPixelTargetFind ":
false ,"rx ":0 ," ry ":0}] ," background ":" rgba (0, 0, 0, 0)"}

11http://fabricjs.com/ - accessed 18 July 2016

59

13 */

Listing 4.9: Serialized Canvas by Fabric.js

Comparing with output generated by native Canvas mentioned in section 3.4, this serialized
JSON object is not only efficient for storing, but also has the possibility for restoring all
object models and re-rendering them on Canvas.

4.4.2. DRAWING TOOL

The drawing tool is developed on top of the library Fabric.js. It provides the functionalities
such as drawing, styling, dragging and resizing of various elements. Not only graphical
elements, texts could also be rendered and styled on the Canvas while using drawing tool.

Figure 4.15 illustrates an overview of the drawing tool’s architecture.

STYLE MANAGER

At the startup of drawing tool, StyleManager is instantiated. StyleManager receives the
config instance, in which the DOM elements with relevant styling functionalities are de-
fined. And in the init() function of StyleManager, listeners for the DOM elements are cre-
ated. If the DOM elements are triggered by the user, StyleManager will apply the chosen
style to the active objects on the Canvas.

Code list 4.10 takes the listener for DOM element of color picker, which is used for changing
the color of an object on Canvas. It acquires the reference of color picker DOM from the
config instance, and starts listening for the onchange event. If the onchange event is fired,
the listener will set the object’s fill property to the color value. Afterwards, the canvas is
re-rendered and the active object with new color is shown up.

1 class StyleManager {
2 constructor (canvas , config){
3 this. _canvas = canvas ;
4 this. _config = config ;
5 }
6 init (){
7 el = this. _config [’color -picker -dom ’]
8 this. _listenColor (el)
9 // ... more styling listeners

10 }
11 _listenColor (el){
12 let self = this;
13 el. onchange = function (){
14 var obj = self. canvas . getActiveObject ();
15 self. _setObjStyle (obj , ’fill ’, el.value);
16 canvas . renderAll ();
17 }
18 }
19 // ...
20 }

Listing 4.10: Main process of StyleManager

60

Figure 4.15.: Architecture of drawing tool

61

FEATURE MANAGER & EXTENSIBLE FEATURES

In addition, a FeatureManager is also created for managing different drawing functionalities.
The basic idea of FeatureManager is quite similar as StyleManager mentioned above. It
also listens for the DOM elements to toggle different drawing behaviours.

After that a specific drawing mode is triggered by user, FeatureManager will assign listeners
for specific mouse events on the Canvas and track the drawing behaviours. According to
the mouse events triggered by user on the Canvas, the correlate objects will be rendered
into the Canvas context.

1 class FeatureManager {
2 constructor (canvas , config){
3 this. _canvas = canvas ;
4 this. _config = config ;
5 }
6 init (){
7 el = this. _config [’text -feature -dom ’]
8 this. _listenText (el)
9 // ... more features ’ listeners

10 }
11 _listenText (el){
12 let textFeature = new TextFeature (this. _canvas);
13 el. onclick = (e) => {
14 this. _clickHandler (text)
15 }
16 }
17 // ...
18 }
19 class TextFeature {
20 constructor (canvas){
21 this. _canvas = canvas ;
22 }
23 startListen (){
24 // tracking mouse event
25 }
26 stopListen (){
27 // remove listeners
28 }
29 }

Listing 4.11: Main process of FeatureManager

Features, namely drawing modes are highly extensible on the drawing tool. TextFeature
in code list 4.11 is an example. All feature classes need to implement two interfaces
startListen() and stopListen() basically. In startListen(), listeners for tracking mouse events
are defined. And in stopListen(), all listeners should be removed. Both functions will be
called by FeatureManager when this drawing mode is toggled.

A screenshot of the implemented drawing tool is taken in figure 4.16. On the top of the
drawing tool, a toolbar, which enables different drawing features and styling settings, takes
place. On the right side, a list for recording the history of drawing activities is also imple-
mented.

62

Figure 4.16.: Screenshot of the drawing tool

63

5. EVALUATION

After the development approach has been motivated, designed and implemented in the
previous chapters, an evaluation for both usability and data model will take place in this
part.

5.1. USABILITY

Usability testing refers to evaluating a product or service by testing it with representative
users. In principle, during a usability test, participants will evaluate the system with quanti-
tative metrics.

The goal of usability testing is to collect the quantitative data, analyze the result and issue
the usability problems with tested system.

5.1.1. SYSTEM USABILITY SCALE

The System Usability Scale (SUS) offers a "quick and dirty", but relative reliable approach for
measuring the usability[19]. It contains a 10 item questionnaire with five rating options for
participants; from strongly agree to strongly disagree.

In order to calculate the SUS score, score contributions from each item should be calculated
once separately at first. The score contribution will range from 0 to 4. For items with
odd number, the score contribution should minus 1. For item with an even number, the
contribution is 5 minus the score. The sum of all scores is multiplied by 2.5 to obtain the
overall value of SUS, which has a range of 0 to 100.

SUSsum = 2.5 ×

(
5∑

i=1

(a2i−1 − 1) +
5∑

i=1

(5 − a2i)

)
(5.1)

For the SUS testing of Graphicuss system, 5 participants are involved in the interview with
SUS questionnaire, which is listed in appendix A. Each participant gives his own score

65

Item(No.) A B C D E Average Score

1 3 4 3 4 4 3.6
2 2 1 1 1 2 1.4
3 5 4 4 5 4 4.4
4 1 2 1 2 2 1.6
5 4 4 3 4 5 4
6 4 5 4 3 4 4
7 5 4 4 5 5 4.6
8 3 3 2 1 3 2.4
9 5 4 3 4 5 4.2
10 2 3 2 1 2 2

Table 5.1.: Score of SUS table

contribution for each item, and the average score of each item is calculated. Table 5.1
shows the result.

According to the formula 5.1, the final sum SUS score of the system is 73.5. An article rep-
resents the mapping of adjective ratings to SUS score[20]. And a 73.5 SUS score achieves
the rating in a range of Good to Excellent when it is expressed by adjective ratings.

The result reveals that the Graphicuss system achieves a relative high score in the general
usability test. In general, users are able to learn to use this system very quickly. Without
significant help, they can operate the system smoothly and unproblematically.

5.1.2. INTERVIEW BASED USABILITY TEST

Interviews with college students have been conducted in order to evaluate the system’s
usability as well as the fulfillment of requirements.

Nielsen had a research about the relationship between the amount of test users and the
percentage of problems they found. Figure 5.1 shows the result[21]. Only 5 participants
are already enough for discovering 75% of usability problems in most cases. Therefore, for
the interview of evaluation, 5 participants are invited. The key parameters of the interview
are listed as follows.

• Interview type: Discussion and questions to be answered using a 5-point Likert scale
with additional space for comments and feedback.

• Number of questions: 10

• Duration of each interview: 20-30 minutes

• Time period of the conduction: 27th June 2016. The question sheet is attached to
this thesis in Appendix B.

• Interview conduction:

1. Several courses are created at the very beginning before the interview is per-
formed.

66

Figure 5.1.: Proportion of usability problems in an interface found by heuristic evaluation
using various numbers of evaluators

2. After the interview is started, interviewees are requested to sign up with their
own accounts and search the certain course by the course code.

3. Afterwards, they start questioning or answering within the certain course at the
same time.

4. Interviewees are also demanded to use the major functionalities of the system,
especially the drawing tool and quote functionality.

5. At last, the remaining 8 questions have been answered by the interviewees,
followed by a final discussion of the results.

The overall results of the interviews are presented in table 5.2, which contains the score
rated by each interviewee and the average score of each question.

ANALYSIS OF GENERAL FUNCTIONALITIES

Question 1-3 are designed for evaluating the main workflow of the system. Relative high
scores are made by interviewees while testing the main functionalities of the system such
like searching for a certain course, submitting questions and answers.

One tester has raised the issue that the auto-generated code (e.g. dogP_Iz8) for querying
the certain course is a little bit complex. Instead of a complex string with both alphabets
and symbols, a simplified code which only has numbers would be accepted. In addition,
interviewee C noticed that a pagination of the questions’ list is required if the amount of
question is getting greater.

67

Item(No.) A B C D E Average Score

1 5 4 4 5 5 4.6
2 4 5 5 4 4 4.4
3 5 4 4 5 4 4.4
4 4 3 4 3 4 3.6
5 4 3 3 3 2 3
6 4 5 4 5 4 4.4
7 5 5 5 5 4 4.8
8 2 3 3 2 2 2.4
9 3 4 5 4 3 3.8
10 2 3 1 2 1 1.8

Table 5.2.: Score of each question in the interview

ANALYSIS OF DRAWING TOOL

Question 4 is proposed to investigate the usability of the integrated text input in the drawing
tool. Most interviewees are generally satisfied with the basic functionality of inputting a text
string using the drawing tool. Tester B figured that the more stylings on the text should be
implemented.

Most interviewees thought that the preset of the default elements were far not enough,
which could be concluded from the Question 5. More shapes, which could be selected
and drawn instantly, are highly required to be added into the preset. Otherwise, with the
current elements of drawing shapes with the drawing tool, the expected graphical content
is not able to be expressed precisely.

The history functionality of the drawing tool is productive according to the score rated in
question 6. Undo/Redo function really helps the interviewees to correct the mistakes they
made while using the drawing tool. Question 7 with the highest score shows that the
modification on top of quoted content is convenient and useful.

ANALYSIS OF REAL-TIME FUNCTIONALITY

The real-time functionality is also investigated during the interview. All interviewees pointed
out that the auto-ordering of answers is not seamless and inconspicuous, which could also
cause distraction while viewing the answers. Therefore, the scores of question 8 and 10
are quite low.

However, the majority of interviewees has the opinion that the real-time feature will sig-
nificantly improve the interactivity of the system despite of the distraction caused while
auto-ordering is performed.

68

5.2. DATA MODEL EVALUATION

5.2.1. EVALUATION APPROACH

COMPRESSED IMAGE DATA FROM CANVAS

In the section 3.4 the raw output from native Canvas is briefly described. The data exported
by the method getImageData() contains all values of each pixel without any compression.
However, native Canvas also provides a method called toDataURL(), which is able to export
the image data with the specific image format. The default type is image/png.

As a result, using toDataURL() could achieve the compressed image of a Canvas. Since the
image format PNG uses lossless compression, which combines the LZ77-based DEFLATE
algorithm1 with a selection of domain-specific prediction filters, PNG format is chosen as
the format of output image data from Canvas for the evaluation[22]. An example of the
image data exported by calling toDataURL() is shown in code listing 5.1.

1 var canvas = document . getElementById (" canvas ");
2 var dataURL = canvas . toDataURL ();
3 console .log(dataURL);
4 // "data:image/png;base64 , iVBORw0KGgoAAAANSUhEUgAAAAUAAAAFCAYAAACNbybl ...

ADElEQVQImWNgoBMAAABpAAFEI8ARAAAAAElFTkSuQmCC "

Listing 5.1: Example of image data exported fro native Canvas while calling toDataURL()

MEASUREMENT PROCESS

The serialized graphical data model adopted in Graphicuss system is presented in section
4.4. To evaluate the data space of each data model, the metric Byte is taken for represent-
ing the length of data. In addition, two different dimensions are considered to evaluate the
consumption of data space.

• Size of Canvas: two different sizes 800*600 and 400*300 of Canvas are defined.

• Amount of Components: various amounts of components are drawn on the native
Canvas and objectified Canvas in two different sizes.

The comparison is following the measurement process as below:

1. Native Canvas or objectified Canvas with a certain size is initialized.

2. 3 methods for drawing elements Rectangle, Circle and Line in black color are prede-
fined, which will be randomly chosen during the evaluation.

3. Random components from the preset are selected to be drawn at a random position
with a random scale on the Canvas.

4. The length of the output data model is recorded for each amount of components in a
range of 0 to 2000

1https://en.wikipedia.org/wiki/DEFLATE - accessed 119 July 2016

69

In general, four tests are performed for both types of Canvas in two different sizes. Figure
5.2 illustrates the results of the test.

Figure 5.2.: Comparison of data spaces of image data from native Canvas in two
sizes(800*600, 400*300) and adopted graphical data model in Graphicuss

5.2.2. ANALYSIS OF RESULT

Though four tests are executed, the figure 5.2 shows only three curves or lines. The reason
is that the results of objectified Canvas in two sizes are nearly same and overlap themselves
on the figure. So the yellow line represents both results of objectified Canvas in two sizes.

In overview, the data size correlates with the size of Canvas and amount of components
drawn on Canvas. Therefore, both dimensions are analyzed separately in the following part.

DIMENSION: SIZE OF CANVAS

Size of data model from objectified Canvas is irrelevant to the size of Canvas. The
yellow line on the figure shows both that results exported in different Canvas’ size are
generally same. Since the data model of objectified Canvas represents the components
not pixels, the result is as expected.

Size of image data from native Canvas has a high-positive correlation with the size of
Canvas. As the output image data from native Canvas describes each pixel of the Canvas,

70

size of the Canvas is one of the most important factors which affect the size of image data.

Max size of image data from native Canvas is approximately linear to the size of
Canvas. The max size of image data from the blue curve is about 8 × 105 Byte , while
the max size from the orange curve is nearly 2 × 105 Byte, which means, the former is 4
times as great as the latter. The size of 800*600 is also 4 times greater than the size of
400*300, which also proves that the output image data describes each pixel.

DIMENSION: AMOUNT OF COMPONENTS

Size of data model from objectified Canvas is linear to the amount of components. Be-
cause the data model from objectified Canvas is a composition of components’ description,
the data size increases linearly with the amount of components.

Within a certain amount of components, the distribution of image data’s size from
native Canvas is logarithmic. As the test shows, if less than about 1400 components
are drawn on the native Canvas in size of 800*600, or less than 500 components in size of
400*300, the increment of data size is logarithmic due to the algorithm of image compres-
sion. With the increasing amount of components, the Canvas is getting more and more
complex, the data size becomes greater as well.

Size of image data from native Canvas starts decreasing slightly after the amount
of components reached its threshold. Since all the randomly drawn components are
all rendered in the single color black, almost all the pixels are in black if huge amount of
components is drawn on the Canvas. Therefore, the complexity of the image is reduced.
As a result, the compression of image data plays its role effectively and the size of image
data decreases.

In general, data model from objectified Canvas is much more efficient for storing
than native Canvas. As presented in the figure, if the amount of components is less
than about 1650 components in size of 800*600, or less than 400 components in size
of 400*300, the data model from objectified Canvas achieves much better efficiency in
storing. When the amount of components reached the thresholds, then the native Canvas
gains the upper hand. However, in the real world, normal users won’t paint such a huge
amount of components on a single Canvas.

5.3. GRAPHICAL RENDERING PERFORMANCE

While the graphical data model space means the efficiency and capability of server side,
the graphical rendering performance plays a key role for the client side. Loading time of the
Web application is obviously an important part of user experience. To evaluate the graphical
rendering performance, the rendering time in millisecond is measured as the amount of
components increases.

• Test Environment: A representative size 800*600 is chosen and tested on Chrome
version 52. In additional, the Chrome Dev Tool is used for inspecting the performance
metrics. CPU, which also has an impact on the result, runs at 2.3 GHz.

71

• Metrics: Total Time, which includes the scripting time, rendering time and painting
time, and Scripting Time therefrom are measured along with increasing amounts of
components drawn on the objectified Canvas.

The approach of measurement is performed as follows:

1. A graphical data model in JSON format is generated, which composes a certain
amount of random components: Rectangle, Circle and Line.

2. Objectified Canvas starts parsing the graphical data, instantiating the components
and render them on the Canvas.

3. Chrome Dev Tool is utilized to inspect the rendering timeline of step 2. Total time
from loading to rendering and scripting time as a part of total time are recorded.

In general, four tests are performed for both types of Canvas in two different sizes.

Figure 5.3 illustrates the results of the test. As a result, two outcomes are concluded as
follows.

Figure 5.3.: Consumption of total time and scripting time in the rendering process of objec-
tified Canvas

Rendering performance is approximately linear to the amount of components. As
shown in the figure 5.3, the total time, which includes scripting time, rendering time and

72

painting time is about 1000 ms when the amount of components is 1 × 104. If the amount
of Components reaches 5 × 104, the total time increases to nearly 5000 ms.

Scripting time has accounted for the majority of total time. As a part of total time,
the scripting time , which is also approximately linear, takes the most of time consumption
while processing the rendering task. After the objectified Canvas has loaded the image data
successfully, it will parse each component defined in the image data and instantiate them
as well as add the objects into its own context. However, the actual rendering time, which
is the difference of total time and scripting time, is only a fraction in the whole rendering
process.

However, the performance test is performed with such a huge range of components’
amount, which doesn’t represent the usage in normal case. Considering the linearity of
the rendering performance, drawing less than 1000 components, which are already huge
enough for expressing the graphical content in the real world, will only spend less than 100
ms.

73

6. CONCLUSION AND FUTURE WORK

6.1. CONCLUSION

6.1.1. MODERNWEB APPLICATION

The discuss system is the cornerstone, which provides users the basic functionalities for
discussion such like authentication, questioning and answering. The Single-Page-Applica-
tion architecture is applied while concepting and implementing this discussion system.
Since the client application and the server application are fully separated, the data defini-
tions and data communication between two sides have also been discussed and imple-
mented. RESTFul APIs within the system, which is used as a lightweight and universal
Web service for the data transmission, are designed and implemented on the server side.

Implementation details of building the client application using React.js are also described.
The concept of Componentization is introduced, namely, all the views are actually compo-
sitions of various components. Fine-grained components are defined with templates and
data representation logic inside.

In addition, in order to accelerate the development process, as well as the deployment
process for further usage, an automated building workflow is also considered.

6.1.2. OBJECTIFIED CANVAS

The graphical discussion contribution made by users, which is efficient for persistence
purpose and is able to be restored back to the Canvas for the quote functionality, is the
main topic of this thesis. For exploring the possibility, deficiencies of native Canvas are
revealed.

As a feasible approach to realize the feature mentioned above, an objectified Canvas is
designed and implemented. Instead of exporting image data describing each pixel from
native Canvas, the objectified Canvas outputs the graphical content to a serialized data of
all objects with various properties on its Canvas.

75

In the evaluation phase, the storing efficiency of graphical data exported from objectified
Canvas has been proved. Comparing to the image data outputted from native Canvas,
the size of data model exported from objectified Canvas is much smaller, if the amount of
components doesn’t reach the thresholds which is basically a relative huge number.

The relationship of rendering performance of the objectified Canvas and amount of compo-
nents has also been analyzed in the evaluation. As a result, the rendering performance is
approximately linear to the amount of components. Moreover, as a part of the total time in
the rendering process, the scripting time occupies the majority of time consumption.

6.1.3. REAL-TIME COMMUNICATION

Real-time communication, which enables the bi-directional communication between client
and server, is also a focal point of this work. Arbitrary resources are able to be subscribed
and users will get notified and acquire the newest data passively as the content of sub-
scribed resource changes.

To achieve this goal, WebSocket is applied as the basic real-time communication proto-
col. To broadcast data precisely through WebSocket to the users who subscribe the certain
resources, a list which maps user socket to resource id is maintained by server, after a Web-
Socket connection has been successfully established. As the state of resource is changed,
users who have subscribed this resource are notified with the new state of resource by
querying the mapping relation in the list.

6.2. FUTURE WORK

Although the developed prototype of graphical discussion system covers the requirements
and realizes the basic functionalities, some future researches and improvements are still
needed to be done.

Notification system could be extended for the discussion system. For now, users won’t
get notified if new answers are posted under their own questions. Therefore, a notification
system is proposed. Users would also be able to subscribe a certain question or class he
interested in for further notifications if new contributions are made under it.

More pre-defined shapes of components should be extended for the drawing tool.
According to the result of evaluation in section 5.1, most users hold the idea that the preset
of shapes in the drawing tool are far not enough. Therefore, the drawing tool should have
provided more pre-defined components natively, which will significantly ease the drawing
process and helps the user to express the precise; graphical content as expected.

Divers stylings of text on the drawing tool should be implemented. The developed
drawing tool already provides the possibility to input textual content for now. However the
current styling of the text is still circumscribed. At present, adjusting the size or color of the
text is already possible. More stylings such as strikethrough, list format could be extended
in the future.

76

LIST OF FIGURES

2.1. Web architecture in early age . 14
2.2. Web 2.0 architecture . 15
2.3. SPA architecture . 16
2.4. Components in SPA . 16
2.5. Performance comparison of Canvas and SVG[10] 20

3.1. Mockup: Submit a new course . 24
3.2. Mockup: Search course with code . 24
3.3. Mockup: Favor course . 25
3.4. Mockup: Submit a new question; withdraw or modify own question 25
3.5. Mockup: Upvote/Downvote a question or answer 26
3.6. Mockup: Submit/Quote an answer . 27
3.7. Mockup: Drawing editor with drawing history 28
3.8. Mockup: Notify with new question automatically 28
3.9. Mockup: Auto re-order answer if vote contributions changed 29
3.10.General architecture in conception . 30
3.11.General data communication . 31
3.12.Relations between data domains . 32
3.13.Canvas to native ImageData . 37
3.14.Concept of objectified Canvas . 38
3.15.Export and import of Canvas context with objectified elements 39
3.16.Lifecycle of drawing tool . 40
3.17.Sequence diagram of establishing a WebSocket connection 41

4.1. Overview of Graphicuss’ file structure . 44
4.2. General architecture . 45
4.3. Proxy for client development server . 46
4.4. Automated building process with Webpack 46
4.5. Table of data model . 47
4.6. Overview of server app’s file structure . 48
4.7. Server architecture . 49
4.8. JWT authentication process . 51
4.9. Overview of client app’s file structure . 54

77

4.10.Overview of client architecture . 54
4.11.Composition of components in courses’ page 56
4.12.Data flow in Flux architecture . 57
4.13.Screenshot of course view . 58
4.14.Screenshot of questions view within a class 58
4.15.Architecture of drawing tool . 61
4.16.Screenshot of the drawing tool . 63

5.1. Proportion of usability problems in an interface found by heuristic evaluation
using various numbers of evaluators . 67

5.2. Comparison of data spaces of image data from native Canvas in two sizes(800*600,
400*300) and adopted graphical data model in Graphicuss 70

5.3. Consumption of total time and scripting time in the rendering process of
objectified Canvas . 72

78

LIST OF TABLES

3.1. Fields for Each Data Domain . 33
3.2. HTTP methods on User resource . 33
3.3. User Auth APIs . 34
3.4. Course Resource APIs . 34
3.5. Question Resource APIs . 34
3.6. Answer Resource APIs . 35
3.7. WebSocket APIs with namespace . 35

5.1. Score of SUS table . 66
5.2. Score of each question in the interview . 68

79

LIST OF LISTINGS

2.1. Simple Example of SVG elemnt . 19

4.1. Example: user schema definition within Mongoose 50
4.2. Example: defining static methods of data model within Mongoose 50
4.3. JWT encodes user information with secret key 51
4.4. JWT decodes user information with secret key 52
4.5. Server starts listening for requests over WebSocket protocol 52
4.6. Server broadcast to all sockets who has subscribed the certain resource . . . 53
4.7. Router in client app . 55
4.8. Rendering CourseView with multiple CourseCard components 55
4.9. Serialized Canvas by Fabric.js . 59
4.10.Main process of StyleManager . 60
4.11.Main process of FeatureManager . 62

5.1. Example of image data exported fro native Canvas while calling toDataURL() 69

81

A. SYSTEM USABILITY SCALE TABLE

Strongly
Disagree

Strongly
Agree

1. I think that I would like to use this system fre-
quently

1 2 3 4 5

2. I found the system unnecessarily complex 1 2 3 4 5

3. I thought the system was easy to use 1 2 3 4 5

4. I think that I would need the support of a tech-
nical person to be able to use this system

1 2 3 4 5

5. I found the various functions in this system
were well integrated

1 2 3 4 5

6. I thought there was too much inconsistency
in this system

1 2 3 4 5

7. I would imagine that most people would learn
to use this system very quickly

1 2 3 4 5

8. I found the system very cumbersome to use 1 2 3 4 5

9. I felt very confident using the system 1 2 3 4 5

10. I needed to learn a lot of things before I could
get going with this system

1 2 3 4 5

83

B. SYSTEM USABILITY INTERVIEW

Strongly
Disagree

Strongly
Agree

1. I could find the certain course created by tu-
tor.

1 2 3 4 5

2. The process of asking a question or answer-
ing a question was simple.

1 2 3 4 5

3. Voting score would help to locate the useful
contribution.

1 2 3 4 5

4. Integrated text input in the drawing tool
would helps express the textual content.

1 2 3 4 5

5. The drawing tool provided enough elements
ready to be drawn.

1 2 3 4 5

6. Quoting and modifying on top of othersćontri-
butions are useful.

1 2 3 4 5

7. I found the history function(undo redo) of
drawing tool was really necessary.

1 2 3 4 5

8. Auto-ordering of answers was seamless and
unconspicuous.

1 2 3 4 5

9. I found the real-time feature was interactive. 1 2 3 4 5

10. The real-time feature didn’t cause distraction
while viewing the answers.

1 2 3 4 5

84

BIBLIOGRAPHY

[1] D. M. Brandon, Software Engineering for Modern Web Applications: Methodologies
and Technologies: Methodologies and Technologies. IGI Global, 2008.

[2] L. Richardson and S. Ruby, RESTful Web services. " O’Reilly Media, Inc.", 2008.

[3] H. Hamad, M. Saad, and R. Abed, “Performance evaluation of restful web services for
mobile devices.,” Int. Arab J. e-Technol., vol. 1, no. 3, pp. 72–78, 2010.

[4] E. Tutorial Java, “da oracle,” 6.

[5] J. L. Williams, Learning html5 game programming: A hands-on guide to building online
games using Canvas, SVG, and WebGL. Addison-Wesley Professional, 2012.

[6] D. Geary, Core HTML5 canvas: graphics, animation, and game development. Pearson
Education, 2012.

[7] P. Corcoran, P. Mooney, A. C. Winstanley, and M. Bertolotto, “Effective vector data
transmission and visualization using html5,” 2011.

[8] M. D. Network, “Svg tutorial - introduction,” 2016.

[9] J. Ferraiolo, F. Jun, and D. Jackson, Scalable vector graphics (SVG) 1.0 specification.
iuniverse, 2000.

[10] B. Smus, “Performance of canvas versus svg,” 2009.

[11] M. D. Network, “Websockets,” 2016.

[12] V. Pimentel and B. G. Nickerson, “Communicating and displaying real-time data with
websocket,” IEEE Internet Computing, vol. 16, no. 4, pp. 45–53, 2012.

[13] A. B. Johnston and D. C. Burnett, WebRTC: APIs and RTCWEB protocols of the HTML5
real-time Web. Digital Codex LLC, 2012.

[14] R. T. Fielding and R. N. Taylor, “Principled design of the modern web architecture,”
ACM Transactions on Internet Technology (TOIT), vol. 2, no. 2, pp. 115–150, 2002.

[15] V. Sahni, “Best practices for designing a pragmatic restful api,” 2016.

[16] M. D. Network, “Http access control (cors),” 2016.

85

[17] K. Banker, MongoDB in action. Manning Publications Co., 2011.

[18] A. Mardan, “Boosting your node. js data with the mongoose orm library,” in Practical
Node. js, pp. 149–172, Springer, 2014.

[19] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability evaluation in industry,
vol. 189, no. 194, pp. 4–7, 1996.

[20] A. Bangor, P. Kortum, and J. Miller, “Determining what individual sus scores mean:
Adding an adjective rating scale,” Journal of usability studies, vol. 4, no. 3, pp. 114–123,
2009.

[21] J. Nielsen, “How to conduct a heuristic evaluation,” retrieved November, vol. 10, 2001.

[22] A. Barron, J. Rissanen, and B. Yu, “The minimum description length principle in
coding and modeling,” IEEE Transactions on Information Theory, vol. 44, no. 6,
pp. 2743–2760, 1998.

86

