TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik Institut fir Rechnernetze

Thesis [Diplomarbeit]

HTTP/2 - POSSIBILITIES FOR AND
EXTENSIONS TO THE PROXY
PATTERN

Timo Lutz
Matriculation number: 3444118

Supervised by:
Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill

and:

Dr. Ing. Tenshi Hara
Submitted on 31th March 2017

TECHNISCHE
UNIVERSITAT
DRESDEN

Fakultat Informatik Institut fiir Systemarchitektur Professur Rechnernetze

Aufgabenstellung fiir die Diplomarbeit

THEMA: HTTP 2 - Mdglichkeiten und Erweiterungen flir das Proxy-Pattern

Name: Lutz, Timo Studiengang: Dipl. Medien-Inf. (PO 2004)
Matrikel-Nummer: 3444118 Projekt/Fokus: Mobile and Ubiquitous Comp.
verantwortlicher Hochschullehrer: Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill
involvierte Mitarbeiter: Dr.-Ing. Tenshi Hara, Dr.-Ing. Thomas Springer
Beginn am: 28.07.2016 |einzureichen bis: 27.01.2017

ZIELSTELLUNG

Mit der Verdffentlichung des Standards fiir HTTP 2 haben sich diverse Verbesserungen und
Neuerungen fiir die Kommunikation im WWW ergeben. Dies betrifft nicht nur klassische
Browser-Anwendungen, sondern alle auf der klassischen Client-Server-Architektur aufbau-
enden Anwendungen.

Aus diversen Griinden ist oftmals eine Implementierung des Proxy-Patterns notwendig. Dies
kann seine Ursache beispielsweise in der dynamischen Adaption von Web-Inhalten fir Mo-
bilgerate, oder aber auch in Anonymisierungsbegehren haben. Am Lehrstuhl Rechnernetze
wurde beispielsweise ein Crowdsourcing-Proxy implementiert, der eine zentrale Nutzer- und
Submission-Verwaltung bereitstellt, um Crowdsourcing-Beitragende gegentiber Crowdsour-
cing-Betreibenden zu anonymisieren.

Ziele dieser Diplomarbeit sind ersten die systematische Untersuchung der Neuerungen und
Mbglichkeiten von HTTP 2 im allgemeinen Bezug auf die Client-Server-Architektur, und zwei-
tens die Betrachtung und ggf. Konzeption einer Erweiterung der Mechanismen auf das
Proxy-Pattern. Insbesondere soll dabei Ricksicht auf Ende-zu-Ende-HTTP-2-Um setzung ge-
nommen werden. Bereits existierende Ansétze sollen dabei auf ihre Erweiterbarkeit unter-
sucht werden.

Die Ergebnisse sollen in einem Konzept zusammengefiihrt werden und anschlieRend sinn-
voll evaluiert werden. Dazu ist die Definition von Evaluationskriterien zwingend notwendig.

Bei Bedarf kann zur Untersuchung der Konzepte und fir die notwendige Evaluation der oben
erwahnte Corwdsourcing-Proxy verwendet werden.

QA

Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill
(verantwortlicher Hochschullehrer)

Seite 1 von 2

SCHWERPUNKTE

e Untersuchung verwandter Arbeiten aus aktuellem Stand in Forschung und Technik,
e Definieren von Anforderungen,

e Definieren von Bewertungskriterien fiir die Anforderungserfiillung,

e Konzeption einer Evaluationsmethodik,

° Proof—of—Concept—lmplementierung, und

e Evaluation und Auswertung der Ergebnisse.

Seite 2 von 2

TECHNISCHE

UNIVERSITAT
DRESDEN

Fakultat informatik Prifungsamt

Antrag auf Verldngerung der Bearbeitungszeit der Diplomarbeit (PO 2004)

| Name: Lutz | Vorname: Timo
| E-Mail-Adresse: timo.lutz@mailbox.tu-dresden.de | Mat.-Nummer: 3444118
| Studiengang: Dipl.-Medien-Inf. (PO 2004) | Imma.-Jahrgang: 2007

| Betreuender HSL: Prof. Dr. A. Schill

o

| Beginn: 28. Juli 2016 | Abgabe: 27.01.2017, wegen Krankheit 24.02.2017

| Dauer der Verldngerung (max. 3 Monate): 4 Wochen

| Neuer Abgabetermin: 24. Marz 2017

Begriindung der Verlangerung:

Die Vielzahl zu beriicksichtigender und zu untersuchender Ansétze hat eine sehr komplexe Konzeptionierungs-
phase nach sich gezogen. Die Unterbrechungen durch Krankheit haben diesen Prozess weiterhin erschwert.

Um die Qualitat der sich aus der Implementierung ergebenden Ergebnisse nicht zu geféhrden, sollten keine
Abstriche in der Evaluationszeit gemacht werden. Daher beantrage ich eine Verlangerung um 4 Wochen.

Das Vorgehen wurde mit dem Betreuer abgestimmt.

| AE.01.70(F /Zé& _ L LA B

Datum, Unterschrift Studierende/r Zustimmung betreuender HSL

Dieser Antrag ist mit einer Kopie der Anmeldung zur Diplomarbeit fristgerecht im Priifungsamt vorzulegen.

4 -

el V17 (/;;Zd L:'«Z/l/‘fé/
Datum RS Unterschrft Prifungsamt
Entscheidung des Priifungsausschusses: i,f
Dem Antrag auf Verléngerung der Diplomarbeit wird stattgegeben / nichtyaégeben.

.

e

Datum o Unterschrift Priifungsausschuss

ABSTRACT

HTTP/2 is the next evolutionary step of the Internet’s most used and adopted protocol. It
accommodates the changed demands of on the one hand yearly growing content in number of
resources and size and on the other hand altered way of accessing this content: In 2015, for the
first time in the history of the internet, more traffic was generated from mobile devices than
from stationary ones and this trend is expected to last. Moreover has the bandwidth available to
each user grown exponentially while the latency, mostly depending on the distance to span, only
improved marginally. In order to resolve this issue, a paradigm shift from simplicity towards
performance has been put into effect by using a binary framing layer instead of being a pure text
based protocol as its predecessor HTTP 1.1. The effects of this combined with header
compression and a new set of features like Server Push shall be evaluated in general and with
respect to the proxy pattern using the example of the SANE proxy at the Technische Universitat
Dresden.

CONTENTS

1 Introduction 1"
11 Objective 13
1.2 Motivation 13
1.3 Structure L 14

2 Preliminaries 15
2.1 TCPbasics 17
2.2 TLSDasiCsS 18
2.3 Evolutionof HTTP 19

2.3.1 Commonalities among all revisions 19
2.3.2 Historyof HTTP 19
2.3.3 Shortcomings of HTTP 1.1 22
2.3.4 SPDY . . 23
24 HTTP/2 23
2.4.1 Preserving downward compatibility 0oL 24
2.4.2 Advancementof HTTP/2 24
243 HTTP/2 comparedto HTTP 1.1 28
25 Theproxy pattern 29

2.6 SANE . . 29

3 Related Work 31

3.1 HTITP/Zinanutshell 33
3.2 Quantifiable Aspects 33
3.2.1 Current adoptionacrosstheWeb 33
3.2.2 Performance 34
3.2.3 Energy Efficiency 35

3.3 ServerPush 37
3.4 SANE and HTTP/2 37
3.5 Summary ..o 38
4 Concept 39
4.1 SANE basics and principles 41
4.1.1 Architecture configurations 41
412 SANE methodrange 42
4.1.3 SANE: An application layer proxy 43

4.2 Expected impact of improvementsonthe SANE 43
4.2.1 Implicitimprovements 43
4.2.2 Link-type independent improvements 44
4.2.3 Link-type specificimprovements 46

4.3 Classification and Realization of HTTP/2 advancements 46
4.3.1 Link-type independent improvements L. 46
4.3.2 Cross propagation/runtime dependent features 47
4.3.3 C—Plinkfeatures forload control 48
434 P —Slinkfeatures forload control 50

4.4 Evaluationcriteria. 51
441 Generalcriteria 51
4.4.2 Advancement specificcriteria 52

4.5 Conclusion and further proceeding, 53

5 Proof of Concept 55

5.1 Feasibility 57
511 Client-Proxy (C—P)link 57

5.1.2 Proxy-Server (P —8)link 57

5.2 Functional demonstration 58
521 C—PStreamBReset 59
522 C—"PServerPush 60
523 P—-8StreamReset 61
524 P —-SServerPush 62
525 C—-—P—-SStreamReset. 64
526 C—P—-8ServerPush 66

53 C— P Server Push Implementation 68
53.1 GETinstead of POST 68
5.3.2 Parametersintheheader 68
5.3.3 SANEcontrolflow 69
5.3.4 Modifications for ServerPusho oo o 69
5.3.5 Detailed implementation 72
5.3.6 Proof of functional capability 74

5.4 Remarks to upcoming implementations for SANE 76
541 C—PStreamBReset 77
542 P —SMultiplexing 77
5.4.3 Employing FastCGl 77

BB Summary ... 78
6 Evaluation 79
6.1 General performance assessment 81
6.2 Advancement specificassessment L 83
6.2.1 StreamReset 83

6.2.2 Server Push 84

6.3 Additional aspects 87

6.3.1 Automated Smart Multiplexing 88
6.3.2 Parallel execution of libcurl requests 89
6.3.3 External scriptprocessing 90
B.4 SUMMATY o e 91
Conclusion 93
77T SUMMANY . . . 95
711 Concept 95
712 Proofof Concept 96
713 Evaluation 96
72 Perspective and future work 97
720 InGeneral 97
722 Forthe SANE e 98
Code snippets 929
Test setup 109
Communication protocols 1M1
Copyright permissions 165
Index 167

Declaration of Authorship 175

1 INTRODUCTION

¢

Dimidium facti, qui coepit, habet: sapere aude, incipe.

Horaz

vy,

Since the introduction of the Hypertext Transfer Protocol the Internet or better the Web
underwent many changes: Was the first version only intended to serve hypertext as the name
suggests, it nowadays is used to transport a great variety of file types a thousandfold in size. As
the usage pattern changed, the protocol, aside from smaller optimizations, remained the same.
To better cope with the changed demands, a new version of this jack of all trades protocol has
been launched in 2015: HTTP2.0 or HTTP/2 or just H2. The increase of the major version and the
abandonment of a minor version reflects the extensive changes made under the hood, as will be
examined carefully in the course of this thesis.

1.1 OBJECTIVE

The objectives of the work at hand are, firstly, to systematically evaluate the impact of the
improvements on client-server architecture in HTTP/2 in a general way. Secondly, to relate these
improvements to the proxy pattern and, in case they turn out advantageous, implement them
with special consideration of end-to-end architectures and possibly pre-existing solutions. The
outcome of the conducted improvements will finally be measured on the basis of previously
defined evaluation criteria.

1.2 MOTIVATION

Since the introduction of HTTP1.1 in the year 1991, the Web underwent massive changes,
although with the increase in size of websites also the bandwidth increased to a comparable
extent. Alongside sheer bandwidth, the second factor significant for the experienced speed only
improved marginally: Latency, which is mainly a function of the peers’ distance, as the time a
packet needs to travel a certain distance is delimited by the speed of light and the wire's
refractive index respectively. As those last two factors can be considered constant for the case
at hand, other ways of reducing the load time have to be found, as latency influences the
necessary time to load data on multiple ways: Due to the increased complexity of web sites and
-applications, the amount of requests to download an average website also increased, leading to
a lower perceived speed, as the individual latencies add up with every additional round-trip
needed until the whole website has arrived at their particular destination. Moreover, is the
latency of a connection also determining the maximum data rate as a factor in the
Bandwidth-Delay Product. As an application layer protocol HTTP/2 has in fact minimal impact on
this issue of lower layers, but bears functionality to send data earlier and more efficiently,
combine certain steps to require less round-trips or to recognize whether something has to be
sent at all.

"No bit is faster than a bit not sent.” [Gri13a]

The effect of the Bandwith-Delay product becomes even stronger in mobile networks, where
the transmission of packets naturally takes even more time. This issue will be examined more
detailed in 2.4.3. With HTTP/2, the subject of this work, most improvements concern an overall
faster perceived transmission alongside a richer feature set, which in turn entails other
implications/effects, as will be shown in the following.

This work's purpose is to take a closer look at the improvements both in general and with
relation to an already established project at the TU Dresden, yet still being under development,
called the SANE. It is a generic platform, providing an infrastructure for arbitrary crowdsourcing
services, freeing the crowdsourcer from recurring tasks like user management or targeting of
certain user groups. Another aspect of this platform is a proxy service, mainly to provide
anonymization of the crowdsourcing participants to the crowdsourcing conductor. Examining the
improvements of HTTP/2 regarding reasonability and feasibility, the implementation of
reasonable improvements and rating their impact by means of the evaluation criteria is the main
focus of this work.

1.3 STRUCTURE

First of all, this work will introduce the networking basics necessary to understand HTTP’s high
level mechanics in the Preliminaries chapter. More precisely, the basics of TCP and TLS will be
treated. Next, the evolution of HTTP will be retraced from the first basic draft to HTTP in version
1.1, which is still in use nowadays. In the following is pointed out how and where this version
falls short and how SPDY, a blueprint for HTTP/2, already tried to solve its issues. Having
presented the precursors of HTTP/2 comprehensively, the proxy pattern and - based upon that -
the SANE project at the TU Dresden are introduced in short terms to close this chapter. The
following chapter, Related Work, treats relevant works of other authors. At first, works that
summarize the development of HTTP/2 are given, then works are presented that evaluate
HTTP/2 in comparison to its predecessors based on various quantification criteria, to finally give
a summary of these works. After that, the Concept chapter examines which of HTTP/2
amendments can be reasonably put to use for the SANE and how they can be reconciled with
the special requirements of SANE's architecture. The following Proof of Concept chapter treats
the practical limitations and the implementation of the functionality found advantageous. Based
upon the evaluation criteria prepared in the Concept chapter, the now following Evaluation
chapter assesses new SANE implementations, the principle functional demonstration and
verifies whether HTTP/2's advancements work as intended. The last chapter finally sums up the
entire work and gives an overview of upcoming trends of HTTP/2’s wider context as well as the
next steps recommended for the SANE’s further development.

14

2 PRELIMINARIES

¢

The extreme sophistication of modern technology - wonderful though its benefits are -
is, ironically, an impediment to engaging young people with basics: with learning how
things work.

Martin Rees

vy,

The purpose of this chapter is to introduce the basic knowledge crucial to understanding why
and where HTTP 1.1 falls short and how HTTP/2 deals with its predecessors’ issues.

2.1 TCP BASICS

In order to understand where HTTP 1.1 falls short and possible solutions it is vital to be familiar
with the fundamentals of the TCP layer underneath. Especially as some issues of this
underlying layer reoccur in HTTP and this protocol in turn reaches out into this lower layer as can
be seen in the following.

Three Way Handshake

Every TCP connection starts with a Three Way Handshake, as can be seen in 2.1, via SYN
(synchronize) packet by the peer inducing the connection. It is responded to with a combined
SYN and ACK (acknowledge) packet. To finalize this process the reception of the SYN ACK
packet is again acknowledged via ACK packet. During the handshake client and server mainly
agree upon sequence numbers to be used for further communication. These packet sequence
numbers are randomly appointed by the sender of the SYN packet on either side; they are from
this point on used to mark a packet as an answer to a previously received packet by
incrementing its sequence number by 1 and to determine the correct order of the packets, as
they can take different routes from sender to receiver and are therefore not necessarily received
in the order sent. Furthermore, the peers propagate their initial receive window size, which is
relevant to Flow Control, as further elaborated below. As the name Three Way Handshake
suggests, it embraces three packets in total to be sent among the peers, meaning establishing a
TCP connection takes at least three times the duration one packet takes to be transmitted
among them, commonly referred to as latency.

Sender Receiver

|

SYN
x=rand()
SYN ACK
x+1 y=rand()
ACK
L y+1 x+1
Application Data

Figure 2.1: Three Way Handshake with a packet latency of 28 ms

17

Flow Control

Flow Control denotes the technique utilized to avoid overloading the receiver with packets from
the sender it is currently unable to digest for various possible reasons. On establishment of a
connection, each side initializes the size of their receive window (rwnd) with system default
settings, corresponding to the buffer size allocated for incoming packets, and advertising them in
their acknowledgment packets, ACK and SYN ACK, respectively. If the receive window reaches
zero, no more packets are to be sent until another sent packet, carrying another rwnd value,
gets acknowledged.

Congestion Control, TCP slow start and TCP fast open

The internet protocol suite embraces many strategies to avoid or take control of congestions, to
number all of them would exceed the scope of this thesis. Nevertheless, one of them is crucial
as will be seen later: TCP Slow Start.

In order to avoid overloading not only the receiver, as Flow Control does, but also the network
with TCP packets, the capacity of the the medium, expressed as amount of packets en route
between the peers has to be determined by the use of this exact mechanic: After the above
mentioned initial Three Way Handshake, in which sender and receiver exchange their respective
receive window (rwnd), the server starts sending packets in the amount of the minimum of the
receive window and the congestion window size of 10 segments (since the most recent RFC
6928 in 2013 [Chu+13]). For every packet acknowledged by the receiver, the sender doubles the
size of the congestion window (cwnd), what bears comparison with an exponential growth, until
lost packets are recognized by not receiving an acknowledgment (ACK) packet for them from the
receiver. This procedure is known as congestion control. At this very point of packet loss,
congestion avoidance takes over: The sender reduces the congestion window size to the last
known working cwnd value and increases it in smaller steps of the size of the initial window size
(10 segments) with every round trip. Thus, the sender has to wait for a whole server round-trip
to increase the window size, making latency again a crucial value. Also, for small files, the
transfer has often already been finished before reaching the maximum window size, again
making the the time for a full server round-trip the limiting factor for the connection.

With TCP fast open it is now possible to not only abbreviate the latency afflicted Three Point
Handshake, but also the even more costly TCP slow start by reusing the parameters of an
already existing connection. To achieve this, with the establishment of the first connection
between peers, a cryptographic cookie is included by the server. This common secret is used
later on to authenticate to the server as a client already known and proceed with the last known
working connection settings.

2.2 TLS BASICS

As TLS is important for HTTP/2, it will be introduced here briefly. The abbreviations stands for
Transport Layer Security and, as the name suggests, it provides security features and is residing
between the above mentioned TCP transport layer and the application layer. The most recent
version and the version used by HTTP/2 is 1.2. It shall be mentioned in advance that HTTP/2
does not require TLS to be used, but all major browser developers made clear that their products
will only support HTTP/2 with activated HTTPS, just as its blueprint SPDY as will be further
elaborated in 2.3.4 TLS basically provides three services: Encryption of transmitted data using
symmetric encryption, mutual authentication of the peers and measures to ensure the integrity
of the data transmitted. With the optimizations TLS false start and TLS session resumption, it
was possible to reduce the additional round-trips for TLS to only 1, both for new connections
(with TLS false start) and for pre-existing connections (with TLS session resumption). Within this
round-trip also the negotiation of sender and receiver regarding the HTTP protocol version to use
takes place under application of the Application Layer Protocol Negotiation.

18

2.3 EVOLUTION OF HTTP

In this chapter, first the common characteristics of all revisions of the HTTP protocol are
outlined, as each one is designed to be fully backward compatible. Then, a brief look at the
history of the HTTP protocol and its evolutionary steps is given.

2.3.1 Commonalities among all revisions

As the HyperText Transfer Protocol is an application protocol on layer 4 in the DOD reference
model, it operates on top of the transport layer. Typically for this purpose TCP is used, but also
the use of the User Datagram Protocol, a connection-less protocol operating on the same layer,
is alternatively possible. Additionally TLS/SSL can be used to establish a secure connection,
what contributes the S in HTTPS. HTTP was intentionally designed for transmitting hypertext, a
term formed by its inventor, Tim Berners Lee in 1991, but is not necessarily limited to that.
Moreover, it is able to transmit any kind of data in its body, but also in its header by the use of
Base64 encoding, a method of encoding binary data into a set of characters that are not to be
misinterpreted by intermediaries on the way to the recipient. It is designed to be stateless,
meaning that the server does typically not retain any state or further data about the user. This
means everything to fulfill the client’s request has to be conveyed with every request. HTTP is a
typical representative of a request-response protocol, meaning that every transmission from the
server to the client (i.e. the response) results from a request from the client to the server,
regarding a resource specified via Unified Ressource Identifier.

2.3.2 History of HTTP

In the following, the evolutionary steps of the individual revisions and its historic background are
outlined.

HTTP 0.9

Already in 1991, the first proposal for a protocol to transfer so-called hypertext was written by
the appointed father of the World Wide Web, Tim Berners Lee, himself. Nowadays this proposal
is commonly known as HTTP 0.9; it was designed with simplicity in mind, what resulted in a
also very straightforward, Telnet-friendly protocol. It supported only the GET method which is
used to retrieve a document specified by file name and optionally the path relative to the web
servers root directory. |t completely lacked support for headers, version numbers and MIME
typing of multimedia content. Nevertheless it built the base for any further development.
[Ber91] [Gri13a] [GTO2]

HTTP 1.0

The next iteration of HTTR Version 1.0, already accommodated the newly emerged class of
software named Web Browsers by being able to transmit meta-data about the client in the
request and perform content negotiation to transmit documents other than those in plain text
like HTML. The document that embraces HTTP 1.0 [BFF] as we know it today, should not be
understood as a specification or an internet standard. Instead it is more an aggregation of
practical improvements of its predecessor HTTP 0.9, that have already been consistently

HTTPO.9 HTTP1.0 HTTP1.1 SPDY HTTP/2

- GZIP
header
compression
- Next
Protocol
Negotiation

HTTP 0.9, HTTP 1.0, HTTP 1.1, SPDY, HTTP/2:

20

1991 1996 1997 2012 2015

Figure 2.2: Functionality of individual revisions of HTTP and related protocol SPDY

>

implemented by the developers of the most widespread web servers at that time. Its methods
were extended beyond the already existing GET by the two new methods POST and HEAD.
The former one is intended to be used "to request that the destination server accept the entity
enclosed in the request as a new subordinate of the resource identified by the Request-URI in
the Request-Line" [BFF] i.e. to add data to a specific resource. The latter is identical to the GET
method with the only difference that the server must not return any entity body in the response.
Its only intended use was to obtain meta-information about a specific resource. The other
improvements comprise changes to the structure of request-/response objects as follows: A
request may consist of multiple header fields, both type of objects had US-ASCII encoded
headers, the response object is ought to be prefixed by a status line, has its own headers and
was not limited to consist of only hypertext anymore. With this version, the connection was still
closed after every request/response. [Gri13a] Besides those features implemented in the most
common web servers, some existed that were only available to some web servers and are
therefore only listed under additional features in [BFF], like the ability to reuse connections for
multiple requests, additional methods and additional header fields for specifying the used
character set and language. This feature set between HTTP 1.0 and HTTP 1.1 is often referred to
as HTTP1.0+ [GT02]

HTTP 1.1

These just mentioned features were not officially standardized until the release of HTTP 1.1 in
June 1999 as RFC2616 in [Gro+99] and got finally rid of protocol ambiguities. It was specified
first in RFC2068 as a work in progress in January 1997

The following focuses on those improvements with a certain relevance for optimizations in
HTTP/2. From today’s point of view, the most important improvement was connection
keep-alive, what allowed the use of an already established connection for more than just one
single request as with HTTP 1.0. Certainly, the repeated use of a connection made other
extensions necessary in order to enable the peers to perceive the end of one request and the
beginning of another: In HTTP 1.0 the closing of a connection also meant the end of a
transmission. As connections are reused, another way of delimiting had to be introduced. One
way of doing so is to specify the length of the subsequent content by the use of a
content-length field in the header. Another way of doing so is using chunked encoding, sending
a series of pre-specified chunks of a fixed length. This is especially of use if the content is
generated dynamically, when the server does not know the resulting size at this point in time. It
is the only allowed transfer encoding specified in this version of HTTP [GT02]

Other than transfer encoding applying on the whole message, the newly introduced content
encoding applies only on the body of the message, enabling it to be encoded in order to
minimize its size, in other words to be compressed. The common algorithms available comprise
gzip, zlib and the standard unix file compression, of which gzip is the most commonly used and
the most effective one. More content encoding algorithms can be added as extension
encodings. These can be specified by the client upon request by adding its supported ones in an
accept-encoding-field in the request header.

The previously defined methods were extended by PUT, being essentially the same as POST
but with the intention to consider data transferred this way as an update to existing data,
DELETE, to delete resources from the server and the TRACE method, intended to verify the
received data by prompting the server to send it back to the client. Nevertheless, only shortly
after the release of RFC2616 it turned out that these newly introduced methods were neither
sufficient for realizing Tim Berners Lee originally proclaimed goal of an editable world wide web,
nor comprehensively implemented by web server developers. For this reason WebDAV, an
extension of HTTP to allow the deployment and versioning of a set of files at once, was
introduced, already disclosing first shortcomings of HTTP 1.1 only shortly after its introduction.

21

A further, at least intended, performance optimization is the ability of HTTP 1.1 to do request
pipelining over persistent connections, meaning "(...) multiple requests can be enqueued before
the responses arrive. While the first request is streaming across the network to a server on the
other side of the globe, the second and third requests can get underway." [GT02] Anyway, this
considered improvement leads to other issues, namely head-of-line blocking, which will be
discussed further in the following chapter. Due to these issues, request pipelining has never
been practically used and has hence been removed in all major browsers.

Also with this version, client cookies were introduced. With this feature it was for the first time
possible to identify users and keep persistent sessions, i.e. extending the HTTP protocol, which
is stateless by design, by tracking a non-volatile state. On the downside, these informations to
identify the user sessions have to be transmitted with every request, bloating the request
header, leading to new problems as will also be discussed in the following chapter. Anyway, this
solution was cheaper than having to include session-held informations in every request.

It should be mentioned that there are many more improvements with this version beyond those
mentioned above, like byte-range requests, new caching mechanism and -directives, language-
and content negotiation which have no direct relevance for the work at hand.

2.3.3 Shortcomings of HTTP 1.1

Since HTTP has been introduced, its improvements have had a major stake in the success of the
Web as we know it today, being the protocol responsible for the lion's share of the Internet traffic
volume. As the size of websites and hence the traffic volume grow year by year the deficiencies
of HTTP1.1 and their workarounds become more and more evident. The advancements of
HTTP/2 address these very issues. For this reason they are named in the following.

According to [Ste14] and [Tes] the average size of a website has risen from 725 KB in 2011 to
above 1.9 MB in 2015, split over a hundred individual resources. Transferring all of these objects
over a single persistent connection turned out being too slow. For this reason browsers
nowadays utilize four to eight TCP connections per target domain in order to transfer those
resources.

Since this was still not enough to ensure short page load times, web developers adopted several
strategies to increase page loading speed. An indirect one is to circumvent these hard-coded
connection limits by the use of domain sharding. With this technique, the resources are
distributed over several domains or sub domains, effectively circumventing the connection
amount limits of the browsers. On the downside, with every request to a different domain come
all negative side effects like the effects of TCP slow start, an additional DNS lookup and naturally
the increased complexity of deploying and delivering a partitioned website. Other strategies,to
increase page loading speed, in contrast, avoid the overhead and additional time needed for
establishing new TCP connections by reducing the amount of objects to be transferred:

Spriting and concatenation are combination techniques to minimize the total amount of requests
and therefore the protocol overhead every newly opened connection implies. The former
combines many small images into a big one, which are then selectively cut out on the client
side; the latter combines multiple text-based files like JavaScript or Cascading Style Sheets into
a single one. [Gri13b] calls this application layer pipelining, as the result is the same as if HTTP
pipelining was available: The data is transferred closely packed without suffering from the
overhead and latency of having additional requests. Inlining, however, denotes embedding all
kinds of resources directly into parent files like HTML and CSS with the same goal of less
outbound requests. Certainly, these techniques also entail their very own disadvantages, as
unneeded parts of that files are transferred. Moreover, this goes to the expense of cache
granularity as it is only possible to cache the entire file or cache nothing at all and to memory
usage on the client side, as all files have to be kept in there; image files even as a memory

22

intensive bitmap. Last but not least, also the initial page load time is affected, as the page is not
rendered until all necessary resources, the HTML file itself and according CSS and JavaScript,
are available to the client. From the developer’s view, these techniques make the application
more complex, as they imply pre-processing the files, need extra client-side code and also its
deployment over various hosts with domain sharding has to be taken into consideration.

Instead, these workarounds would not be necessary, if it was possible to request all required
resources at once, having the server deliver them in the order of their request over a single
connection, called pipelining, which was introduced as aforementioned, with HTTP 1.1.
Unfortunately, this entails another problem known as Head of Line-Blocking: If one of the
resources in the server’s response queue can not be processed or takes very long, all following
responses queued are not processed, thus blocked. For this reason, this feature is disabled by
default or even has been completely removed in almost all common web browsers.

Besides the growing payload from server to client, also the other way around - from client to
server - increased in size, mainly due to larger request headers and cookies as a part of them,
which have to be sent with every request. They even got that large, that they often exceed the
initial TCP window, as pointed out in 2.1. In this case, an entire additional round-trip is needed in
order to deliver the request.

Other issues of HTTP1.1 result from it being text-based and therefore not only slower to process
than binary, but also more errorprone due to its ambiguity, as the standard defines four different
ways to parse a single message, depending on type of the message, or more specifically,
whether it is allowed to include a message body; the type of transfer encoding; the length of its
content and the used media type.

2.3.4 SPDY

The SPDY protocol, pronounced speedy, served as a blueprint for the HTTP/2 protocol. It was
mainly developed by Google engineers from mid 2009, although its development remained open
to suggestions from the open-source community. Its declared objectives embraced a reduction
in page load time of 50% while still maintaining content compatibility and of the underlying
network infrastructure. Still during its development, after first results were published that
showed the success of the measures undertaken by the protocol developers, the HTTPBis
group started the development of HTTP/2, who incurred the SPDY/3 draft into what became
http2 draft-00 [Gri13b] [Ste14]. At that point, the SPDY draft already contained the idea of a
Binary Framing Layer, flow control on the application layer, Server Push capabilities and header
compression, although at that time based on dictionary- and zlib compression. [PB]

2.4 HTTP/2

Based on the secondary literature of Stenberg [Ste14] and Grigorik [Gri13b] alongside the official
HTTP/2 [BPT15] and HPACK [PR15] RFCs the following section sums up HTTP/2’s
advancements.

23

2.4.1 Preserving downward compatibility

As the HTTP/2 standard is an extension, not a replacement, the high level APl remains almost
the same. This basically comprises methods, status codes, header fields and URI schemes. The
only differences regarding the APl are

e Header keys are lowercase
e No more customized response messages, only error codes

e An additional error status code 421

The additional status code 421 signals a misdirect request, meaning no response can be
generated to the client's request, suggesting the wrong server was addressed.

According to [Gri13b], the experience from protocol updates in the past suggests that HTTP 1.1
will be in use by legacy clients for at least another decade. This means clients and servers have
to maintain both standards and have the ability to upgrade from HTTP1.1 to HTTP/2 if supported.
This protocol negotiation is done via the newly introduced Application Layer Negotiation
Protocol, piggybacked onto the mandatory TLS handshake, without adding latency for an extra
server round-trip.

If HTTP/2 without TLS (h2c¢) is to be used, this upgrade mechanism also has to be used to
negotiate the protocol version as both versions use the same server port 80. This detour over
HTTP1.1 thus introduces another round-trip that can not be avoided. Although it is possible to
use unencrypted HTTP/2 in principle, all major browsers enforce the use of TLS by not
establishing a connection to a server offering only h2c.

2.4.2 Advancement of HTTP/2

In the course of this section the advancements of HTTP/2 are introduced and put into relation.

Binary Framing Layer and implications

The most comprehensive advancement concerns the way HTTP messages are transferred. In
contrast to HTTP 1.1, which transfers messages encoded in US-ASCII or a subset of it, they are
binary encoded in HTTP/2. This means nothing less than a paradigm shift from simplicity to
performance.

This binary framing layer builds the base for many other improvements as follows and has some
other implications that make the use of HTTP/2 much more efficient, as you can see in 3.2.2.

The term binary framing layer constitutes the encapsulation and transfer of the HTTP messages

between client and server in binary coded frames, which are the smallest communication unit in
HTTP/2.

24

Length (24)

Type (8) Flags (8)

Stream Identifier (31)

Frame Payload (0...SETTINGS_MAX_FRAME_SIZE)

The frame space of 8 bit theoretically allows 256 different types of frames. As values between
0xf0 and Oxff are reserved for experimental use and the value 0 is transparent for check sum
operations and therefore not used, leaves 240 values for frame types, of which 10 are defined in
the official RFC [BPT15] as follows.

Frame Type Code
DATA 0x0
HEADERS 0x1
PRIORITY 0x2
RST_STREAM 0x3
SETTINGS 0x4
PUSH_PROMISE 0x5
PING 0x6
GOAWAY 0x7
WINDOW_UPDATE 0x8
CONTINUATION 0x9

Table 2.2: Frame types

Each message, what conforms to a request to the server or response from it, is split up into
frames, interleaved with frames from other streams and reassembled on the receiver's side by
using the stream identifier in its frame header.

25

Connection

Stream 1
Request message
HEADERS frame (stream 1)
:method: GET
:path: /index.html
:version; HTTP/2.0 <
:scheme: https
user-agent: Chrome/26.0.1410.65
Response message
HEADERS frame (stream 1) DATA frame (stream 1)
:status: 200
:version: HTTP/2.0
<+ server: nginx/1.0.11 ... response payload... —
vary: Accept-Encoding
Stream N
(1>
<]]

Figure 2.4: The relation of streams, messages and frames

Those messages, in turn, belong to a stream, whose amount is only limited by the size of the
stream identifier, an unsigned integer of 31 bits, meaning 23" — 1 (2147483647) streams can
coexist on a single TCP connection.

This technique is called stream multiplexing. By means of this, HTTP/2 is able to transfer
multiple objects over one single connection, as depicted in figure 2.4, instead of having to open
a new connection for each resource to transmit in parallel as you have to with HTTP 1.1, even if
the costs for these kind of operations are contained thanks to TCP fast open.

HPACK header compression

Completely detached from the binary framing layer, both regarding its specification and scope, is
a technique to compress message headers, named HPACK. As pointed out, besides the
increasing payload over the recent years, also the size of the header massively increased, mainly
due to additional fields in the header. Those additional header fields are added for various
different reasons, mostly though for cache optimization or security reasons. If above all cookies
are used, a request quickly exceeds the size of the initial TCP window (as described in 2.1),
slowing down the whole process as a complete round-trip is needed to fulfill the whole request.

As HTTP is a stateless protocol, all header values necessary for the website to operate correctly
have to be transmitted with each and every request. For this reason, HPACK makes use of a
dictionary which is maintained on both sides, meaning it has identical content. If a header name
and/or value that is known to be inside this dictionary needs to be encoded, merely its index
needs to be transferred. Depending on the size of the dictionary (and hence the amount of
entries), an index is usually represented by 1 byte (256 entries) or 2 bytes (65535 entries). Yet,
theoretically the amount of entries is only limited by the maximum table size, which houses all
keys and values.

26

The first 61 entries, however, are a static list, defined in the specification [PR15], of the most
commonly used header fields, while the rest of the table is extended in a dynamic manner with
each request and response with keys and/or values that do not yet reside inside it. Those string
keys and values, representing the lion’s share in size and occurrence, which travel over the wire
for the first time or are marked not to be indexed are at least entropy encoded using a static
Huffman code. The code used is able to achieve a maximum compression ratio of 8:5 or 375%
still [Kral.

Although the HTTP/2 headers are smaller than HTTP1.1's or SPDY's for first time requests,
HPACK shows its full potentially not until consecutive requests, when - as usually - mostly the
same header data (keys and values) are transmitted. For instance, a 2 kB cookie can then be
represented by only a 1 byte index, what equals to a compression rate of 2048%. However, also
first time requests and responds benefit from the dictionary, as most of the header keys and
even their values in a typical request are covered by the static table.

For more details on the operating mode of HPACK please consult the work of Pu [Pu16] or the
official HPACK RFC [PR15].

Stream Reset

If a request or response is sent via HTTP 1.1, there is, aside from interrupting the connection and
having to reestablish it in a costly manner, no way of stopping a once started transfer. HTTP2
introduces a reset stream-frame RST_STREAM, a new type of frame for doing exactly what the
name suggests: To reset the stream and start anew instead of wasting resources for a pointless
operation.

Flow Control

As already introduced in 2.1, flow control is not only used on the transport layer, it is essential on
the application layer to control both the flow of streams inside the multiplexed HTTP2
connection and of the connection itself. This is necessary, as the use of multiple streams within
one connection introduces contention over use which may result in blocked streams. The
current receive window is advertised via the aforementioned WINDOW_UPDATE frame. The
standard itself defines only a set of rules, as following, and leaves the detailed implementation
open, letting the implementor "select any algorithm that suits their needs." [BPT15]

Each receiver may choose its own appropriate receive window size

Flow control is credit based: When a packet is sent, the remaining size is decremented by
the packet size

Flow control is mandatory, it can not be disabled

Flow control works hop-based, not end-to-end

Flow control only affects DATA frames in order to ensure the reception of control frames

27

Stream Prioritization

By assigning and an integer weight to a stream and a dependency of one stream to another,
HTTP/2 allows the client to define in which order it prefers the requested resources to be
delivered by the server. The server can use this priority and dependency information to assign
its system resources and bandwidth accordingly. The desired priority of a single stream is
expressed by an 8 bit integer, allowing to set a value between 0 and 255. Due to a 1 bit offset
this assignment results in an effective weight between 1 and 256. Combined with the
dependency to another stream, the client is able to construct a prioritization tree, as every child
inherits its parent’s priority value. However, the desired weight and dependency is not obligatory
for the server. It may hence choose to process and deliver the resources in a different order as
requested.

Server Push

The only real innovation that was not introduced to cope with design flaws, from today’s point of
view, is Server Push. This term denotes the ability to send additional resources to the client in
response to a single request. To do so, the resource is announced via PUSH_PROMISE frame
containing the URL of the resource alongside other header entries and the stream id to use prior
to the parent’s response. Its intended use is to push data to the client it will most likely need, for
instance dependent resources of a requested website. The client remains in full control,
meaning a stream can be rejected by the client via RST_STREAM frame in case the client has
the resource to push already cashed, be prioritized and flow controlled. Above that the client can
also completely deactivate or reactivate this feature at any time via SETTINGS frame.

2.4.3 HTTP/2 compared to HTTP 1.1

This section’s purpose is to show the intended use of the improvements of HTTP/2 to cope with
the insufficencies of HTTP1.1 that were outlined in 2.3.3.

Several improvements derive from the nature of a binary protocol instead of a text based one.
This embraces an overall faster and less error prone processing by avoiding the ambiguity of a
text format, which needs to be parsed, while protocol and framing parts with HTTP/2 are
completely separated and also smaller in size by omitting white spaces. Above that, does the
binary framing build the base for multiplexing and thus having an almost arbitrary amount of
streams within a connection, which then can be be controlled individually as will be depicted in
the following.

Apart from a better network utilization by avoiding the overhead of multiple connections,
sharding becomes futile, as it is now possible to exploit as much parallel streams as necessary
to retrieve the referenced resources. This effectively bypasses the Head-of-Line blocking
problem on application level, as the download of one resource does not have to wait for another
one to complete. Additionally, single streams can now be prioritized according to their
importance. By avoiding the costs for establishing new TCP connections including the impact of
TCP slow start for every new host and reusing connections instead, the network latency
decreases while the throughput increases. Admittedly, in case of employing a content delivery
network, an additional connection to its servers is indeed mandatory and the web applications
currently running on HTTP1.1 have to be adapted to make use of as few hosts as possible in
order to benefit from multiplexing. Also the head of line blocking problem may of course still
occur on the TCP layer below due to retransmission of lost packets, what seems to be the only
Achilles heel of HTTP/2, as packet loss naturally affects a single connection more than if only one
of multiple connections is bothered.

28

Anyway, the need for optimizations like Inlining, Concatenation and Spriting are already
diminished by the omission of the connection limit, as all files can be requested in parallel and
the transmission in binary is more efficient. Moreover, the requests for resources, now
unbundled and uninlined, can be prioritized in the order they are needed to render the page or
even be pushed to the client preemptively alongside the response to the initial request for the
Web page referencing them. Also, having the resources atomic make them easier to cache, as a
cache invalidation only concerns individual files, not the combined one. For all of the above
mentioned techniques, this is expected to lead to a reduced page load time as only required
resources are transferred and the page is not rendered until at least the structure in HTML form
is loaded in its entirety. Omitting Inlining even leads to smaller files, as the embedded data does
not need to be inefficiently base64 encoded. For website creators this entails a lighter build
process as the Inlining can be omitted while the same website has a smaller memory footprint
as the prefetched data does not have to be kept enitirely in memory.

As pointed out in 2.3.3, also the typical request massively increased in size since the
introduction of HTTP 1.1, mainly due to a larger amount of header attributes and the extensive
use of cookies, often exceeding the initial request window and hence making an additional
round-trip necessary in order to deliver it to the server in its entirety. For this reason, HTTP/2
makes use of HPACK to compress the size of the header, making it once again fit into the initial
window and thereby avoiding an additional server round trip. Also the protocol efficiency and
latency in form of a reduced transmission delay is improved as overhead is minimized by HPACK,
merely having to transmit table indexes for recurring entries or at least Huffman entropy
encoded content for new entries.

2.5 THE PROXY PATTERN

A proxy is, generally speaking, an entity acting on behalf of something or someone else. This
pattern is also widely applied in various disciplines of computer science, like in software
architecture and networking. The latter constitutes the context this work relates to: The proxy
server. |t serves, as the name suggests, as an entity between the subject (the accessing part)
and the object (the accessed part) in order to fulfill one of the following goals: Protection of
either part, adding or hiding functionality to or of and from either side, caching or transforming
content, logging, filtering or bypassing filters, protocol adaptation, load balancing and, last but
not least, anonymization.

2.6 SANE

The name of the platform that serves in this work for the proof of concept to demonstrate the
progress of HTTP/2 with regard to the proxy pattern is an acronym for Server Access Network
Entity. It represents a platform for providing arbitrary crowdsourcing services and can moreover
be extended with additional, project related methods to satisfy customization needs. It has been
developed by Tenshi Hara in the context of his thesis [Har12] with regard to the MapBiquitous
project, an integrated system for location based services, but is not limited to it. Instead it was
designed with a general application for crowdsourcing in mind. Its main purpose is to free the
crowdsourcer from recurring tasks like user management. Beyond that it serves as a proxy
between the users and the crowdsourcing server to provide anonymization in the first place, but
also all the other advantages of using a proxy, such as improved scalability and load balancing if
required.

29

Crowdsourcing
Client

Crowdsourcing

- Server
Crowdsourcing

Client

Crowdsourcing
Client

Crowdsourcing
Client

Crowdsourcing
Client

Crowdsourcing
Server

Crowdsourcing
Client

Figure 2.5: Crowdsourcing platform architecture (following [Pu16])

In order to provide anonymization, all user contributions are forwarded to the crowdsourcing
server by using a unique submitter id, which is only known to SANE. To ensure scalability and
fault tolerance it is designed to work with arbitrary amount of instances inside a self organizing
Distributed Hash Table, with every instance being responsible for a equally distributed area of a
256 bit SHA1 hash representing a submitter. For the sake of completeness it shall be mentioned
that the data is kept in a MySQL database. The frontend interface is a REST APl communicating
solely via HTTPS.

30

3 RELATED WORK

¢

The statistics about reading are particularly discouraging: The average software
developer, for example, doesn’'t own a single book on the subject of his or her work,
and hasn't ever read one.

Tom DeMarco

vy,

This chapter takes a look around the academic works regarding HTTP/2. Although, due to its
relative novelty, the amount of scientific papers with this topic is relatively low, only those which
either serve as a basis to build on or treat the same subject to narrow down the scope are
consulted in the following.

3.1 HTTP/2IN A NUTSHELL

The following secondary literature alongside the official RFC standard documents of HTTP/2
itself [BPT15] and the HPACK RFC [PR15] have been used to compose the overview over
HTTP/2 in 2.4, which is required to comprehend the related work and this thesis itself presented
in the following.

The probably most comprehensive assessment of HTTP/2 [Ste14] comes from the Mozilla
employee and developer of curl and libcurl Daniel Stenberg. As he has actively been involved in
the specification of HTTP/2 in the HTTPBIs group within the /nternet Engineering Task Force,
he gives a very broad overview of HTTP as it is used today, the specification process of HTTP/2,
its inherent concepts, its expected impact, its implementation in the widely used webbrowsers
Firefox and Chrome and naturally also the implementation in his own child curl.

From llya Grigorik, self-titled Internet plumber, co-chair of W3C and Google employee who also
participated in the development of SPDY, comes a quite extensive book about high performance
browser networking [Gri13al in which he devotes one chapter to HTTP/2, especially addressing
its common base with the SPDY protocol, the binary framing layer, stream multiplexing and how
it is realized in detail, Flow Control, Server Push, Header Compression and the upgrade
mechanism from HTTP 1.1 to HTTP/2. [Gri13b]

Another assessment with a more practical approach and target group comes from developers
behind the web server and reverse-proxy NGINX. This white paper gives an overview of the
differences of HTTP/2 compared to HTTP 1.1 and how the optimizations, that were necessary to
cope with the drawbacks of HTTP 1.1, have to be treated in order to unlock the full potential of
HTTP/2. Namely these are domain sharding, the use of image sprites, the concatenation of
client code files and Inlining as mentioned in 2.3.3 [NGI15]

3.2 QUANTIFIABLE ASPECTS

The following works address measurable aspects of the use of HTTP/2 compared to HTTP 1.1.

3.2.1 Current adoption across the Web

In [Var+16] Varvello et al. report about their measurement platform that monitors HTTP/2
adoption across the top one million websites on a daily basis according to the web traffic
analysis service Alexa. They found that 68,000 domains report to use HTTP/2 via ALPN of which
only about 10,000 domains actually do. Those true numbers, as entitled by the authors, are
referred to in the following. Since the date of publication in October 2015, the amount of
websites supporting HTTP/2 increased dramatically as the website [Var+] Varvello et al. created
during the implementation of their study indicates. The amount of websites using HTTP/2 rose
up to 148,612 websites, equaling 14.9% of all websites in the scope, until the evaluation has
obviously been discontinued in November 2016, as since then no more statistics have been
released. Interestingly, the steepest increase can be observed in mid December 2015, where

33

the amount of websites actually supporting HTTP/2 climbed from about 25,000 websites to
almost 75,000 websites in a matter of only days. This sudden spike, however, can be traced
back to updates of their measurement methodology that have been conducted at that time.
With the first update also websites that redirect clients from top level domains via HTTP 1.1 to
their www sub domain, actually serving HTTP/2, are included. With the second update the
measurement software makes use of the Server Name Indication TLS extension when probing
websites. Without the use of this extension "(...) some HTTP/2 sites (e.g., those using virtual
hosts) do not indicate HTTP/2 support in their ALPN responses." [Var+]

Their findings indicate that most of the websites that make use of HTTP/2 still use practices
introduced to overcome the drawbacks of HTTP 1.1, like the before mentioned domain sharding
and the use of image sprites. According to the authors however, these workarounds make
HTTP/2 more resilient to packet losses and jitters. Altogether, they find that 80% of the
websites effectively supporting HTTP/2 experience a reduction of the page load time, compared
to its predecessor HTTP 1.1.

Beside the study above from an academic origin, Web companies create their own statistics
about HTTP/2 adoption across the Web. Due to the discontinuation of the Website belonging to
the study cited above, additional sources from [W3T] are consulted, which refer to the top 10
million websites listed in Alexa. Due to the different scope and potentially different evaluation
method, these numbers are unfortunately not directly comparable to those from the study
above. According to [W3T], 6.7% at the beginning of their evaluation in March 2016 almost
linearly, exceeding 10% in September 2016 over 10.3% in November 2016 to 12.9% to date
make use of HTTP/2. If anyhow put into relation to the numbers from the study above, the
numbers suggest that the bigger sites, expressed by their Alexa ranking, tend to implement
HTTP/2 sooner, what coincides with the findings of [Var+16].

According to recently released statistics of the Content Delivery Network KeyCDN [Jac] their
HTTP/2 traffic, reflecting client usage, rose from 51% mid October 2015 to 68% in mid April
2016. Although this means that most of the HTTP traffic meanwhile is HTTP/2, this suggests
that still many browsers are not up to date, as if otherwise they would make use of HTTP/2.

3.2.2 Performance

In [SOC15] de Saxcé et al. try to answer the question Is HTTP/2 Really Faster Than HTTP 1.1
asked in its title by conducting three kind of tests, of which all are using page load time as
metric.

The first test measures the time it takes to download a photograph of about 1 MB in size, which
is split dynamically into a certain number of parts of equal dimensions according to the number
of used streams; the first run retrieves the picture in a single request, while in the last run it is
split into 100 parts. The total amount of time to request the image is measured for each
configuration.With HTTP 1.1 the page load time almost doubles over the 100 requests, where it
almost remains constant with H2. This result indicates that the Head-of-Line blocking issue
mentioned in 2.3.3 is responsible for the prolonged requests of HTTP 1.1 when compared to
HTTP/2.

In the second test, which is conducted on the Internet instead of a local environment, the top 15
websites, again according to Alexa, are tested in terms of page load time. From this point of
view, the authors state that simple websites do not gain much from HTTP/2. Bigger websites,
containing lots of pictures, however, benefit greatly as indicated by reduced page load times of
20% in average, spiking at 48%. "This decrease is mainly due to the multiplexing as we noticed
with the dummy web page’, as the authors state. Recapitulatory can be said that the page load
time has been tested being constantly lower with HTTP/2 than with HTTP1.1. This experiment
has been repeated employing a 3G mobile network, where the average round-trip time was

34

around 400 ms. The page load time decreased - compared to HTTP 1.1 - also by 20% on
average. Due to a unusually low packet loss rate, the performance was better than expected.

The third test was conducted, in order to examine the influence of latency and packet loss, again
in local area networks. That way, it is possible to keep these elevating screws under control and
eliminate other possible distorting network parameters. They found out than increasing latency
widens the difference in page load time between HTTP 1.1 and HTTP/2, meaning it is able to
cope better with high latency. This, in turn, suggests that HTTP/2 might perform better than
HTTP 1.1 in mobile network use cases, where latency is naturally higher than in cable-based
networks.

The other part of this third test was to examine the page load times - again with mobile networks
in mind - of HTTP/2 regarding packet loss. This benchmark was conducted with fixed latency and
a varying packet loss rate where it indicated a completely different result than the previous: The
higher that packet loss was, the smaller were the benefits from HTTP/2. Moreover, the page
load time ratio between HTTP 1.1 and HTTP/2 exceeded 1, meaning it actually took even longer
than using HTTP 1.1. This was ascribed to the behavior of HTTP/2 of using just one single
connection: If this single connection suffers from packet loss, every multiplexed stream suffered
in proportion to its connection load, whereas with multiple TCP connections between client and
server, the latter was simply able to mitigate the packet loss issue.

The developers behind the "ultimate in-browser HTTP sniffer" HttpWatch conducted and
published their own performance comparison of HTTPS, SPDY and HTTP/2. Although pre-final
standards of SPDY (3.1) and HTTP/2 (draft 14) were used for the test, the benchmarks give an
idea how the individual protocols perform, especially as the the final version and RFC
respectively only differ regarding Flow Control, Server Push and security considerations being
virtually irrelevant to performance. [HTT]

According to them, HTTP/2 outperforms both SPDY and HTTP1.1 (using TLS) in terms of request
and response header size. This measurement is conducted by performing a request to a Google
beacon, returning an answer with only a header and without any content. The compression ratio
of the specifically designed HPACK algorithm put to use is higher than the deflate algorithm of
SPDY and, naturally, better than no compression at all with HTTP 1.1. Adding text to the request,
however, turns the tide: For pure text the deflate algorithm of SPDY performs better, returning
smaller responses. The authors attribute this to padding bytes added to HTTP/2 DATA frames for
security reasons. These padding frames are necessary to obscure the size of the content within,
mitigating BREACH attacks to which SPDY is vulnerable to. For image data however, where no
such padding data is added, HTTP/2 again outperforms both SPDY and HTTP1.1. Another aspect
[HTT] took a look at is the number of required TCP connections and TLS handshakes during page
load. In this very discipline, SPDY and HTTP/2 perform equally due to multiplexing, which both
protocols use, while HTTP1.1 tries to use multiple connections to improve concurrency. In their
fourth test, which regards page load time, again HTTP/2 wins, followed by SPDY and HTTP1.1.

To put it into a nutshell, HTTP/2 outperforms all other protocols in terms of page load time,
latency, header- and content compression, especially when taking the additional security
measures into account.

3.2.3 Energy Efficiency

The topic energy efficiency has become more and more important over the recent years. This is
less rooted in the also quite recently emerged idea of generally avoiding dissipation of any kind,
than the shift from desktop computer usage to the use of devices for ubiquitous computing in
the form of smartphones nowadays and possibly other devices in the coming Internet of Things
era. This rise of importance does not only apply on the client side, which is increasingly incurred
by the mentioned mobile clients, where energy efficiency directly affects the usage time

35

between recharging, but also on server side to minimize energy consumption in data centers,
which multiplies with regard to cooling, as every additionally used Watt for computing entails in
average two Watts for cooling. The former is addressed by [CSH15] in which Chowdhury et al.
try to answer the homonymous question Is HTTP/2 more energy efficient than HTTP 1.1 for
mobile users by measuring the exact energy consumption of (four) Galaxy Nexus Smartphones
running scripted workloads on Mozilla Firefox Nightly builds for Android that represent typical
real world scenarios using either HTTP 1.1 or HTTP/2. These workloads comprise the following
scenarios: (a1) Downloading images from the static photo gallery generator fgallery running on
a H20 web server, (b1) downloading 180 tiled images with added artificial latency from a web
server written in the popular open-source language Go and (¢1) accessing the public mobile
websites of Google and Twitter, which use HTTP/2 to its full extent. Wherever feasible, the
authors conducted every test of HTTP 1.1 with enabled TLS, HTTP 1.1 without TLS and HTTP/2
with TLS enabled by default in order to supply comparable results. As Gopher, the Go-based
server, does not support HTTP 1.1 with TLS and the publicly available websites do not support
HTTP 1.1 anymore at all, these tests had to be omitted. The test bed used here is called "Green
Miner - a continuous testing framework similar to a continuous integration framework but with a
focus on energy consumption testing" [CSH15]

As long as there were no latency differences, HTTP 1.1 without TLS clearly outperforms both
HTTP 1.1 with TLS and HTTP/2 with TLS enabled by default. The latter two performed almost
equally in terms of energy efficiency. This can be explained with the at least one additional
round-trip necessary to establish a secure connection and the higher CPU usage due to
encryption. The picture changes as soon as there are packet latencies involved: Already above a
threshold of 30 ms, the difference in energy usage decreases. With a latency of 200 ms and
above, HTTP 1.1 already consumes more energy than HTTP/2, especially with a higher number
of TCP connections and a high number of objects to retrieve. The energy consumptions
increases even more the higher the latency becomes. Summing it up, Chowdhury et al. state
that HTTP/2 never performs worse than HTTP1.1 and will help to save energy particularly in
mobile networks, which tend to suffer from a higher latency than wired networks. [CSH15]
Altogether, they answer the question if HTTP/2 saves energy with a clear "Yes, when round trip
times are above 30 ms and TLS is being used (...)" [CSH15] and HTTP 1.1 becomes expensive for
a large number of TCP connections, leading to the overall conclusion that HTTP/2 will be more
mobile user friendly and HTTP/2 should be adopted in order to save energy"

In the latter, in [SH16] two co-authors of the just discussed paper examine the impact of the
used protocol version on energy consumption of web servers. To do so, they also use the Green
Miner framework to monitor the power consumption, but instead of the Galaxy Smartphones as
clients a Raspberry Pi is used for running the web server instances under assessment. As a
client either another Raspberry Pi or a typical business laptop with four CPU cores are used. For
the test Sapra et al. employ a similar, server side software setup as in (a1) in the work above,
but extend the test of fgallery to the Java-based web server Jetty. Their stated objective is to
emulate the client-server communication as close as possible to real-world scenarios. They
ensure this by relying on recent studies that determined the average size and amount of
individual objects to be fetched during a typical round-trip on a multimedia website nowadays.
Again, three different experiment sets are conducted: (a2) Energy performance evaluation under
HTTP 1.1 /HTTP 1.1 with TLS enabled / HTTP2 (with TLS enabled by default), (b2) The energy
consumption behavior of HTTP/2 with stream multiplexing enabled and (¢2) the server energy
consumption under HTTP 1.1 and HTTP/2 with varying latencies over the network. When HTTP/2
is to be tested, the authors employ the newly introduced Server Push feature in order to push
resource files like images and cascading style sheets to the client referenced in a HTML page
they belong to. The underlying idea of doing so is to preemptively push resources that are
required anyway to the client to stint server round-trips. Again, the results show that HTTP 1.1
with TLS enabled performs the worst in terms of energy efficiency. The results of this paper
draw a similar picture to the previous one: In the absence of latency, HTTP 1.1 needs less energy
for the same tasks as HTTP/2. Again, the tables turn as soon as even a small latency is involved.

Concluding both of the studies above, it is safe to say that HTTP/2 performs significantly better

in terms of energy consumption, especially with high latencies, as they are very common in
mobile networks. [SH16]

36

3.3 SERVER PUSH

[HHQ15] also concerns the use of HTTP/2 in mobile applications but with a slightly different
emphasis in the first place: To reduce the data usage and thereby indirectly the amount of
energy used for information transfer. The shorter or less frequently the mobile's radio is used,
the less energy is consumed. Besides the intended, straightforward use of Server Push to
provide the client with all the information it potentially needs and the use of server hints, where
the client is informed of a URL where resources are located it may need in the future, the
authors of [HHQ15] propose a technique they named MetaPush with which they "address a key
challenge of minimizing PLT while avoiding unnecessary data transfers" [HHQ15] To achieve that
goal, they employ Server Push to transmit meta files to the client, which contain resource URLs
(i.e. hints), which are to be requested later by the client. In the first fetch phase as the authors
call it, the clients conduct a request for some or all resources that are specified within the meta
file. These requests are combined with the request of the page itself in order to download the
whole content needed to display that page at once in only one round-trip. According to the
authors, this decouples the network transfer and the local computation in order to break the
load-parse-load dependencies among the objects, what leads to a reduced overall page load
time. This way the authors were able to achieve a reduction of page load time by up to 45%
while reducing energy consumption by up to 37%. Although this concerns a specifically
optimized and specialized case, it shows the potential of applications of HTTP/2's Server Push.

Beyond using the HTTP/2 Server Push mechanism as intended to preemptively deliver
resources associated with \Web pages to speed up page load and save energy due to using the
network and therefore its hardware components more efficiently, several studies examined
diverting the Server Push feature from its intended use to extend it for streaming video content:
To name the most important, Wei et al. examined Server Push's general potential for video
streaming to reduce latency [WS14b], eliminate redundant requests [WS14a] and also to save
energy in mobile applications [WSX15]. All of those studies found out Server Push to be
promising to achieve the mentioned goals with only minor exceptions for edge cases. Based on
those findings Xiao et al. designed an adaptive push mechanism, which is put to use to handle
those edge cases to avoid increasing the data volume again due to unnecessary pushes, what
they call OverPushing [Xia+16]. The insight from this studies, to relate it to the the case at hand,
is that the Server Push feature can be used outside the comparatively static scope for which it
was designed in the first place to improve the overall performance. The same holds for the use
of Server Push in this work, as will be further described in the following.

3.4 SANE AND HTTP/2

Another thesis, recently written at the TU Dresden [Pu16], also treats the usage of HTTP/2 in
proxy settings, yet with a focus on data compression proxies using the newly introduced header
compression HPACK. He implements data compression on SANE as a Proof of Concept
following two different approaches. On the one hand he follows a more general approach using
the HTTP/2 proxy nghttpx, on the other hand he uses the native web server capabilities (of
Apache and NGINX) and employs curl to implement header compression between SANE and
the destination crowdsourcing server. In the following evaluation, Pu measures the gain via the
metrics of header compression ratio and response time pertaining to the SANE. Both metrics
show an improvement by the employment of HTTP/2. The results of this work will be discussed
more detailed during the evaluation chapter, as they premise a certain understanding of the
SANE's inherent concepts introduced in the next chapter.

As this thesis already treats header compression and HTTP/2's general performance, these

metrics are not re-measured. However, they are re-evaluated due to new discoveries during this
thesis. Above that the terminology and some findings are taken on in the the following.

37

3.5 SUMMARY

Almost two years after its introduction, HTTP/2 is already well-adopted among the bigger sites
and is still increasing. However, many of the sites already using HTTP/2 still employ HTTP 1.1
optimization techniques. The performance of HTTP/2 regarding page load time, latency, header-
and content compression was found to be better than the of HTTP 1.1 and SPDY in every case.
Also in matters of energy efficiency HTTP/2 outperformed all other protocols, especially with
high latencies, which usually occur in mobile networks. HTTP1.1 only beats HTTP/2 in terms of
energy efficiency without TLS encryption, which is virtually obligatory for HTTP/2. By actively
optimizing network utilization under use of Server Push energy efficiency can even further
enhanced while shortening page load times. Above that, related works show that this feature
can be employed aside from its intended purpose, even for time-critical applications.

Generalized Impact of HTTP/2

Generally speaking, based on the preliminary pre-assessment in 2.4 and findings of related
work, the biggest impact derives from the introduction of binary framing and the ability to
multiplex streams within only one connection. This not only solves the head of line blocking
problem elegantly and implicitly, it also allows more resources to be loaded in parallel, even
compared to HTTP1.1 with sharding, and bears less protocol overhead. In combination with
HPACK header compression this results into less data to be sent over the wire. Less data
naturally requires less time to complete the transfer and also leads to a lower network load for
the exactly same result as with HTTP1.1. Moreover entails the binary framing the omittance of
parsing and thereby also the ambiguity it brings along and a lower CPU load.

This effect, however, may be outweighed by the employment of the, in terms of CPU load, more
expensive header compression and TLS encryption, which is enforced by browser developers.
Virtually all browsers only support HTTP/2 combined with enabled TLS encryption. The positive
aspect of this constraint is the increasing spread of encryption due to mandatory TLS usage,
what boosts security for every Internet user on the long run.

Certainly, to really benefit from the advantages, the websites have to be optimized for the use of
HTTP/2 by their developers and administrators. Effectively, they have to reverse the
optimizations that were conducted for HTTP1.1 in order for the above mentioned arrangements
to work, as Inlining and Spriting promise no performance gain anymore and Sharding will likely
even be detrimental, as it increases the total amount of connections used instead of decreasing
them by the use of multiplexing. At least the data providers have to adapt their development
processes for future projects that are about to use HTTP/2. As a result their development
processes are going to be simpler, as the former optimizations require additional steps during
development, like merging the code and images for Inlining/Spriting and deploying the resources
over several domains for Sharding. Above that, the new Server Push feature can be put to use
either to accelerate page delivery for static content or optimize connection utilization for
dynamic content, as streams do not have to be kept in an open or half-closed state for the
duration of pending operations.

To put it in a nutshell, if developers adapt to HTTP/2, the user’s overall web experience is

expected to be faster and safer, network load will decrease and the developers’ boilerplate tasks
are thinned out due to a more straightforward deployment.

38

4 CONCEPT

¢

Computer system analysis is like child-rearing; you can do grievous damage, but you
cannot ensure success.

Tom DeMarco

vy,

This chapter shall evaluate the individual advancements of HTTP/2, which have been introduced
and pre-assessed in 2.4.2 and further backed up with related work in chapter 3 whether they are
promising, have no or negligible impact or may even bear disadvantages over the use of HTTP
1.1 for the proxy setting using the example of the SANE. In the following the necessary changes
to the available software and criteria to measure their gain are being carved out.

4.1 SANE BASICS AND PRINCIPLES

To be able to decide which of the improvements of HTTP/2 are advantageous for SANE and how
to implement them, it is necessary to understand the structure and principles it is making use of.

4.1.1 Architecture configurations

As new technology takes time to establish, especially when based on a standard, what usually
leads to a inhomogeneous software landscape, it is not guaranteed to function as intended. This
is either due to configurations errors, as could be seen in 3.2.1 where web servers announced
to support HTTP/2 but in fact did not, or simply outdated software. In case at hand this may
apply on web browsers or diverted client software updates just as outdated web servers or
libraries, why a fallback solution has to be held available: So, if one of the involved peers Client,
Proxy and Server in the chain does not support HTTP/2, the preceding protocol HTTP1.1 is used.
This leads to the following four possible architecture configurations, where the terminology of
[Pu16], which treats a quite similar issue, is incorporated. As the proxy server terminates
connections to it and employs yet another connection to forward the just received and altered
data to the respective server, the link between Client and Proxy (C — P in the following) as well
as the link between Proxy and Server (P — S in the following) can be considered autonomous,
which differ in requirements and characteristic as will be pointed out below.

Status quo

Currently, the entire communication is based on HTTP1.1, both for C — P and P — S. This
configuration serves as point of origin and fallback if both the Client and the Server do not
support HTTP/2.

HTTP1.1 HTTP1.1
Client < » Proxy < » Server

Figure 4.1: Status quo

Upgrade Proxy

This configuration is called upgrade proxy, because it upgrades an incoming HTTP1.1 connection
to outgoing HTTP/2. This configuration comes into effect if the client does not support HTTP/2.
This might be the case if the used client library does not yet support HTTP/2 or it has not yet
been switched on. For the implementation of the proxy, this means it has to be able to support
incoming HTTP1.1 connections still and convert them into HTTP2 requests it transmits to the
server on behalf of the client.

41

HTTP1.1 HTTP/2
Client < » Proxy < » Server

Figure 4.2: Upgrade Proxy

For this case, the partial link P — S has to be implemented using HTTP/2.

Downgrade Proxy

This configuration is called downgrade proxy because it downgrades incoming HTTP/2 to
HTTP1.1. It takes effect if the client is able to perform HTTP/2 requests, but the crowdsourcing
server is unable to digest them, because it has not yet been updated or is running legacy
software, whose development has ceased.

HTTP/2 HTTP1.1
Client < » Proxy [« » Server

Figure 4.3: Downgrade Proxy

For this case, the partial link C — P has to be implemented using HTTP/2.

Straightforward Proxy

This configuration is the ideal case, as both the incoming request and the request the proxy
transmits to the server are both HTTP/2, what means all the improvements of HTTP/2 can be
put to account.

HTTP/2 HTTP/2
Client < » Proxy < » Server

Figure 4.4: Straightforward Proxy

For this case, the partial links C — P and P — S have to be implemented in order for the entire
link to use HTTP/2.

4.1.2 SANE method range

The methods of the SANE can be divided in management methods, which are processed only
on the SANE proxy and crowdsourcing methods, which usually get processed on the proxy and
trigger another request to the crowdsourcing server. Its response is in turn again processed on
the SANE proxy before and triggering another response to the client.

42

Management methods

As pointed out, those management methods have only a local effect. They do not employ the
partial link between proxy and server (P — S). These methods are not specific to campaigns.
Instead they are used to manage general user or campaign data or the SANE itself.

Crowdsourcing methods

Unlike the SANE management methods, crowdsourcing methods both have a proxy-local effect,
for instance registering the user’s submissions and an effect on the crowdsourcing server. A
typical crowdsourcing request is first processed by SANE and forwarded to the crowdsourcing
server. This forwarding is essentially another, new request to the destination server; its result
gets usually again processed on the SANE proxy after receipt and its outcome is then returned
to the client. This communication across partial link borders is referred to as Cross-Link
Propagation in the following. Thus, crowdsourcing methods make use of the entire link between
client over the proxy to the crowdsourcing server and vice versa (C — P — S link).

4.1.3 SANE: An application layer proxy

The proxy acts, as already pointed out, as a server to the client and as a client to the
crowdsourcing server. The individual connections on the partial link between Client and Proxy
are mostly handled by the web server running the SANE proxy itself or the scripting runtime
environment on top in special cases, as will be shown below, while the link between Proxy and
Server is handled by the script runtime environment using client functions in its entirety. Thus,
for the improvements on the P — S link, additional implementation is mandatory.

4.2 EXPECTED IMPACT OF IMPROVEMENTS ON THE SANE

As pointed out in previous sections, there are several improvements in HTTP/2 of which some
bear the chance of having an impact on the SANE, which serves as guinea pig for the proof of
this concept. Whether the impact is positive or even negative shall be evaluated in this section.

The above mentioned requirements, regarding the partial links, depend entirely on the amount
of separate data communication entities (connections in HTTP1.1 and streams on the single
HTTP/2 connection). For this reason, the following will first treat the improvements of HTTP/2
that apply on both link types C — P and P — S and secondly the improvements that are specific
to its link type.

4.2.1 Implicit improvements

Some of those improvements work out of the box if a HTTP/2 connection is put to use with no
need for additional implementation on the SANE, as they can be attributed to the use of the
binary framing layer. This comprises the ability of having an almost arbitrary amount of parallel
streams to a host and solving the Head-of-Line Blocking problem implicitly, as pointed out in
2.4.3, just as the better utilization of the TCP layer by reusing a once-established connection,
instead of having to establish new ones for every new request or response. Hence, both lead in
theory to lower latency data transmissions.

43

4.2.2 Link-type independent improvements

The following improvements of HTTP/2 apply in any case and are fully independent of the link
type, as they do not require multiple streams multiplexed onto one connection to work. They
hence are link-type independent, meaning they apply on both the C — P and the P — S partial
links.

Header compression

There is nothing that challenges the reasonability of header compression, as it is an essential
component of HTTP/2, even though it can be switched off in theory.

As a RESTful API the SANE does not make use of cookies, every possible request, even if
SANE’s method to upload XML files with a maximum size of 16,384 Bytes resulting in a total
size of 21,487 Bytes on the wire is taken as a basis, fits in the smallest receiver’s initial window
(rwnd) of 29,200 Bytes ', which is 20 times the maximum segment size (MSS) of 1460 Bytes
for Ethernet connections. It is calculated by the kernel itself taking the system wide setting for
net.core.rmem_default, which is set to 212,992 Bytes, into account. Nevertheless, as the used
kernel is commonly put to use in Linux web servers, this value can be considered authoritative.
For servers deploying the Windows operating system, the initial receive window is, with 64 kB,
even bigger, so that it is safe to say that also on these systems no additional round trip is
necessary for any SANE operation. Due to a lack of a MapBiquitous server an exact value of
bytes on wire could neither be determined experimentally nor calculated because of a varying
size due to header compression. However, it is safe to suppose that the same, every request
fitting in the server’s initial receive window, also applies for operations on the P — S partial link
with a considerably smaller maximum payload of 3,243 Bytes.

Hence no gain regarding latency improvements can be expected by avoiding additional round
trips, that were necessary if the initial requests total data size exceeded rcwd window size. Yet
indeed is the transmission of the smaller payload finished sooner, what could have a minimal
influence on the latency - at least in theory.

The other advantage of HPACK is, as described previously, the usage of a static table for the
most common fields and a dynamic table for those header fields and optionally their content,
which are not covered by the static table. Even if, as can be seen from the excerpts from the
network packet analyzer Wireshark (see C.1 and C.2) showing the request- and response
headers of an exemplary invocation of a SANE method, almost all used fields are already
mapped by the static table, the according values also reoccur with every subsequent request.
As they are held server- and client side in a mutually maintained table, merely the value's index
has to be transmitted. This applies the connection between client and proxy (C — P) and to the
connection between proxy and crowdsourcing server (P — S), what renders header
compression advantageous in any case.

Stream Reset

The ability to reset ongoing operations and transfers from and to the proxy may come in handy
at that point in time when it turns out that the currently running operation or its outcome
respectively has become obsolete since its invocation. In this case, the recipient can stop the
processing and forwarding to avoid wasting CPU time and bandwidth. Naturally, this only makes
sense for operations that potentially exceed the average time for a full round-trip (t) and the
time of the request to time out t;meoyt, depicted by the formula:

T0On the system used for development and testing, please see B for more information on the test setup.

44

Threshs,:; = trt + ttimeout

The duration t,, of operations exceeding this threshold are worthwhile to be canceled. This
condition results in the following conditional expression:

true, if top > tar + timeout
false, otherwise

Bsr(op) = {

Otherwise the operation would already have completed until the RST_STREAM frame reaches
its designated recipient.

Server Push

Similar to the methods that are worthwhile to use Stream Reset, long-running methods that
require maintaining an open connection with HTTP1.1 in order to deliver their results can be
modified to exploit the Server Push feature. It can be applied to notify the client or the proxy
respectively, when the invoked operation completes.

With HTTP1.1, both links have to maintain an open connection for the entire operation’s run-time
in order to deliver the result to the requesting entity, as can be seen from 4.5.

Client Proxy Server

Long running request !

Request

Response

Response

Figure 4.5: Synchronous delivery of results

With HTTP/2 and Server Push, on the contrary, the requesting stream does not have to be kept
alive for the entire runtime of the operation invoked. Instead, being able to use open streams
only when actually transferring data, network resource usage is made more effective.

The implementation of the Publish-Subscribe pattern, which is closely related to the Observer
design pattern of the Gang of Four, in contrast, is not possible, as it would require the emission
of another PUSH_PROMISE frame piggybacked onto the promised stream. This stream,
however, is induced serverside, what the HTTP/2 RFC explicitly forbids: "PUSH_PROMISE
frames MUST only be sent on a peerinitiated stream that is in either the open or half-closed
(remote) state." [BPT15] Due to this relatively vague description this will anyway be further
examined in 6.3.1 in the Evaluation chapter.

45

4.2.3 Link-type specific improvements

As pointed out previously, the application of Flow Control and Stream Prioritization basically
depends on the amount of data transmissions that take place in parallel on a single connection.
They hence are link-type specific. Whether they are beneficial for the respective link-type or not
is evaluated in the following.

Client-Proxy (C — P) link

Due to the fact that the SANE proxy, as an API, only makes use of one stream inside a
connection limits the use of Flow Control to the case in which the respective receiver of a
transmission has a limited amount of memory for the receive buffer or a limited bandwidth.
Then, it can set the receive window accordingly to limit the amount of data sent by the client.

The use of Stream Prioritization naturally is superfluous, as there is no need for prioritization if
there is only one potentially affected stream, as it does not take effect on other streams outside
the connection in question.

Proxy-Server (P — S) link

In difference to the SANE proxy having many incoming connections from clients, it needs to
communicate with only a small amount of other SANE instances or crowdsourcing servers.
Here, the SANE proxy combines all incoming request that are relayed to one specific
crowdsourcing server onto a single connection. Depending on the user and/or the kind of data
transmission and processing to and on the server, it might be reasonable for the proxy to
prioritize one stream over another or to limit the incoming data depending on system- or
connection load. Hence, the employment of Stream Prioritization and Flow Control is found to
be reasonable for the P — S link.

4.3 CLASSIFICATION AND REALIZATION OF HTTP/2
ADVANCEMENTS

The advancements of HTTP/2 that have been found advantageous share certain properties.
These commonalities facilitate a classification, which allows a common implementation
approach.

4.3.1 Link-type independent improvements

Header compression can be considered a class of its own, as both partial links are completely
independent of each other, as the proxy serves as an endpoint for both link types. This involves
for the header data to be completely unpacked before further treatment.

As header compression is fully dependent on the used web server for the connection between
client and proxy no additional steps have to be undertaken in order to support this feature on this
link type.

On the proxy side, where it acts as a client to the server, the header data is potentially

amended, repacked and sent to the server. The response from the server then again gets
processed on the proxy, while the headers are again extracted, repacked and sent to the client.

46

4.3.2 Cross propagation/runtime dependent features

The formula introduced in 4.2.2 applies in theory and can be used based on existing statistical
data in the future, without realistic usage data, however, assumptions about their runtimes have
to made based on their workload.

Unlike Header Compression, Server Push and Stream Reset both depend on the expected
runtime of a method and have to take propagation over link borders into account.

The methods, which are expected to be Long-Running, are basically those with
non-deterministic runtime behavior. This embraces methods with the following characteristics:

e Make use of the Dynamic Hash Table (DHT)
e Return an arbitrary large amount of data sets (LA)

e Require further processing on the crowdsourcing server (CS)

Due to the fact that neither for peers organized in a dynamic hash table, nor for the
crowdsourcing server guarantees regarding runtime can be granted, it has to be assumed that
methods that make use of outbound network connections are potentially long-running. This also
applies to methods that make use of the database and may return an arbitrary large amount of
data sets.

This is expected to apply on the managements methods of SANE in table 4.1, regarding only the
link between Client and Proxy (C — P).

Method Qualifier
findClosestlnsanes DHT
findData DHT
getCampaigns LA
getDHTNeighbours DHT
getMySane DHT
getMySubmissions LA
getSane DHT
storeData DHT

Table 4.1: Potentially long-running management methods

Above that, this is expected to apply on the already existing crowdsourcing methods of
MapBiquitous in table 4.2, spanning the whole virtual C — P — S link, what entails also having to
take the according propagation down the line into consideration:

Method Qualifier
correctWLANFingerprintingPosition CS
createGSMFingerprint CS
create WWLANFingerprint CS
getMyGSMFingerprintingSubmissions LA
getMyWLANFingerprintingPositionCorrectionSubmissions LA
getMyWLANFingerprintingSubmissions LA
getWFSDataFromBS CS
getWLANFingerprintingPositionFromBS CS

Table 4.2: Potentially long-running crowdsourcing methods

47

Client Proxy Server

Long running request

Request

Server Push response

Server Push response

Figure 4.6: Server Push sequence diagram (Straightforward configuration)

Stream Reset

In case of Stream Reset this even accounts for any direction of data flow: If an operation on the
crowdsourcing-server gets interrupted due to an error, the stream on the link between proxy and
crowdsourcing server gets reset, which may in turn reset the connection to the client. The other
way around is also possible: If a stream to the proxy is reset by the client, for instance in the
case that the outcome of that particular operation became obsolete, also the stream to the
proxy and thereby the stream to the crowdsourcing server may be reset in order to terminate
the ongoing operation. In addition, also the proxy may interrupt an operation due to an error and
in consequence reset both the stream to the client and to the crowdsourcing server, if already
invoked.

Server Push

In case of Server Push in a Straightforward Proxy configuration, if a request that has been
forwarded to the crowdsourcing-server terminates, the result has to be pushed to the proxy,
which in turn has to trigger a subsequent push to the client, as can be seen in 4.6, which
represents the optimal case of all participants being able of using HTTP/2.

In the case that one of the partial links only operates in fallback mode, meaning under the use of
HTTP 1.1 as Upgrade- or Downgrade proxy, the particular connection has to be kept open
instead to ensure a proper propagation, as can be seen in figure 4.7 and figure 4.8 respectively.

4.3.3 (C — P link features for load control

As stated in the previous section, the only reasonable HTTP/2 improvement applicable for
controlling the load is stream or connection based Flow Control when the affected receiver
experiences a high system or network load. Then, it can issue an update of its receive window
(rewd) via WINDOW_UPDATE frame to notify the sender, either client or proxy, of how much
data he may send.

48

Long running request

Request

Server Push Response

Response

Figure 4.7: Server Push sequence diagram (Upgrade configuration)

Long running request

Request

Response

Server Push Response

Figure 4.8: Server Push sequence diagram (Downgrade configuration)

49

4.3.4 P — S link features for load control

Those features, that only concern the link between the SANE proxy and the crowdsourcing
server, as only they use multiple streams within one connection, are basically targeting the
ability of one respective side of the link to take control over the load it has to deal with.

As stated above, Flow Control enables the receiving side to control the amount of data its
counterpart is allowed to send regarding one particular stream conforming to one particular
operation by settings its current receive window (rcwd) via WINDOW_UPDATE frame. This can,
similar to Flow Control regarding the C — P link, be used in cases of high system or network
load to signal the crowdsourcing server to limit the amount of data to send.

Stream Prioritization, in contrast, enables the Proxy to assign a priority to a stream and thereby
to one particular operation, that is to be executed on the crowdsourcing server. The server can
then use this information to prioritize the processing of individual streams by allocating system
and bandwidth resources accordingly.

This concludes into the idea that every operation the proxy invokes on destination
crowdsourcing servers has to have a priority assigned that puts it into relation of other ongoing
operations, either to prefer the processing of one over another on the proxy or on the
destination server. It should be noted that a triggered Server Push inherits the weight assigned
to its parent stream and gets prioritized correspondingly.

For the proxy to be capable of defining these priorities, there has to exist some sort of basis of
decision-making, which operation to prefer.

Priority determination

For being able to assign a weight to streams, corresponding to particular operations, the
following deterministic approach is proposed as an example. This component, however, needs
to be exchangeable to easily replace it with a component employing a more specifically
designed algorithm if needed.

The following characteristics are taken into account:

e The crowdsourcing derivate the operation is part of, e.g. MapBiquitous
e The operation of the crowdsourcing derivate itself

e The user requesting this particular operation

This accommodates the fact that one user, one particular operation of a crowdsourcing derivate
or the crowdsourcing derivate itself and its outcome respectively may be considered more
important than others. Above that, it may be reasonable to also take the target crowdsourcing
server itself into account in future implementations.

According to the HTTP/2 standard [BPT15], a stream'’s priority has to be specified on the interval
[1,256]. As the weight is proportional, as explained in 2.4.2, this interval does not necessarily
have to be used to full capacity.

Taking the possibility of ultimately having 4 different characteristics that affect the resulting
stream weight, the 255 possible values are distributed equally among them, leaving every
characteristic with 63 points to assign. For every crowdsourcing derivate (including the SANE
itself) (wgs), every method (wep) and every user (wyse) a value on the interval [0, 63] has to be

50

assigned. If no weight is defined for a characteristic, the maximum allowed valueWpax — 1 is
used instead.

The resulting stream weight of an operation is now calculated as follows:

WopTotal = Wuser + Wop + Wes

For the case that every characteristic is rated with 0, which would lead to the resulting value
being 0, the stream weight is set to the lowest value allowed of 1.

For the sake of simplicity, it is also applied for Flow Control, but in contrast to the Stream
Priority, where the particular weights are constructed into a prioritization tree, with flow control
they form a total order. This means, for instance, an operation with the weight of 254 gets
always preferred over an operation with a weight of only 253.

Weights put to use

Having an exact weight between 1 and 255 for every operation that is to be executed on the
server, it can now be put to use for Stream Priority and Flow Control. The former is the case
with every forwarded call to the crowdsourcing server, where the stream, which is used to
execute the according operation, gets assigned this very priority. The crowdsourcing server is
then able to use this priority information to allocate resources accordingly to ensure that the
pending requests get processed as intended.

Flow Control, however, is only put to use in case of a system at load limit. When this is detected
by the SANE proxy, it issues WINDOW_UPDATE frames to the crowdsourcing server
corresponding to the operation with the lowest score until the load has normalized to allow for a
regular operation. If this is again the case, the proxy tries to reverse this reduction by sending
WINDOW_UPDATE frames again in the reverse order - thus starting with the operation with the
highest priority whose stream'’s receive window has been reduced in the first place.

4.4 EVALUATION CRITERIA

In order to be in a position to give an objective evaluation of the implemented improvements on
the SANE, certain criteria have to be defined upon which the evaluation is based on. Again, it is
reasonable to distinguish between those that assess HTTP/2's general performance and the
performance of the individual improvements.

4.41 General criteria

Latency

Improving packet latency has been defined an explicit goal of HTTP/2’s advancements, why it
serves perfectly as a metric, where it reflects the effectivity of all advancements like its binary
nature, header compression and optionally Stream Prioritization, Flow Control and the Server
Push feature, if used.

51

Processing speed

The processing speed or the time a defined operation needs to complete since reception, in
comparison to using the same operation with HTTP1.1, indicates protocol effectiveness. As
HTTP/2 is binary and therefore does not have to be parsed, operations are expected to finish
earlier.

Resource usage

In addition to a faster processing speed, it is expected to consume less resources. These
resources can furthermore be differentiated in CPU time, memory usage and bytes transferred.

4.4.2 Advancement specific criteria

In addition to the metrics above that are used to rate the overall performance, the following
metrics will be used in order to assess particular advancements.

Header compression

Following Pu in his thesis [Pu16], the header compression ratio can be used to rate the
effectiveness of HPACK for SANE.

Stream Reset

Issuing a Stream Reset can save resources by canceling an ongoing operation it would
otherwise have wasted. The effectiveness of canceling an ongoing operation can hence be
expressed by saved CPU time and bandwidth.

Above that, also the latency of an RST_STREAM frame, which equals to the time passing
between the reception of this kind of packet until the closing of a stream comes into effect,
should be taken into account. Closely related is the overhead, thus the amount of data being
sent pointlessly during the just mentioned period between the intent to close a stream and the
closing coming to effect.

Server Push

Using Server Push for SANE effectively avoids having to maintain open connections/streams for
the entire runtime of an operation. Instead the server opens a new one on completion or on
ulterior change of data, implementing the Publish-Subscribe pattern. For this reason, the total
duration of connections or streams in an open state for executing an operation is an objective
metric for Server Push.

Another way of measuring the effectivity of Server Push are the amount of octets sent in order

to maintain the open stream compared to the additional amount of octets necessary to induce a
subsequent push from the server.

52

Stream Prioritization

Measuring the effectivity of Stream Prioritization can be conducted by putting the time to
complete a prioritized operation into relation with the time the same operation would take if it
was invoked with base- or another priority.

Flow Control

Flow Control, however, can not be evaluated in reasonable manner in the environment at hand,
as all the traffic on SANE is generated locally and does therefore not reflect a comparable usage
pattern. Above that, its employment only makes sense where bandwidth or buffers for incoming
transfers are limited, thus at the upper load boundary of the receiving instance.

4.5 CONCLUSION AND FURTHER PROCEEDING

By switching the connection type from HTTP 1.1 to HTTP/2, the payload is no longer embedded
in a text stream but strictly separated into binary encoded protocol and payload. By the use of
binary framing, the advantages it brings along come for free, meaning no further
implementation work has to be done in order to solve the Head-of-Line Blocking problem of
HTTP 1.1 and its inefficient and ambiguous nature. The other improvements of HTTP/2 over
HTTP1.1 have been valuated as follows.

HPACK header compression

As header compression is realized by the used web server, it only has to be implemented where
the SANE proxy acts as a client on the P — S partial link. For any possible case this improvement
is expected to be advantageous, as it reduces the size of the data to transmit, especially with
subsequent requests, although it may increase CPU load minimally.

Stream Reset

This advancement of HTTP/2 has been found advantageous for certain operations that are
expected to exceed a certain runtime. If all involved peers support HTTP/2, the Steam Reset has
to be propagated across link borders accordingly, which has to be done on application level.

Server Push

In order to support informing the client of the termination of long-running methods or state
changes and updates of underlying data, it has been decided to implement Server Push both on
the link client-proxy (C — P) and proxy-server (P — §), also in order to allow informing the client
on serverside updates while maintaining anonymity. Similar to Stream Reset, if all involved
peers support HTTP/2, a Server Push from the server to the proxy has to be propagated down
the line, from the proxy to the client, accordingly.

53

Flow Control

As the application of Flow Control is only reasonable if there is more than one stream within one
connection, this improvement of HTTP/2 is only recommended to be implemented on the link
between SANE proxy and crowdsourcing server (P — S). Here it makes use of a weighting
system, where it serves as a way to prioritize the sending of responses from the server to the
client according to the prementioned score of a stream, which represents one certain operation.
This new feature can here be considered as a way of load controlling on the proxy.

Stream Prioritization

Similar to Flow Control, also Stream Prioritization is only reasonable if there is potentially more
than one stream within a connection. For this reason, the use of this improvement is only
plausible on the P — S link, where it also employs the weighting system to instruct the server
which streams and therefore operations to favor over others.

54

5 PROOF OF CONCEPT

¢

A proof is a proof. What kind of a proof? It's a proof. A proof is a proof. And when you
have a good proof, it's because it's proven.

Jean Chrétien

vy,

5.1 FEASIBILITY

This section’s purpose is to assess whether the implementations of the improvements expected
to have a positive impact on SANE from 4.2 are feasible or not. A constraint for any of the
following features is, naturally, that HTTP/2 is used for the partial link in question.

5.1.1 Client-Proxy (C — P) link

For this partial link, the feasibility of the improvements depend entirely on the web server’s
support for HTTP/2. As the Apache httpd with mod_http2, used for the test system (cf. B), fully
supports HTTP/2, all improvements found advantageous are also found to be feasible, thus the
following advancements are concerned:

e Header Compression
e Stream Reset

e Server Push

Flow Control however can currently not be implemented for this partial link, as it is not possible
to actively set the receive window size using PHP. The only way is setting it statically during the
web server's setup procedure, leaving no way of using it in a dynamic manner yet.

5.1.2 Proxy-Server (P — S) link

To implement reasonable HTTP/2 features, the SANE proxy has to behave as a client supporting
HTTP/2. As it is neither possible nor reasonable to implement the protocol given the limited time
available oneself, a program library, in which this functionality is contained, shall be employed.
For this reason, available HTTP/2 libraries to use with PHE were taken into account. There exist
a few of those libraries for HTTP1.1, but only two with support for HTTP/2: Libcurl and guzzle, of
which the latter also makes use of libcurl to deal with HTTP/2, providing an easier to use object
oriented interface. Although it might be easier to use a fully-fledged HTTP client like guzzle, for
the sake of not introducing additional dependencies as it has already been used by Pu in [Pu16],
the use of libcurl as a pure HTTP2 handler is preferred.

Which HTTP/2 features are supported on the P — S link depends mostly on the feature set
supported by libcurl and its existing bindings to PHP. Those bindings determine which of the
features implemented by libcurl are actually usable. The server part again merely runs on a web
server for which is assumed that it fully supports HTTP/2, just as the web server used for this
thesis. In the following will be examined which of the HTTP/2 advancements hence are
supported by the given runtime environment.

Header Compression

As [Pu16] has found in his thesis, Header Compression is fully supported by libcurl for the
version used. Above that, in his thesis Pu also provided the implementation of header
compression for SANE. For this reason the following will focus on the advancements not yet
implemented.

57

Stream Reset

According to [Stea] libcurl "will attempt to re-use existing HTTP/2 connections and just add a
new stream over that when doing subsequent parallel requests”, if configured appropriately.
Specifically that is, if CURLMOPT_PIPELINING is set to the constant CURLMOPT_MULTIPLEX
and every additional stream hooks into the curl multi interface. If then one of the single streams,
represented by a single curl handle, is closed a RST_STREAM frame should be sent. Hence,
Stream Reset as a feature is found to be feasible with the software and its particular version at
hand.

Server Push

Due to the fact that PHP 5.6, which the SANE was targeted to run on, is lacking the necessary
bindings for libcurl, it is not possible to employ the Server Push feature for SANE on the P — S
partial link under usage of this particular version.

For the proxy to be able to react on pushes from the server, the essential precondition naturally
is that a crowdsourcing server exists, that has this feature implemented. Furthermore, it has to
be evaluated whether or not the SANE proxy is able to run on the brand new PHP version 7.1, as
there are no bindings to make use of the necessary callback handler with PHP 5.6. According to
the release notes of the new PHP versions 7.0 [PHP15] and 7.1 [PHP16al, they underwent
massive changes that can make it behave quite differently than PHP 5.6. Even though most
changes concern the object oriented part, also basic syntax and data types just as high level
functions for JSON processing are affected, just to name a few. As there are also no up-to-date
unit tests available for regression testing it can not be guaranteed that the SANE proxy is
operating as intended with PHP 7.1. Nevertheless, a proof of concept omitting an
implementation of Server Push for the partial link 7 — S for SANE is conducted either ways to
demonstrate the principle operational capability.

Flow Control

Flow Control, however, is currently neither supported by PHP 7.1 nor by the underlying libcurl
library. For this reason, the implementation of flow control, also for this partial link, is omitted.

Stream Prioritization

Although libcurl itself supports setting the stream priority on single handles, representing a
stream within a connection, it is currently not supported by PHP in its most recent version
according to [PHP16b] at this juncture. For this reason, unfortunately also the use of Stream
Prioritization has to be omitted.

5.2 FUNCTIONAL DEMONSTRATION

This section’s purpose is to prove the operational capability of the HTTP/2 improvements that
were found to be advantageous, feasible and not already functional, either implicitly by design or
by previous works. Above that the following demonstrations should give an understanding of
the underlying principles and dynamics.

58

No ok~ wWwN -

All tests were performed using the test setup described in B. During the tests, client- and
server-side caching was completely switched off. The proof itself is given using a recording of
the HTTP/2 traffic using the Wireshark packet analyzer. In order to enable Wireshark to decrypt
the TLS traffic on the C — P link, the environment variable SSLKEYLOGFILE was set which
Chromium uses to log TLS session keys. Wireshark in turn uses the keys from this file to
decrypt the TLS encrypted traffic.

In order to analyze the traffic on the P — S link, the Apache web server was configured to use
HTTP/2 over TCP (h2c) on the default port 80, instead of HTTP/2 over TLS (h2). This was
necessary given the inability of libcurl to export Pre-MasterKeys as the webbrowsers Chromium
and Firefox are able to, as described above. As long as not explicitly stated otherwise, PHP 5.6
is used for the following functional demonstrations, as the SANE has been developed for this
version.

5.2.1 (C — P Stream Reset

To prove the functionality of stream resetting, the following test was conducted. The purpose of
this test is, on the one hand, to ensure that closing or canceling a data stream results in closing
a single stream within a connection, not closing the entire connection itself and, on the other
hand, that indeed a RST_STREAM frame is used. The communication was recorded via
Wireshark and can be found under C in a shortened form, in which SETTINGS,
WINDOW_UPDATE and recurring DATA frames were, just as unnecessary details of frames,
omitted.

The PHP script (dl-closetest.php) sends the necessary headers to initiate a download, as can be
seen from 5.1, and puts out a lorem ipsum example text, until it is canceled. The entire source
code can be found in appendix A, specifically under C — P Stream Reset test source code.

ignore_user_abort(true) ;

header ()

header ();

header ();
header ();

header () ;

header ();

Listing 5.1: HTTP header to initiate download of endless lorem ipsum file (dl-closetest.php)

The test protocol can be found under C — P Stream Reset test in appendix C. Due to its length
irrelevant frames and belonging irrelevant content have been removed. It begins with a
HEADERS frame being sent from the client to server, requesting closetest.php, as can be seen
in the .path entry on line 12. The following frame 40, beginning in line 14, is the web server's
response to that request, as line 19 indicates with having 443 as source port, what conforms to
the web server's source port for TLS encrypted data. The new stream (stream id=5) then gets
opened by the client via frame 45, requesting dl-closetest.php as can be seen in in the :path
header entry on line 37. The download itself is then initiated on this very stream in frame 46, as
the lines 47 and 54 state, where the defined headers from 5.1 reappear in the HEADERS frame
(from line 49 to 53) just before the first content is attached in a DATA frame, still belonging to the
same Ethernet frame.

After about 2.3 seconds and several DATA frames later the download got canceled manually.

The cancellation results in a RST_STREAM frame being sent, as can be seen from 5.2,
effectively closing the stream with id 5 within the connection. Bl

59

APOWON—

Frame 165: 128 bytes on wire (1024 bits), 128 bytes captured (1024 bits
) on interface O

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 50618 (50618), Dst Port: 443
(443), Seq: 1010, Ack: 271413, Len: 42

Secure Sockets Layer

HyperText Transfer Protocol 2
Stream: RST_STREAM, Stream ID: 5, Length 4

Length: 4
Type: RST_STREAM (3)
Flags: 0x00

0000 0000 = Unused: 0x00
.000 0000 0000 0000 0000 0000 0000 0101
Error: CANCEL (8)

Reserved: 0x00000000
Stream ldentifier: b

Listing 5.2: Wireshark capture of RST_STREAM frame signaling a cancellation of the download

This demonstration thus shows that resetting a stream already works without additional
implementation if the SANE runs on a HTTP/2 enabled web server. Furthermore the behavior of
the SANE, in case of a Stream Reset, is identical to its momentary behavior in case of an
unexpected close of the entire connection. Nevertheless, it should be considered to react
accordingly to the abortion of an operation in order to ensure data consistency. This topic will be
again be picked up and treated more thoroughly in 5.4.1.

5.2.2 (C — P Server Push

The following tests were conducted to evaluate the operational capability of the method to be
used for the implementation of Server Push for SANE on the link between client and proxy.

header ();
header () ;
header () ;
header (
, false);

Listing 5.3: Server Push inducing headers

GET Request

In order to induce the pushing of data to the client from the web server running PHR a link
header with a reference to the source of the data to push (filestream.php) has to be sent to the
client, what is done by the part of the pushtest.php script that can be seen in listing 5.3. The
source code of the referenced script filestream.php is attached in C — P Server Push test source
code in the appendix A. For easier trace- and readability, Apache’s DEFLATE module
(mod_deflate) has been switched off, what effectively deactivates the entire serverside content
encoding.

When accessed directly via Chromium web browser, what effectively conforms to a GET
request, the script referenced in the link header pushes a lorem ipsum text of 296 bytes and

60

adds, also for readability, a number in brackets before and a newline character (\n) after, resulting
in 300 byte payload in total to push.

The Wireshark protocol attached in C — P Server Push test in appendix C first shows the request
itself, after successfully establishing communication and setting connection parameters, in
Frame 37 This request is responded to in Frame 39 with a PUSH_PROMISE frame (lines 13 and
21), which defines stream id 2 (line 22) to use for pushing the data. This stream is then actually
put to use to push HEADERS and DATA frames to the client, as line 40 shows for the HEADERS
frame and line 42 shows for the following DATA frame. The length of the DATA frame (also line
42) equals exactly the length of the used lorem jpsum snippet.ll

POST Request

However, if the script in listing 5.3 is invoked via POST request, no PUSH_PROMISE frame is
sent to the client, hence no server push is induced in that case, even though the HTTP/2
specification does neither explicitly prohibit a Push after POST nor does it even mention this
case.

According to the HTTP/2 specification it is just "(...) not possible to push a response to a request
that includes a request body" [BPT15], which was not the case in the test scenario, as can be
seen from the protocol also attached to C — P Server Push test in appendix C.

Line 1 shows the beginning of the client’s request in frame 23 solely containing the request’s
HEADERS frame, while the next frame 25 (line 13) already shows the server’s answer in form of
a regular response on the same stream id 1 (lines 21 and 24). Hence, no DATA frame, where the
request body would reside, has been sent between those, which would disallow the pushing of
the requested content according to the standard cited above. The only difference of this request
to the one above is it being a POST request (line 10) instead of a GET, what obviously prevents a
PUSH_PROMISE frame being sent to induce the Server Push. il

The test of Server Push on the P — S connection in 5.2.4, employing libcurl, also using a POST
request instead of a GET as the only difference, arrives at the exactly same result.

To the date the SANE completely relies on POST requests, both for the incoming
communication on the C — P and the outgoing communication on the P — S link. However,
there is - at least at this juncture - no solution for implementing Server Push for SANE using
POST requests. As HTTP/2's GET request and its associated payload reside inside a HEADERS
frame, it can be considered justifiable from a security related point of view, to use GET- instead
of POST requests as long as a TLS encrypted HTTP/2 connection is employed.

5.2.3 P — S Stream Reset

In order to evaluate if the Stream Reset advancement of HTTP/2 is usable for resetting streams
inside a single connection under usage of libcurl on the P — S link, the following test was
implemented. For PHP to being able to use HTTP/2 in the role of a client, as previously stated,
libcurl is employed.

The pivotal point of this test is the script ps-closetest-timedabort.php, which can among the
other all the scripts in this proof be found under P — S Stream Reset test source code in
appendix A. This script uses a curl multi handle, adds two single handles of which the first
accesses dl-closetest2.php, a script quite similar to dl-closetest.php, which is also used to
generate an endless stream of lorem ipsum snippets in 5.2.1. The second one accesses
idlestream.php, which, as the name suggests, does not much but returning a number in

61

brackets that increments with every loop execution at the same frequency only for ensuring that
the multi handle is kept open when the first single handle is removed. After 3 seconds of
execution, the first stream is closed by removing the single- from the multi handle by using
curl_multi_remove_handle(resource $mh, resource $ch). According to the PHP manual
"Removing the ch handle while being used, will effectively halt the transfer in progress involving
that handle" (sic). Then, after an additional 2 seconds since execution start, the entire multi
handle processing is stopped.

To reset a single stream, as described in 2.4.2 a RST_STREAM frame has to be sent by either
client or server on the stream in question. To evaluate if such a frame is being sent, again
Wireshark is put to use to provide an in-depth view of the network traffic to verify a
RST_STREAM frame is actually being issued.

After requesting ps-closetest-timedabort.php via web browser, the upper Wireshark recording in
P — S Stream Reset test in appendix C shows two HTTP1.1 requests being sent machine-local
via IPv4 in frames 33 and 38 (lines 13 and 21) to the web server on port 80, requesting
dl-closetest2.php and idlestream.php on two separate ports (51726 and 51728). The use of IPv4
signals that it is actually curl doing the request as the browser uses IPv6. Due to the fact that
each request uses their own port this indicates that for each request an own connection is being
used. This sustains even after the connection, or better connections, being upgraded in frame
40 and 41 (lines 31 and 37). The web server's response to the request to
ps-closetest-timedabort.php starts in Ethernet frame 52, containing, alongside the HEADERS
frame and a first DATA frame, also two SETTINGS frames and a WINDOW_UPDATE frame. The
destination port number in line 50 tells that this Ethernet frame belongs to the request as
stated. The entire connection is finally closed via GOAWAY frame 69, starting on line 96, while
the other connection is closed, also under usage of a GOAWAY frame, in line 107 However, no
RST_STREAM frame is sent. As two separate connections containing only one stream each are
used, there is no point in sending an RST_STREAM frame at all, as the entire connection has to
be closed anyway.

When the exactly same test is repeated under usage of PHP 7.1, depicted by the lower protocol
in P — S Stream Reset test in appendix C it paints a completely different picture: The first
request is, as with PHP 5.6, also sent as a HTTP1.1 request, as can be seen in frame 32 (line 13),
and upgraded to HTTP/2 in frame 34 (line 21). The second request, however, is sent using
HTTP/2 inside the HEADERS frame in Ethernet frame 39 (line 31), naturally using the just
upgraded connection as the only one instead of two as with PHP 5.6. Consequently, when the
download is canceled by removing the single handle from the multi handle, only this particular
stream is reset by a RST_STREAM frame being sent in frame 52 (line 61), affecting stream 1,
which is automatically assigned for upgraded connections, as line 68 states. The second stream
is closed implicitly as the now idle connection is closed via GOAWAY frame 58 beginning in line
83, referencing explicitly the contained stream 3 in line 91.

From these results it follows that it is not viable to use Stream Resetting with PHP 5.6 as this
version is not yet enabled to use libcurl's stream multiplexing. This finding weighs even heavier
as this also entails that the synergistic effects of combining multiple requests onto one
connection would have to be omitted as long as the SANE is not verified to to operate on PHP
7.

5.2.4 P — S Server Push

Due to the fact that it is not feasible to implement Server Push on the P — S partial link with
PHP 5.6 and it is currently not testable, let alone provable that the SANE is able to operate on
PHP 7.1, it will not be implemented in the course of this thesis for the SANE. Instead, at least a
proof of the principle concept shall be presented here.

62

1

The pivotal point of this test is the ps-serverpushtest.php script, which is available under P — S
Server Push test source code in the appendix A. For communication with the server (in the role
of a client) it also makes use of libcurl. On invocation it creates a libcurl multi handle, registers a
callback function for handling incoming push responses, then an easy handle is added, which
calls the script pushtest_insecure.php, similar to the script already known from 5.2.2, with the
only difference that it references a http:// URL instead of https./ in its link header in order to
use an unencrypted connection, making it possible to record the traffic via Wireshark, as
described previously.

The referenced script, in turn, sends a link header that references another script
(filestream.php), which generates the actual data stream that is pushed to the libcurl instance in
the context of ps-serverpushtest.php.

For the sake of confirmability this push response is finally printed out to the invoking client.

GET Request

The first protocol that can be found under P — S Server Push test in the appendix C shows a
Wireshark capture of the relevant communication including details, which the following proof
relates to.

Line 1 and following shows the GET request issued by libcurl; due to the fact that unencrypted
HTTP/2 is used in order for Wireshark to be capable of recording the otherwise TLS encrypted
traffic and the only way of doing this is issuing an upgradable HTTP1.1 request, the initial request
is HTTP1.1, using port 80. According to line 5, the communication happens entirely on the
localhost, indicated by the IP address 127.0.0.1. The communication between web browser and
the web server, in contrast, uses an |IPv6 address and port 443.

After the upgrade to HTTP/2 (frame 33, line 14), an Ethernet frame containing a
PUSH_PROMISE HTTP/2 frame is sent from the server to the libcurl client in frame 40
beginning with line 23 alongside a HEADERS frame and a DATA frame containing the regular
server answer. Line 31 shows the Promised-Stream-ID: 2 inside the PUSH_PROMISE frame,
i.e. the stream id for the upcoming data transfer. Line 36 then shows the resource whose
content is about to be pushed. The next Ethernet frame, number 42, comprises two HTTP/2
frames, again HEADERS and DATA, but this time on a differing Stream ID 2 (lines 47 and 49),
which has been promised to be used for the push transmission as stated above. B

POST Request

Is the script containing the libcurl invocation, however, invoked to do a POST instead of a GET
request using the curl setting shown in listing 5.4, the result is, as already foreclosed in 5.2.2,
that no PUSH_PROMISE frame is sent by the server and hence no Server Push is being
induced.

curl_setopt ($chRequest, CURLOPT_POST, 1) ;
Listing 5.4: Curl setting for POST instead of default GET

63

The second protocol of P — S Server Push test in appendix C shows a Wireshark capture of the
relevant communication including details, which the following proof relates to.

Line 1 shows that instead of the GET request a POST request is sent from the libcurl instance
(that uses the IPv4 address and port 80 as source and target, as can be also seen in line 1).

The Ethernet frame number 38, beginning in line 20, the server's answer, now in HTTP/2 after
the upgrade in frame 33, then shows no sign of a PUSH_PROMISE frame as an answer to the
POST request, as was the case when a GET request (see above) was used for the otherwise
identical request. B

Due to the fact that the only difference between those two executions is the setting to do a
POST request, instead of a GET request, this leaves no other conclusion as that it is at this
juncture not possible to implement Server Push for POST requests. Certainly, it is highly likely
that the workaround using GET instead of POST requests, that was used in the functional
demonstration of Server Push on the C — P partial link, can also be applied on the P — S link, as
soon at is is guaranteed that SANE is capable of running on PHP 7.1, which has the necessary
libcurl bindings to make use of the callback function that is invoked when a push response
arrives. The principle of using GET- instead of POST requests for the entire virtual P — S is
demonstrated in 5.2.6.

5,25 (C — P — S Stream Reset

The previous demonstrations 5.2.1 and 5.2.3 prove that particular operations on the partial links
C — P and P — S can indeed be canceled by an HTTP/2 RST_STREAM frame, though for the

P — S link this is only reasonable under employment of PHP 7.1. Otherwise, libcurl is not able to
do connection multiplexing, meaning that instead of streams within a connection, an own
connection is employed for every request and response, what partially foils the advantages of
HTTP/2 and Stream Reset respectively.

The following test now combines the demonstrations mentioned above to reset an ongoing
operation on the proxy and subsequently on the server from the client’s perspective.

This demonstration is constructed as follows: The client issues a request to the proxy
(specifically to proxy-index.php in the cps-reset sub directory) , which in turn issues a request to
the server (specifically to serverindex.php) under usage of libcurl. The invoked operations
continue to run until the reception of a sign that the link to the respective counterpart is
interrupted, ideally in form of a RST_STREAM frame, what shall be proven in this test. As
previously described, to recognize the closing of a stream or a connection, each of the scripts
has to check for this event actively using PHP's connection_aborted() function after data has
been sent. If checked without sending data, PHP will not recognize a link being closed since. If
the proxy now recognizes such a link being closed, it in turn closes the link to the server by
removing the single handle from the multi handle, while keeping another stream open to avoid
the entire connection being closed. The source code of the scripts in this test is attached under
C — P — S Stream Reset test source code in appendix A.

The following test is again conducted using Wireshark to show that actually a RST_STREAM
frame is sent from the client to the proxy as well as from the proxy to the server. The protocol
can again also be found in the appendix C, in C — P — S Stream Reset test specifically, due to its
length, although it contains details only in the required depth and has already been stripped of
HTTP/2 frames not relevant to the proof like Magic, SETTINGS, WINDOW_UPDATE and
redundant DATA frames.

The Wireshark protocol begins with the request from web browser to the proxy in line 1,
followed by a HTTP 1.1 GET request, issued via libcurl by the proxy to the server instance in the

64

Ethernet frame 31, beginning in line 11. Alike the previous tests, libcurl uses IPv4, as can also be
seen in line 11 by means of the IPv4 address or line 15. This distinguishes it from requests
issued by the used Chromium web browser, which uses IPv6. The following frame 33 upgrades
the connection from HTTP 1.1 to HTTP/2, just as the according message "HTTP/1.1 101 Switching
Protocols" states. Ethernet frame 38, beginning in line 27 represents the libcurl client’s request
on the aforementioned second stream that is merely required only to have a second stream on
the P — S link to avoid that the entire connection is closed. Frame 40, beginning in line 36, is the
first response from the server to the proxy’s libcurl client, as can again be seen from the IPv4
addresses and ports used. It contains both a HEADERS and already a DATA frame. As the
source IP address and port is on the left side and the destination IP address and port is located
on the right side in the protocol, this frame travels from server (HTTP standard port 80) to the
client (client port 58672). The used stream has id 1, which is assigned by default to the request
leading to an upgrade from HTTP 1.1. The next recorded Ethernet frame 46 (line 57 and
following), in contrast, only contains a single DATA frame from proxy to the web browser client,
just as the now following Ethernet frame from server to the proxy also contains a DATA frame.
This pattern repeats several times until the stream is reset by the client, triggering a
RST_STREAM frame in Ethernet frame 74 (line 95 and following). The fact that it again uses an
IPv6 address shows that this is indeed the RST_FRAME issued by the client. In Ethernet frame
80 (line 123 an following) then also the stream between proxy and server is reset, as the usage
of IPv4 tells. A cancellation of the client’s request thus leads to a RST_STREAM frame being
sent from the client to the proxy what in turn triggers another RST_STREAM frame being sent
on the link between proxy and server. B

Interestingly do the first responses to the second request on stream id 3 not appear in the
protocol until after the actual request, being subject to this test, is canceled via the
RST_STREAM frame. This suggests that both requests belonging to the multi handle are
executed on the same web server thread. Moreover is the second request hence not executed
until the first has terminated, making multiple requests within a multi handle in fact being
executed sequentially instead of parallelly as one would expect. This circumstance will be
further examined in the following evaluation chapter. Above that it has to be evaluated if this
behavior is exclusive to Apache httpd using an internal module for executing PHP scripts or if
this also applies on scripts executed using FastCGl, as other web servers do.

65

5.2.6 C — P — S Server Push

The previous demonstrations 5.2.2 and 5.2.4 prove that it is feasible to implement Server Push
under usage of the HTTP GET method with parameters held in the HTTP/2 header. For the C — P
link with PHP 5.6 and PHP 7.1, for the P — S link only with PHP 7.1 due to limitations of the PHP
bindings to libcurl.

The following test now combines these findings to demonstrate, that it is possible to introduce
Server Push on the entire virtual C — P — S link under usage of PHP 7.1. It intentionally
resembles the communication that takes place in case of a Straightforward Configuration of
SANE as proposed in 4.3.2, depicted in the respective sequence diagram in figure 4.6.

To do so, the client in form of a web browser again transmits parameters inside the HTTP/2
header to the Proxy (proxy-index.php), which extracts these headers from the request and
issues another requesting using libcurl to the server (serverindex.php). The server in turn again
extracts these HTTP/2 headers, passes them to a Memcached instance while using a SHA256
hash of the content as a key and induces a Server Push using the aforementioned link header to
serverpusher.php, attaching this very key as a GET value. The serverpusher.php script fetches
the content in Memcached by means of the passed hash key and returns it, now on a newly
opened stream to the proxy. The proxy recognizes an incoming Server Push as the push callback
is called, puts the response again into Memcached under usage of a SHA256 hash of the
response as a key and induces a Server Push of proxy-pusher.php to the client, again attaching
the SHA256 key to the URL as a GET parameter. The proxy-pusher.php script finally extracts the
content by means of this key from Memcached and returns it, as a new stream to the client. To
ensure that Proxy and Server put different values into Memcached, the returned content is
altered by adding the script's name and a line break to the beginning of the incoming response,
which also allows for tracing the call order in the response finally pushed to the client. This
communication is depicted in figure 5.1. The source code of this test can again be found under
C — P — S Server Push test source code in appendix A.

Client Proxy Server

Request proxy-index.php

Regular response Request server-index.php '

Invoke server-pusher.php

Regular response

Server Push response

Invoke proxy-pusher.php

Server Push response

Figure 5.1: C — P — S Server Push demo sequence diagram

66

The following proof is again issued using Wireshark and the protocol can again be found under
C — P — S Server Push test in the appendix C due to its length, although it contains details only
in the required depth and has already been stripped of frames and belonging content not
relevant to the proof like Magic, SETTINGS, WINDOW_UPDATE and redundant DATA frames.
The request from the client to the proxy starts with frame 26 to proxy-index.php, as can be seen
from line 11. The client’s request again uses IPv6, as the lines 1 and 5 tell. This triggers another
request, now from the libcurl client to the server using IPv4 and HTTP 1.1 in clear text, as can be
seen on line 14 or the lines 26 and 27 respectively. The target of this request now is
serverindex.php, as also line 14 states. The following reply, starting with frame 33 in line 24
upgrades the connection to TLS secured HTTP/2, followed by an Ethernet frame number 51
(starting with line 32) containing an HTTP/2 PUSH_PROMISE frame, a HEADERS frame and a
DATA frame. Line 34 again tells, using IPv4, that it indeed depicts the communication between
the server and the libcurl client. According to line 38, the PUSH_PROMISE frame promises to
use Promised-Stream-ID: 2. The target to push can be seen via :path: header entry on line 39,
still inside the PUSH_PROMISE frame, disclosing the content of serverpusher.php to be
pushed with an id attached. The now following Ethernet frame 63, starting with line 48, contains
this content. The lines 53 and 55 state that this actually happens via Stream 2. Ethernet frame
79, starting with line 68, contains another PUSH_PROMISE frame, now however from the proxy
to the client, as line 72 indicates as again IPv6 is used. Line 77 shows to use Stream ID 2 on the
connection between client and proxy, while line 78 shows that proxy-pusher.php is the target of
this Server Push. Ethernet frame 92, starting with line 86, then finally shows that the data
indeed is pushed, which can be identified by the fact that stream id 2 is used for the HEADERS
(line 94) and the DATA frame (line 96) itself. B

67

5.3 C — P SERVER PUSH IMPLEMENTATION

5.3.1 GET instead of POST

As described in 5.2.2, it is not feasible to implement Server Push employing HTTP POST for
incoming requests, while it is under usage of the GET method. As the name suggests is the
GET method usually used for retrieving data from the server. Modifying data, however, using the
GET method is generally considered a bad practice, as GET methods are considered to be safe
and idempotent, meaning they can be cached by intermediaries and arbitrary often resent
without modifying underlying data. Above that, with GET parameters are embedded within the
URL, what entails them being logged on the server side if an access log is used and several
symbols are reserved and have to be escaped and percent-encoded respectively [BFMO05].
Besides, even though there is no hard-coded limit for the URL length of GET requests, neither
defined in the URL RFC cited before nor in in the HTTP/2 standard [BPT15], it is in fact either
limited by the browser or the maximum length of the :path field of the HTTP/2 header, where
the entire URL eventually resides.

5.3.2 Parameters in the header

For this reason, when using GET for SANE, the parameters are about to be put into the request
header, what solves the problems stated above: As each individual value is put into an own
header entry, its size limit concerns a single value, not all values combined; the possibly logged
URL does not contain the parameters and the parameter values do not need to be escaped and
percent-encoded. Above that it has to be ensured that the responses are not cached, the
requirement to be safe naturally can not be fulfilled, as the GET method is here used to perform
operations that were prior to this solution implemented by using HTTP POST. Their idempotency,
however, is ensured on application level by the usage of signatures over the parameter content.

Nevertheless, using a HTTP/2 HEADERS frame to contain the parameters limits the maximum
size of a parameter. According to [PR15], the length of a newly added header, thus the
combined length of key and value prior to a possible Huffman encoding, may not exceed the
current setting for the current maximum table size. If this happens anyway, the current table is
"(...) emptied of all existing entries and results in an empty table.". The current maximum can,
however, be extended by a dynamic table size update, which can occur multiple times "(...)
between the transmission of two header blocks". The initial size is (for HPACK with HTTP/2)
4,096 octets or 4kB, what is hence also the limit for the first value to be added to the dynamic
table, before it is getting resized. For all operations exceeding this limit, it has to be made sure
to check the maximum table size before adding, otherwise the table will be emptied, as
described before. In this case a value smaller than the current maximum table size is to be
added. If only values exceeding the current maximum size are left to be added, they need to be
gradually split into chunks smaller than the particular maximum table size, identifying the split
parts using a serial number following a - as separator. This algorithm is depicted in Algorithm 1
(Recursive chunking algorithm).

On the recipient’s side, the chunked headers simply have to be concatenated using the

sequence number being attached to the header’s key. Due to the simplicity, an explicit
description is omitted.

68

Algorithm 1 Recursive chunking algorithm

Require: paramList: list of value lists sorted by value length
1: function ADDCHUNKEDPARAM(paramList, chunkCount=0, headers=new List())
2: for / = 0 to paramList.size — 1 do

3 for j = 0 to paramList.get(i).size — 1 do

4: currentMts =GETMAXTABLESIZE

5; if paramList.get(i).get(j).value.size < currentMts then

6: headers.add(paramList.get(i).key+” —"+chunkCount, paramList.get(i).get(j).value)

7: chunkCount + +

8: elseADDCHUNKEDPARAM(SPLITPARAM(paramList.get(i).key,paramList.get(i).get(j)],
currentMts),chunkCount,headers)

9: end if

10: end for

11: chunkCount < 0

12: end for
return headers
13: end function
14: function spLITPARAM(key, value, maxTableSize)
15: chunkedEntry=SUBSTRING(0, maxTableSize, value)
16: rest=SUBSTRING(maxTableSize+1, value.length, value)
17: chunkedParamList= new List()
18: chunkedParamList.get(0).key = key
19: chunkedParamList.get(0).value.add(chunkedEntry)
20: chunkedParamList.get(0).value.add(rest)
return chunkedParamList
21: end function

5.3.3 SANE control flow

In order to being able to comprehend the modifications conducted, it is necessary to understand
the internal architecture and control flow during the processing of a SANE request. As the SANE
uses procedural- instead of object oriented code, it employs include-commmands to invoke
operations dependent on certain preconditions, which effectively combines PHP scripts into one
that is then being executed.

The pivotal point of all requests is the index.php, which first includes either the
method_includer.php for SANE's own methods or the c¢s_includer.php for crowdsourcing-related
methods, based on the passed parameter method. These includers in turn, include the php files
containing the logic of the particular methods, which then do the actual processing and
response generation. This control flow is depicted in figure 5.2.

5.3.4 Modifications for Server Push

In order to establish the Server Push functionality for the SANE while maintaining compatibility
to the currently employed procedure under the use of HTTP POST without pushing functionality,
a new component hZ2push_includer is introduced. This component is used by both of the above
mentioned includers to separate the validation and pre-processing of the request parameters
from the actual processing and response generation. Instead of directly including the according
methods, method_includer.php and cs_includer.php generate the previously introduced /ink
header, referencing the h2push_includer.php, which in turn includes and therefore invokes the
actual SANE or crowdsourcing method, based on the passed parameters. The result is then
pushed to the client. In case of not fulfilling one of the preconditions or an error, the pre-existing
execution path returns the result directly, using the stream established during the client’s
request. Those preconditions are

69

e Method marked as pushable

e Request parameter s-useserverpush in HTTP/2 header set to 7 or true

Marked as pushable are those methods that have been found to be runtime dependent in 4.3.2.
These criteria should also be applied on methods added in the future. To mark the methods
accordingly, their respective method property information has to be amended by the
monotonous attribute pushable as key and a Boolean as value. In addition to the criteria above,
the configuration file config.inc.php contains a variable $_CONFIG['EnforceServerPush’], which
works as an override for testing purposes. If set to true each and every method is tried to be
pushed, irrespective of the method's and client's settings.

. ; Incoming
request

ves Is SANE No
¢ request? ¢

Invoke Invoke
method_includer.php cs_includer.php

Invoke method of
respective CS

Invoke SANE method

>@-

Figure 5.2: SANE regular request processing

Instead of having only one web server thread handling the entire processing, with Server Push
enabled, two separate threads are used. This entails also having to pass the parameters from
the first (method_includer.php and cs_includer.php) to the second process
(h2push_includer.php), including the actual method to be executed. As for this implicit GET
request no header can be added, meaning parameters can only be transmitted inside the URL,
another way of transmitting them among the execution contexts had to be found.

The most obvious solution is to employ PHP shared memory to transfer values. As this is

naturally only possible among threads, sharing a common address space and it can not be
ensured that the SANE is employed in a multi-threading environment this solution is

70

Thread border

@+

Figure 5.3: SANE server push request processing

71

N —

O© 00O 01~

10
M
12

depreciated. Above that, the shared memory function of PHP has no built-in memory
management or locking functionality to avoid race conditions or memory corruption, what makes
it prone to errors even if self-implemented. For these reasons it has been decided to put up with
the introduction of an additional dependency in form of Memcached to use it is a transfer
storage, which is predestined for storing and accessing temporary data with low latency. As a
key/value store, Memcached can store any kind of data, which is identifiable by a unique key.
The unique key is, in this case, generated by hashing the JSON encoded parameters that have
to be transmitted from the process answering the request in the first place and the process
whose response is then pushed to the client via SHA256. This very key is the only value
transmitted via the link header as a GET parameter.

Alternatively, if the introduction of new dependencies shall be avoided at any costs, the
database server can diverted from its intended use to be used as transfer storage. As this is
expected to entail additional processing latency, which should be avoided, this solution is not
further pursued.

5.3.5 Detailed implementation

The order of the modifications to the individual components follows the control flow of the
request processing in the following description.

index.php

The index.php, which at first receives every request, has been modified to only allow GET
requests, if both HTTP/2 and TLS is used. This accommodates the fact that is possible to use
HTTP/2 without TLS encryption, what would lead to the sensitive parameters being transferred
unencrypted. If HTTP1.1 is used, there is no point in using a GET request, as the parameters
cannot be transferred anyway.

[/ Allow GET ONLY if Protocol is HTTP/2 and HTTPS is used (upgrade
allowed)
if ($_SERVERI] l== || ($_SERVERI
S &&« lisset ($_SERVER] 1)) A
if (count($_GET) > 0) {
header ();
header ();
header ();
print),
print(

exit(0);

Listing 5.5: Allowing GET requests only for TLS enabled HTTP/2

As already mentioned in 5.2.2, the parameters reside inside the header, from where they are
extracted and inserted into the $_POST array. From this point on, their processing does not
differ from the values transmitted via POST request. The extraction also comprises the removal
of the prefix s- to mark them as belonging to SANE, as can be seen from 5.6

72

OO O A~ W N —

©

M
12

N —

o o1 A~

extract data from http/2 headers if available when key starts with "S

—" (for SANE ;)
#
$headerString="";
//if (function_exists ("getallheaders")) ({
foreach (getallheaders () as $key => $value) {
$headerString.=%key . .$value . ;
if (substr($key,0,2) === || substr($key,0,2) ===
) |
$seperatorPos = strpos ($key,);
$targetKey=Ilcfirst (substr($key, $seperatorPos+1)
).
$_POST[$targetKey] = $value;
}

Listing 5.6: Parameter header extraction

Apart from that, the definition of certain constants was moved to config.inc.php as the
execution of the components, whose content is to be pushed, would otherwise be lacking this
definitions, as in their context the index.php is not executed beforehand.

method_includer.php, ¢s_includer.php and Submission_Checker.php

The next components down the line method_includer.php and cs_includer.php, which show a
similar structure, were slightly modified to extract and evaluate the setting that indicates
whether the requested method is pushable or not alongside the other description from their
according files and the user's desire, expressed by the $_POST parameter useserverpush. At
the end, these files then include the new component pushtrigger.inc.php, which triggers the
actual Server Push if all of the preconditions are fulfilled. If not, the request is answered
regularly.

As the keys of HEADERS frames are limited to lower key characters, a slight modification of the
component that validates the parameters (Submission_Checker.php, which is used by both the
method_includer.php and the cs_includer.php was necessary. The parameter keys can anyway
be set in uppercase, but are implicitly converted to lowercase already on the client side.

pushtrigger.inc.php

The component triggering the push, viewable in 5.7, first encodes the method values as JSON
(line 4), hashes the resulting string (line 5) and stores them in Memcached using the hash value
as key (line 7). This key is finally attached to the URL that is sent via link header in order to
induce a Server Push (line 17) as a typical parameter of GET requests.

i f ($_SERVER]| | === && PuseServerPush) {
$mecd = new Memcached () ;
$mcd—>addServer ($_CONFIG [1, $_CONFIG]

1),
$jsonMethodValues = json_encode ($_POST) ;
$jmvld = hash(, $jsonMethodValues) ;
// If setting memcached entry fails continue with normal execution

73

10
M

12
13

14
15

QWO NOOTP~rWN =

if ($mcd—>set ($jmvid, $jsonMethodValues, $_CONFIG]
1)) |
$actualBaseUrl =($_CONFIGI | :).
$_SERVER]|] . substr($_SERVER] 1, 0,
strrpos ($_SERVER] 1,),
header ();
header ();
header (
);
header (. $actualBaseUrl
$imvid . , false);
exit(0);

Listing 5.7: Component triggering the Server Push itself (debug mode lines omitted)

h2push_includer.php

The h2_pushincluder.php, now on the other web server thread whose result is then about to be
pushed, extracts the method parameters using the transmitted key and includes the method by
its name, expressed in the parameter method.

include_once (getcwd () .) ;

$imvld = $_GETI l;

//restore method values containing post params from transfer storage
$mecd = new Memcached () ;

$mecd—>addServer ($_CONFIG|],$_CONFIGI 1);
$method_values_json = $mcd—>get ($jmvid) ;
$method_values = json_decode ($method_values_json, true) ;
//"invoke" according method on according crowdsourcing
if ($method_values] ===) |

include_once (getcwd () . . $method_values|]

).

1
else {

include_once (getcwd () . . $method_values]|]

$method_values [1 .);
}

Listing 5.8: Component hZ2_pushincluder.php that extracts values and delegates processing to
the according method

5.3.6 Proof of functional capability

In order to proof the functional capability of Server Push on the partial link between client and
proxy both execution paths have to be evaluated. For this reason, to proof Server Push
functionality for SANE's own methods, simply another method has been added, while to proof
the crowdsourcing methods, a new crowdsourcing derivate with the following method has been
added. Apart from the different file location, both have the same content why only one of them
are shown in listing 5.9.

74

rWN o

<?php

header ();
var_dump ($method_values) ;

?>

Listing 5.9: returnMethodValuesServerPushProofCS

These methods merely return an array dump of the transmitted parameters to the client. The
proof itself is, similar to the principal proof of functionality in 5.2.2, shown by in-depth analyzing
the transmitted packets via Wireshark. The payload size is based on the existing method with
the largest payload when JSON encoded correctWLANFingerprintingPosition. As also the
method’s name is part of the payload, with returnMethodValuesServerPushProof method name
with equal length of 33 characters has been chosen.

To address the test methods the index.php is called with the header entries from 6.1, which are
common to both execution paths.

HEADERS key HEADERS value

s-useserverpush 1

s-largeparameter1’ <2048 byte randomized string>
s-mediumparam1 <512 byte randomized string>
s-mediumparam2 <512 byte randomized string>

s-deviceid <64 byte randomized string>
s-username <64 byte randomized string>
s-password <64 byte randomized string>
s-server <32 byte randomized string>
s-signature <4096 byte randomized string>

Table 5.1: Common test method headers

SANE methods

The values to be set for executing the SANE method path can be seen in table 5.2.

HEADERS key HEADERS value

s-method returnMethodValuesServerPushProof
S-CS SANE

Table 5.2: SANE specific method headers

The index.php is accessed via the Chromium browser with the above mentioned header values
set. After establishing the connection and setting its parameters, the Wireshark protocol in

C — P Server Push proof SANE path in appendix C shows the request itself in frame 26 (line 1
and following) in form of a HTTP/2 HEADERS frame, containing the above stated settings
amongst other header fields set by the browser which have been omitted. The :path header (line
120) indicates that indeed SANE's front controller index.php is requested, while the header
entries s-method (line 13) and s-cs (line 14) conform to the settings in table 5.2. This request is
then responded to in the next Ethernet frame 28, which contains amongst frames belonging to
the regular answer a PUSH_PROMISE frame (line 32 and following), where the stream id to use
is advertised (line 34). The :path header entry (line 35) shows the source of the content to push,
including the hash value used as key for the transfer storage, which is used later on to extract
the intermediately stored method value parameters. In frame 29 (line 45 and following), the
push itself is introduced by a HEADERS frame on the preassigned stream id 2 (line 53 and 55),

75

followed by DATA frames inside the subsequent Ethernet frame containing the actual data, also
on stream id 2 as can be seen from the lines 67 and 70. This proofs that indeed a Server Push is
used executing the newly introduced SANE method returnMethodValuesServerPushProof,
which serves as an example for all SANE methods, using the implementation of 5.3.5. B

Crowdsourcing methods

As we want this test to follow the crowdsourcing path the parameters are set as shown in table
5.3.
HEADERS key HEADERS value

s-method returnMethodValuesServerPushProofCS
s-Ccs ServerPushTest

Table 5.3: Crowdsourcing specific method headers

The s-method parameter must not be the same as in SANE or it will be removed by validation
logic and hence not executed.

This proof follows the exact same pattern as the previous proof 5.3.6: The index.php is, again,
accessed via the Chromium browser with the above mentioned header values set. After
successful establishment of the connection and setting its parameters, the Wireshark protocol
in C — P Server Push proof CS path shows the request itself in frame 29 (line 1 and following) in
form of a HTTP/2 HEADERS frame, containing the above stated settings amongst other header
fields set by the browser which have been omitted due to irrelevance for this proof. The :path
header (line 12) proofs that indeed the index.php is requested, while the s-method (line 14) and
s-cs (line 15) conform to the settings in table 5.3. This request is then responded to in the next
Ethernet frame 31, which contains a PUSH_PROMISE frame (line 32 and following) where the
stream id to use is advertised (line 34), alongside a HEADERS and a DATA frame. The :path
header entry (line 35) shows the source of the content to push, including the hash value used as
key for the transfer storage, which is used later on to extract the required method value
parameters. In frame 32 (line 45 and following), the push itself is introduced by a HEADERS
frame on the reserved stream with id 2 (line 53), followed by DATA frames containing the actual
data, also on stream id 2 as can be seen from the lines 67 and 70. This proofs that indeed a
Server Push is used for the newly introduced crowdsourcing method
returnMethodValuesServerPushProofCS on the ServerPushTest derivate, representing all CS
methods, using the implementation of 5.3.5. &

5.4 REMARKS TO UPCOMING IMPLEMENTATIONS FOR SANE

For Stream Reset on the partial link C — P and HTTP/2 and Header Compression for the P — S
link to work as intended, the following has to be taken into account.

Apart from that shall findings from the next chapter 6 already be foreclosed here for the sake of
completeness of this section.

76

5.4.1 (C — P Stream Reset

The test in 5.2.1 shows that stream resetting already works for the C — P partial link. The first
line of the according code snippet sets via ignore_user_abort(<Boolean>), how the PHP
execution environment reacts on the reception of a RST_STREAM frame. In the default setting
false, PHP stops the script execution immediately, meaning it is not able to react on this event,
as this would require further execution. If set to true, to recognize this, the currently running
script has to actively check for the stream still being active by using connection_aborted() as, at
this juncture, no way of event handling exists for this case. Furthermore, for this function to
notice a stream being closed, it has to have sent data right before the invocation of this function,
as can be seen in the source code of dl-closetest.php under C — P Stream Reset test source
code in the appendix A. Unfortunately, the callback function defined with
register_shutdown_function(<callbackFunction>) unexpectedly is not invoked in this case.

The fact that the closing of a stream, or even a connection with HTTP1.1, results in an
immediate stop of execution may lead to data corruption, as operations altering data are only
partially executed. If Stream Reset shall actually be implemented for SANE, hence a new
component should be introduced that handles the actual response transmission while checking
for an abortion of an operation. In this case it could delegate the handling back to the invoked
SANE method itself, as only it knows how to handle an execution abort in a graceful manner, for
example by rolling back the effects of non-idempotent operations or setting a dirty state.

5.4.2 P — S Multiplexing

Due to the limitations of PHP 5.6, as found in 5.2.3, every transmission, even though already
using HTTP/2, still employs an own connection. With PHP 7.1 however, when it is guaranteed
that the SANE works as intended, for the HTTP/2 functions that have already been implemented
by Pu in the course of his thesis to unfold its full potential, outgoing requests have to be
multiplexed onto the same connection. Otherwise for each request also a new connection
would be used, bringing all side effects for establishing a secure TLS connection along. As the
proxy only deals with a limited amount of destination servers, it is highly likely that in case of a
forwarded request already an open connection to the destination server exists that can be
reused.

As the description of the multi interface of libcurl by Daniel Stenberg in [Ste15] allows the
interpretation that libcurl is able to do automatic smart multiplexing over separate multi handles
and even though it is not expected to work it is worth to look into as this would simplify
multiplexing massively since no thread- or process-spanning component had to be developed
that does this explicitly. For that reason an additional test to evaluate this has been conducted in
6.3.1 with a negative outcome. Hence, to multiplex requests and their responses onto the
same connection a central connection broker component is required that handles the dynamic
adding and removing of single handles from/to a single SANE-wide multi handle.

5.4.3 Employing FastCGI

As will be shown in the next chapter or more specifically in 6.3.2 and 6.3.3 should FastCGlI or
better the PHP FastCGIl Process Manager be employed to allow libcurl to perform requests via
multi handle in parallel. Apart from a missing getallheaders() function, which has been
re-implemented for the case it is not supported, there is no difference in execution regarding the
newly implemented features for the SANE when it employs FastCGl instead of the internal
Apache httpd PHP module.

For further information please consult the above referenced parts of this document.

77

5.5 SUMMARY

Of all the advancements of HTTP/2 that were found to be advantageous in the Concept, only
Header Compression, Stream Reset and Server Push for both partial links were found to be
feasible according to official documentation of PHP and libcurl. Due to Header Compression
being already implemented in the course of [Pu16] and limitations of libcurl that became obvious
not until the implementation of the functional demonstrations, the only currently actually feasible
advancement under usage of PHP 5.6 is Server Push on the C — P partial link. This feature was
then also implemented under usage of a workaround that allowed putting the parameters into
the HPACK header, in turn making it possible to transmit requests with heavy payload using GET
requests, as POST requests were found not to be able to trigger a Server Push. Nevertheless, it
is still possible to use the SANE in a traditional manner employing POST requests - even though
of course without Server Push. The SANE, hence, remains fully downward compatible.

All of the other improvements, however, presume PHP 7.1 to be used. This especially applies
also for the use of Multiplexing, alongside Server Push and Header Compression probably the
biggest improvement of HTTP/2. Above that, Multiplexing is naturally a necessary requirement
for using the Stream Reset feature, as only if multiple stream reside on a single connection,
there is a point in resetting a stream within.

For these reasons it is highly recommended to ensure that the SANE is fully compatible to this
version of PHP, proven by carefully evaluating constraints and implementing unit tests for
regression testing and debugging. Then, Server Push and Stream Reset can be implemented
similar to the demonstrations C — P — S Server Push and C — P — S Stream Reset.

78

6 EVALUATION

¢

Es gibt fUr uns Physiker nur noch die Kapitulation vor der Wirklichkeit.

Friedrich Dudrrenmatt in Die Physiker

vy,

During the previous chapter, the solutions that have been found beneficial for SANE have been
implemented or proven to work in principle if the employed software framework did not permit a
direct implementation on the SANE yet. The purpose of this chapter now is to quantify the
effect these implementations have or might have in the future, based on the evaluation criteria
defined in 4.4.

First Pu’s results regarding SANE's general performance under use of HTTP/2 are discussed
once more. Secondly, the advancements that were implemented on the SANE or could be
implemented in the future, as soon as it is ensured that the SANE is capable of working on PHP
7.1, will be evaluated in the following. Thirdly, additional tests will be conducted that evaluate so
far untreated questions that could limit the advancements of HTTP/2 that have been
conceptually found to be beneficial to the SANE.

6.1 GENERAL PERFORMANCE ASSESSMENT

As the previous work of Pu [Pu16] has already evaluated the overall performance of HTTP/2
including Header Compression, the measurements are not repeated here. His results, however,
are picked up and discussed once more to provide a comprehensive evaluation of HTTP/2's
performance. Above that it is necessary to re-discuss the results as they were produced under
the assumption that the HTTP/2 connections make use of multiplexing, what they in fact did not.

In his work Pu makes use of a crowdsourcing method called viaSANE to test the entire virtual
C — P — S link with the various possible configurations introduced in 4.1.1. The used method
inserts a transmitted message parameter with a length between 0 and 64 characters into the
proxy-local database and forwards a SHA256 hash of the transferred data using libcurl, yet
without multiplexing, to a crowdsourcing server instance. This test has been conducted using a
both local and remote crowdsourcing server. The tests were carried out with 10 clients using
100 concurrent connections (n100/c10), 5 clients with 50 concurrent connections (n50/c5) and 1
client with only 1 (n1/c1) connection. As the SANE constraints every connection to be TLS
secured, this is expected to apply on every connection in this evaluation, although not explicitly
stated.

As Pu uses a different denomination in the diagrams the following table should help to clarify
any ambiguities.

Diagram name Concept name C-—P P-S

H2/H2 straightforward proxy HTTP/2 HTTP/2
H2/H1 downgrade proxy HTTP/2 HTTP1.1
H1/H2 upgrade proxy HTTP1.1 HTTP/2
H2/H1 status quo HTTP1.1 HTTP1.1

Table 6.1: SANE Architecture configuration denomination overview

The test run on the local crowdsourcing server showed an almost equal total runtime for both
the n1/c1 and the n50/c5 configuration. The results can be seen in figure ?? As expected was
HTTP/2 employed on both C — P and P — S partial links the fastest, while HTTP 1.1 on both
partial links was the slowest. With n100/c10 also HTTP/2 was the fastest with 732 ms total
runtime. Interestingly, all other configurations took significantly longer for the downgrade proxy
(921 ms), the upgrade proxy (1293 ms) and the configuration named status quo in 4.1.1 where
HTTP 1.1 is used for both partial links (1876 ms). These results indicate that HTTP/2 scales much
better under high load. Furthermore seems the C — P link to be much more susceptible to high
load than the P — S link. This behavior may however be rooted in the absence of multiplexing by

81

2,000 1,876
_ - @
1293 .-
5 921 peent
=1,000 1302
£ °--
- 302 310 322 359
-. _____________________________________
11 14 14 16
0 A A A
H2/H2 H2/HT1 H1/H2 H1/H1

-e-Nn100c1O-m- n50 c5-4-nlcT

Figure 6.1: Local SANE HTTP/2 performance (from [Pu16])

the used implementation without a central instance managing outgoing connections. Compared
to diagram 6.2 the timings of the upgrade proxy and the status quo configuration were even
longer than for the remote execution, suggesting that in this cases the usage of HTTP 1.1
pushed the system to its load limit what would in turn indicate a generally lower system load
due to not having to parse the text based data of HTTP1.1 with HTTP/2.

Taking the mean time consumption with 10 clients and 100 connections into account shows that
the straightforward configuration (17.80 ms) is outperformed by both the upgrade (14.84 ms) and
the downgrade configuration (13.33 ms). Only the status quo configuration with HTTP 1.1 on the
entire C — P — S is insignificantly slower. The almost equal performance during connection
establishment can be explained by the employed test tool h2/load’s behavior of using cleartext
HTTP/2 (h2c) by default, which takes a detour over HTTP 1.1 for the first request which is then
upgraded to HTTP/2. When actual data is transmitted during the response, the straightforward
configuration employing HTTP/2 performs significantly better with a mean response time of
68.34 ms, compared to 87.15 ms of the downgrade proxy configuration, 115.65 ms of the
upgrade proxy configuration and 168.49 ms for the status quo configuration, showing the higher
processing speed of HTTP/2 using header compression and binary encoding. As the tests were
conducted locally, the resulting size of the data to transfer can be neglected as factor.

1,540
1,500 233 1,243 —-——‘1’5%%
§1,000 828 __--— *\\9'1/4/"/
T =
S
i= 500
192
. 64 A L 99
H2/H2 H2/H1 H1/H2 H1/H1

-e-n100c10O-=w- N50 c5-4- n1cT

Figure 6.2: Remote SANE HTTP/2 performance (from [Pu16])

However, the table is turned with a remote crowdsourcing server, as can be seen in figure 6.2.
Again the straightforward configuration is the fastest while interestingly the downgrade

82

configuration is yet faster with n50/cb and n1/c1, but slower than the status quo configuration
using only HTTP1.1 for both partial links under high load (n100/c5). The upgrade configuration,
however, is in all cases faster. This indicates that HTTP/2 can play out its strengths over distant,
latency afflicted connections and even under high load.

Certainly, these results are expected to be much better using multiplexed connections for the
‘P — S partial link, as they already are on the C — P link, simply by employing a HTTP/2 compliant
web server.

6.2 ADVANCEMENT SPECIFIC ASSESSMENT

In this section, the HTTP/2 advancements that have been implemented on the SANE or whose
functional capability has been proven are about to be evaluated. To minimize side effects
induced by the network, all tests are performed on the local machine.

6.2.1 Stream Reset

To evaluate Stream Reset, the latency of the Apache httpd web server’s reaction to the
reception of a RST_STREAM frame to rate the compliance to the official HTTP/2 standard
[BPT15] was assessed. According to the standard, the web server must not send further DATA
packets after a Stream Reset frame has been received. For this assessment the protocols of the
previously conducted functional tests with this topic 5.2.1, 5.2.3 (with PHP 7.1) and 5.2.5 were
evaluated. In none of these protocols, further DATA frames were emitted after reception of a
RST_STREAM frame. Hence, the used web server complies with the standard. The amount of
data sent unnecessarily, the overhead in a manner of speaking, equals to zero.

Nevertheless, in practice, under employment of a network, the packet latency is larger than 0
ms, meaning that it is highly likely that during the time the RST_STREAM frame travels from its
sender to the receiver, the receiver emits another DATA packet. This case is also provided in the
HTTP/2 RFC, which also urges the involved peers to treat that case gracefully. However, it is
safe to state that a reference implementation of HTTP/2 should stop sending additional DATA
frames immediately, just as the Apache httpd does.

Besides the packet latency, also the load of the web server probably affects this proper reaction
as it influences the processing of all kind of frames.

In order to make a well-grounded statement about the saved resources due to a reset stream on
obsolescence, the evaluation has to take network latency and system- and network load under
realistic usage patterns and with real data into account. Regrettably, this is at the at this juncture
not feasible, as this implementation does not yet exist on the entire virtual C — P — S link due to
unconfirmed support of PHP 7.1 by the SANE. If SANE supported PHP 7.1 and this feature was
implemented for the entire virtual link, either realistic usage pattern had to be modeled or
statistic evaluation had to be done over real usage data.

However, the insight that web servers react to the reception of a RST_STREAM frame

immediately further encourages its projected use for the SANE to abort operations that have
become obsolete since its invocation.

83

arwN -

6.2.2 Server Push

To assess the Server Push implementation, on the one hand saved resources and the variation
of total execution time and on the other hand the reaction to unexpected termination of streams
or entire connections have to be taken into account, as will be in the following.

Performance

Open and half-closed streams both reserve memory for the TCP buffer and "count toward the
maximum number of streams that an a endpoint is permitted to open" [BPT15]. Moreover must,
for a stream in an open state, the according window size be maintained, what requires
additional resources by means of CPU cycles and memory. These characteristics, however, do
not apply on streams in a reserved state, to which streams promised via PUSH_PROMISE
count. They remain in this state until actual data is transmitted. For this reason the effectivity of
Server Push can be expressed by the total time all streams remain in an non-closed or
non-reserved state for a given operation. Above that, naturally, also the total time from issuing a
request to the reception of the response has to be taken into account, as the overall goal of
HTTP/2 and one of the reasons for incorporating HTTP/2 for SANE is the reduction of this period.

At this juncture, no automated test tool to issue a request and receive a Server Push response,
let alone evaluate the overall time a stream remains in an open state, exists, why the evaluation
had to be conducted manually using Wireshark. Conducting this tests manually unfortunately
only allowed for a limited amount of repetitions.

For this evaluation, a newly introduced SANE method
returnMethodValuesServerPushDelayedCS from listing 6.1 is used, which resembles the
long-running methods from 4.3.2 with unpredictable runtime, by returning the results only after
a delay, which can be set via delay parameter on request. The delay of those methods result
from the methods either having to retrieve an arbitrarily large data set or having to employ
another network connection to retrieve the data. Apart from that, this method is based upon
returnMethodValuesServerPushProofCS.php, which was already employed for the functional
proof of the SANE's Server Push implementation in 5.3. This method is then either called
traditionally via POST, without using Server Push, or via GET with the parameter
s-useserverpush with the value 7 set in order to enable the use of Server Push.

<?php

// delay server answer according to delay parameter
sleep ($method_values | 1) ;

var_dump ($method_values) ;

?>

Listing 6.1: returnMethodValuesServerPushDelayedCS

The timings are extracted from the Wireshark protocol, which can again be found under
Evaluation SANE Server Push performance in the appendix C, as follows. The execution time is
defined as the time from the first Ethernet frame to establish the connection, which is not part
of the protocol, to the time the last DATA frame is being emitted. As this first Ethernet frame
triggers the recording, the timings of the individual frames in the protocol are correct. The
stream open timings reflect the time passed from the timing of the HEADERS frame, which
opens a stream to the time of the last DATA frame on that stream, indicated by the flag 0x01,
which signals that no more frames are sent using this stream (END_STREAM), according to
[BPT15], the official HTTP/2 RFC. For reasons of relative briefness of the test protocols and
simplicity, the DATA frame was chosen as an end-mark instead of the according TCP ACK-packet

84

sent from the client to acknowledge the reception. As the tests were all conducted on the local
machine, those two timings only differ minimally.

The evaluation runs where executed using PHP 5.6, just as the SANE implementation itself.

Delay 0 Without Server Push With Server Push
Execution time 0.036997181 0.026483089
Time stream 1 open 0.025637935 0.018024038
Time stream 2 open 0.000033343
Total stream open time 0.025637935 0.018057381

Table 6.2: Timings of returnMethodValuesServerPushDelayedCS.php without delay

Delay 1 Without Server Push With Server Push
Execution time 1.038798693 1.046927065
Time stream 1 open 1.021375243 0.025733594
Time stream 2 open 0.000031963
Total stream open time 1.021375243 0.025765557

Table 6.3: Timings of returnMethodValuesServerPushDelayedCS.php with 1 second delay

The figures 6.3 and 6.4 depict the the values from the tables 6.2 and 6.3. The columns show the
overall execution time of the operation, while the light blue part shows the fraction of the
execution time the involved streams remained in an open state.

Without delay
0,04
0,035
0,03
0025

0,02 m Additional execution time

Time (s

0015 m Total stream open time

0,01
0,005

Without Server Push ~ With Server Push

Figure 6.3: Timings from table 6.2 (without delay)

Although the tests were only run one time for each delay and configuration and are therefore not
statistically significant, the results show that the additional effort of delegating the processing to
another thread via link header and having to use additional hashing and a transfer storage do not
introduce a delay itself regarding the total execution time. Instead, the total amount of time
streams had to be kept open are significantly reduced under employment of Server Push. This
means, the more time the long-running methods take, the more reasonable the employment of
Server Push gets.

85

Nooab~wN =

©

With 1 second delay

—

08

0,6 m Additional execution time

Time (s)

m Total stream open time
04

0,2

Without Server Push With Server Push

Figure 6.4: Timings from table 6.3 (1 second delay)

In practice, depending on system- and connection load, the results of course may deviate
significantly. Also due to lacking realistic usage data or load testing tools supporting Server Push
it is regrettably currently not feasible to make a well-grounded statement regarding execution
time under load. For this reason, this evaluation has to be postponed until the Server Push
implementation is deployed to production. Then the same metrics can be used to rate the
effectivity of Server Push.

Publish/subscribe pattern

Due to the relatively vague description in the official HTTP/2 RFC regarding the sending of
additional PUSH_PROMISE frames over a pushed stream, this will be examined more closely in
the following. To do this, the above used returnMethodValuesServerPushDelayedCS.php is
extended to issue another link-header to promise another stream. The source code of
returnMethodValuesServerPushDelayedNewPush can be seen in Listing 6.2, while the according
Wireshark protocol can be found under SANE Server Push Publish/Subscribe evaluation in
appendix C. It has again been stripped of HTTP/2 frames irrelevant to this evaluation.

<?php

// delay server answer according to delay parameter

sleep ($method_values|['delay ") ;

header (" Connection: Keep—Alive");

header (" Expires: 0");

header (" Cache—Control: must—-revalidate , post—check=0, pre—check=0");

header("Link: <https://localhost/poc/filestream .php>; rel=preload; as=
document", false);

var_dump ($method_values) ;

?>

Listing 6.2: returnMethodValuesServerPushDelayedNewPush

After the reception of the request in frame 28, the following Ethernet frame 55 (line 26 and
following) contains the ordinary answer consisting of HEADERS and DATA frame alongside the

86

PUSH_PROMISE frame, promising stream id 2 (line 36) for the Server Push. Ethernet frame 79,
beginning in line 47 then contains the Server Push's HEADERS frame, indicated by the used
stream id 2 (line 55). Although it also contains a link header (line 58) referencing the well-known
filestream.php script, no additional PUSH_PROMISE frame is sent for this resource. Hence, the
expected behavior, to not being able to induce further Server Pushes on an already pushed
stream, has been confirmed. &

Fault Tolerance

In order to encounter possible problems at an early stage and to be able to handle them
gracefully, it has to be examined if the SANE reacts differently to connection errors under usage
of the newly introduced Server Push feature and if this reaction could possibly even lead to data
corruption. More specifically is to be examined what happens in case of an operation being
interrupted after a PUSH_PROMISE has already been sent, thus the belonging stream has been
put into reserved state, but no data has yet been sent.

For this evaluation, the script of the above conducted performance evaluation is reused without
any change to its code. As the only difference the time between invocation of the according
SANE method returnMethodValuesServerPushDelayedCS.php and the output of data has been
prolonged by setting thedelay value passed by the client to 70 seconds. This allows for easily
canceling the request that is sent via Chromium browser manually or closing the connection
unexpected by simply killing the Chromium browser process, not allowing it to gracefully end
the communication to the server.

In the former case the client emits a RST_STREAM frame, as can be seen in frame 30 (line 28)
of the first Wireshark protocol under SANE Server Push fault tolerance evaluation in appendix C.
After the reception of this frame, neither any further DATA packet is sent nor any output to the
Apache error log is being written.

Regarding the latter case and protocol in SANE Server Push fault tolerance evaluation, if the
client Chromium browser is terminated immediately via pkill -SIGKILL chromium-browser, which
conforms to a termination the target process cannot block, the web server ends the connection
by issuing a GOAWAY HTTP/2 frame to end the connection in line 47, after the TCP connection
has been finalized by the preceding [FIN] TCP packet in line 33, sent by the client’s network
stack, which recognized the unexpected termination of the browser’s connection. As expected
also no further output is written to the error log, hence the script execution is stopped likewise.

The SANE under usage of Server Push hence behaves exactly as without using the new Server
Push implementation regarding interrupted requests.ll

These findings coincide with the findings of 5.2.1 and as already remarked in 5.4.1: If the script
execution is supposed to continue, user abortion should be ignored by setting
ignore_user_abort(true) for each script concerned. Moreover, to avoid possible data corruption it
is strongly recommended to either continue execution and handle these cases manually or
employ some kind of persistence component that rolls back the changes made in case of an
unexpected abortion i.e. makes use of transactions for non-atomic operations on the database.

6.3 ADDITIONAL ASPECTS

Aside from proving that the advancements work in principle, what has been done in chapter 5
and quantifying them in the previous sections of this chapter, additional constraints have to be
fulfilled in order to unlock the full potential of HTTP/2’s advancements. This evaluation shall be
done in the following.

87

6.3.1 Automated Smart Multiplexing

In addition to the ability of libcurl to combine several requests onto the same connection by
adding a single handle explicitly to a multi handle, it would be necessary to have them
multiplexed onto the same connection even if not explicitly stated, as it is the case with SANE if
distinct requests are performed on the same destination server. According to Stenberg’s libcurl
blog [Ste15], libcurl should be capable of doing so with the setting in listing 6.3, where it says "If
you use the multi interface and enable pipelining, libcurl will try to re-use established
connections and just add streams over them rather than creating new connections". As this
statement leaves it open whether or not this reusing of connections happens implicitly, this has
to be evaluated.

curl_multi_setopt ($mh, CURLMOPT_PIPELINING, CURLPIPE_MULTIPLEX) ;

Listing 6.3: Libcurl setting to enable automated multiplexing

For this test two separate requests to a server are posed under usage of libcurl, comparable to
other tests on the P — S link. In order to verify that streams opened by different web server
threads are multiplexed onto the same connection, each of this requests is realized using its
own multi handle in which a single handle hooks in. If libcurl behaves as intended, only one
connection should be used for the two requests to the same origin. The proof itself is again
conducted via Wireshark analysis of the traffic between libcurl client and server. The script
containing the libcurl code to perform the requests to multiplex is called by not only two
different browser instances, but even two different browsers. The target of the requests issues
via libcurl is again idlestream.php that has already been used in previous proofs. It merely
returns 0 every 100 ms until aborted.

The Wireshark protocol, which can be found under Evaluation of Smart Multiplexing on P — S
link using libcurl in appendix C, shows the communication after successfully establishing the
first connection. The establishment itself has been, just as in previous proofs and tests, for the
sake of relative briefness, been stripped of all connection related frames and recurring DATA
frames. Also does this protocol only contain the communication of the libcurl client by only
letting through HTTP1.1 and HTTP/2 frames on port 80, as again cleartext HTTP/2 (h2c) is used in
order for Wireshark to be able to record the otherwise TLS secured communication.

Frame 1 in line 1 shows the first request to idlestream.php from the libcurl client before the
upgrade to HTTP/2. The request is answered in frame 6 (line 9) with a HTTFP/1.1 101 Switching
Protocols message by the server, signaling an upgrade to HTTP/2. The following Ethernet frame
then contains a HTTP/2 HEADERS frame and also a DATA frame, while the Ethernet frame 14
after that only contains a DATA frame. Frame 37 from line 33 on, shows then the second
request to idlestream.php, where the same procedure as above gets repeated. The Ethernet
frame 53, containing again one HEADERS and one DATA HTTP/2 frame, then is the first frame in
which the multiplexed communication should occur. The client port number 45732 in column 6,
however, differs from the client port used by the first established communication, port 45728. It
hence uses a different connection, rather than only a different stream. This only allows making
the conclusion that multiplexing is not used in this case.

A plausible explanation for multiplexing acting up, against the assertion in [Ste15] by curls
creator Daniel Stenberg, could be the usage of cleartext HTTP/2, as it takes a detour over HTTP
1.1. This leads to a predicament: Employing HTTP/2 with TLS encryption thus could make libcurl
combine streams automatically onto a single connection, but without libcurl being able to log
the pre-master keys necessary to decrypt the TLS encryption, it is not possible to observe this
using Wireshark. Hence, from the Wireshark protocols can only be inferred that with cleartext
HTTP/2 requests via libcurl are not multiplexed automatically.

88

In order to confirm or rebut this finding, the option CURLOPT_VERBQOSE for the single handle
attached to the multi handle in the multipair.php was set to enable libcurl to return a more
verbose connection log. The test then was repeated under employment of HTTP/2 with TLS
encryption (h2) instead of cleartext HTTP/2 (h2c). Regrettably, the libcurl log, which can be also
be found in appendix C, shows two connection establishments using stream id 1 (line 21 and
line 54) with different easy handle ids in the same lines. The belonging date declaration in lines
28 and 61 with a difference of merely 4 seconds indicate that these two requests indeed belong
to the same test run. This means that also under use of h2, two separate connections are being
used, hence no automated connection multiplexing is done. B

Curiously, the curl log shows for both connections the use of of HTTP1.1 GET in line 22 and 55,
even though the use of HTTP/2 has already been confirmed previously (in lines 11 and 18) for the
first connection and (in lines 44 and 51 for) the second connection.

Tests that are comparable to those above repeated under use of PHP over FastCGl instead of
running as an Apache httpd web server module arrived at the exactly same result: No
multiplexing has been done automatically. The reason for rechecking this under usage of
FastCGIl was the possible requirement of a multi threaded execution for the libcurl multi handle
to do automated multiplexing, as it indeed is a requirement for parallel execution as will be
shown in the following section. The exact results are omitted due to its identical outcome.

However, these results strongly suggest that for SANE, to fully support connection multiplexing,
it is necessary to develop an own connection broker component, which handles outgoing
requests via one central multi handle to which it adds and removes single handles in a dynamic
way. Admittedly, there is also a chance that the multi interface is used incorrectly above due to
the still sparse documentation of libcurl with HTTP/2. As soon as more details are announced
and usage examples exist, this should be reviewed.

6.3.2 Parallel execution of libcurl requests

During the demonstration of 5.2.5 in the previous chapter has emerged that HTTP requests
issued via libcurl multi handle were executed sequentially instead of parallelly, as expected. It
stands to reason that this behavior is rooted in the multi-process but single-threaded nature of
the Apache httpd module used for executing PHP code. To verify this, Apache httpd was
reconfigured to use the PHP FastCG/I Process Manager instead of its internal PHP 7.1 module in
combination with the mpm_worker module, which allows real multi threading, in contrast to the
mpm_prefork module, which spawns an own process for every script execution. As libcurl
naturally has do the requests in parallel, the obvious conclusion is that multiple threads have to
be employed internally. The libcurl documentation however states that one objective of the multi
handles is to "Enable multiple simultaneous transfers in the same thread without making it
complicated for the application" [Steb], stating that multiple requests can indeed be done using
just one thread. Hence, the issue of not being able to do parallel requests using the internal php
module is likely to be rooted in some other reason, which will however not be further evaluated
in the course of this thesis.

Compared to the internal PHP module of Apache httpd, the external processing via PHP-FPM
leads to a slightly different behavior regarding the web server’s responses. Instead of
continuously flushing the current results out, the external module returns the result as a whole
and only if the operation is not canceled on the way. For this reason, the test script used in in
the 5.2.5 demonstration is inapt for this one, as it continues until canceled, what would not
return any result at all. Instead, the existing script that does two requests within a multi-handle
was slightly modified to request another script, which terminates autonomously after about 25
seconds and has also previously been used: Filestream.php, which can be found in appendix A
attached to where it was first used, in C — P Server Push Test.

89

The proofs are once again conducted via Wireshark; the protocols can again be found under
Evaluation of parallel execution of libcurl requests in appendix C, they have again been stripped
of HTTP/2 frames not essentially necessary for the proof, what embraces SETTINGS,
WINDOW_UPDATE and recurring DATA frames. Above that, they also only contain the traffic
issued by libcurl, not the traffic that was generated by accessing the script containing the libcurl
code by the client.

The test using FastCGlI starts with a HTTP1.1 GET request to /poc/filestream.php in frame 38,
which is upgraded in the following frame 40 to HTTP/2 with a HTTP/1.1 101 Switching Protocols
message. After the omitted SETTINGS frame, a HEADERS frame with number 46 can be seen
starting from line 36. With this frame the other request to /poc/filestream.php begins, as the
:path. header entry in line 36 states. Exactly 25 seconds later, as can be seen from the second
column from every Ethernet frame summary at the beginning, the Ethernet frame 58 is
transmitted from the web server on port 80 to the client on port 59472 (line 44) containing not
one but two HEADERS and DATA frames. The first HEADERS and DATA frames use thereby
stream id 3 as the lines 46 and 52 tell, while the latter frames of the same type use stream id 1
(as lines 49 and 54 state), hence belonging to the first request, which was upgraded from
HTTP1.1. After a total 25 seconds of execution time, the connection is ended via GOAWAY
frame, starting in line 57. As request and response were transmitted simultaneously and took
only 25 seconds, they were executed in parallel. B

To make sure this behavior is due to the Apache PHP module, the same test was repeated with
the Apache web server again configured to use the internal PHP module. The protocol is quite
similar to the one above until the reception of the first response from the server in line 39 and
following: Instead of an Ethernet frame containing two frames of each type HEADERS and
DATA, there is only one with stream id 1 (lines 46 and 49), belonging to the first request, that
has been upgraded to HTTP/2. After the reception of a total of 5 DATA frames on stream 1,
another Ethernet frame containing a HEADERS and a DATA frame is transmitted, but this time
using stream id 3, as can be seen from lines 69 and 72. After another 4 additional frames and a
total execution time of 50 seconds, the connection is closed via GOAWAY frame by the server
from line 161. The fact that the first chunk of data is transmitted via stream id 1, while the
second is transmitted via stream id 3 and the total execution time takes 50 seconds instead of
25 above proves clearly that the single requests are executed sequentially instead of parallelly. B

This means, it is absolutely necessary to use libcurl in the field with PHP over FastCGl.

6.3.3 External script processing

As in the previous section has just been found out does libcurl in order to issue parallelized
request, PHP over FastCGl has to be used. To verify that the newly introduced code for the
SANE is compatible to this requirement, the previous methods to test both execution paths
introduced in 5.3.6 with the same parameters are used to verify an error free execution.

During the execution of both the methods using both the PHP FastCGl Process Manager
(php-fpm) services in PHP version 5.6 and 7.1 the necessary function to extract request headers
and therefore the SANE parameters was missing. Prior to using this function it was known that
this function was first introduced by Apache under the name apache_request_headers() and was
originally only available when PHP was run as an internal module, as the PHP manual for this
function [PHP16c] states. This documentation however further states, that this function was
introduced to the FastCGl Process Manager versions from PHP 5.4, why its availability in any
case was taken for granted. However, in case the SANE runs on a platform, which does not
provide this function, its functionality has been reproduced and integrated in config.inc.php to
ensure the SANE's ability to not only run but also use the newly implemented Server Push on
the C — P partial link, irrespective of the employed php runtime environment.

90

After fixing this issue, both execution paths returned the same results as those from the original
test to prove the SANE's functionality in 5.3.6.

To ensure also the findings of 6.2.2 hold for PHP over FastCGl, also this fault tolerance test was
repeated for PHP version 5.6 and 7.1. Both tests showed the exactly same results as in the
original one. A

6.4 SUMMARY

For the general assessment of HTTP/2’s performance the results from another recent work at
the Technische Universitat Dresden were re-used. These results confirmed the anticipated
effects on the SANE from the concept and the findings from related work, cited in the according
chapter: With HTTP/2, data transmission is going to be faster and less resource intensive.
However, the test results did not take multiplexing on the P — S link into account. For this
reason the results are expected to be even better when this partial link is involved if a central
connection broker that facilitates multiplexing is put to use.

Not only during proofing the concept, also while evaluating, the relative youth of HTTP/2 became
obvious, as at this juncture of this thesis not only the most advanced client library for HTTP/2
libcurl has not yet implemented many more sophisticated features of HTTP/2, also automated
test tools that necessarily also have to be tailored to the new features, are lacking the ability to
test Stream Reset and Server Push. Those are the only advancements for which either a direct
implementation for SANE, C — P Server Push, or at least a functional demonstration, for Stream
Resetting on all partial links and Server Push on the missing? — S and C — P — S link
implementations could be carried out.

Due to lacking automated test tools and realistic usage- and user data, tests under load have
been omitted. Instead, the web server’s behavior was evaluated on reception of a
RST_STREAM frame, which immediately stops every further processing.

The Server Push advancement was evaluated regarding its ability to avoid unnecessarily open
connections and therefore saving resources, its ability to implement the publish/subscribe
pattern and its fault tolerance in the case of an unexpected connection abort after a
PUSH_PROMISE frame had already been sent.

The results of the first evaluation show that by using Server Push for long-running operations
streams, that otherwise had to be kept open, can be closed sooner, while the stream to carry
the data can remain in a reserved state. This saves resources on both ends of the link, while not
prolonging the operation’s total execution time. Admittedly, this finding can deviate under high
system or connection load and should therefore be reevaluated when used in practice.

Examining the possible use of the Server Push feature for implementing the Publish/Subscribe
pattern regrettably showed that the HTTP/2 standard does not permit sending PUSH_PROMISE
frames over an already promised stream. As this is necessary to implement Publish/Subscribe,
it can not be implemented using Server Push.

The fault tolerance evaluation of Server Push, however, shows that the SANE behaves exactly
alike without Server Push by not outputting any more data on the promised stream if the

connection is ended, either intentionally or unintentionally.

Beside the advancement specific evaluation, several other aspects that derive from observations
that were made over the course of this thesis had to be taken into account:

91

According to Daniel Stenberg, in his capacity as developer of libcurl, it is capable of recognizing
if new data transfers are destined for a recipient, to whom already an open connection exists. In
this case, instead of establishing a new connection, merely a new HTTP/2 stream is added. The
purpose of the evaluation now was to verify this proclaimed feature. Unfortunately, it was not
possible to reproduce this behavior taking different versions of PHP and different environment
configurations into account. From this it follows that in order to utilize connection multiplexing
for the SANE, the implementation of a central component is necessary to combine outgoing
requests onto one connection explicitly.

Another aspect that resulted from observations made during proving the feasibility of HTTP/2
advancements for the SANE is that requests using the libcurl multi handle, which should per
definition allow parallel requests, were processed sequentially instead. The assumption that this
behavior could be rooted in the Apache’s internal php module could be confirmed. Yet unclear is
if the Apache module is incapable of doing so, due to its multi-process but single-threaded
execution of PHP code, as the libcurl multi handle should be able to issue parallel requests using
only one thread, according to the official documentation. This finding constraints the SANE to be
used in a server environment solely employing PHP via FastCGl.

Making the employment of FastCGl a constraint for the SANE entails having to verify the
functional capability after the changes were made in in the course of the Server Push
implementation. It turned out that PHP-FPM was missing a function that should be available
according to the official PHP documentation. However, it was possible to reproduce its
functionality. In the following could be verified that the SANE is now working as expected.

92

7 CONCLUSION

¢

It is quite amazing how hard the subconscious works when it is made to understand
that this life is not a rehearsal, there is no safety net and no assurance of any final
closure. It is also quite appalling to realize how catatonic the imagination can become
when we hedge our bets, opt for the safer direction at every fork in the path.

John Burdett

77

When HTTP came up in the year 1991, no one could possibly have anticipated its success story.
Meanwhile, it has become the most used, in terms of request amount and most familiar
protocol to even the average user of all protocols in the Internet Protocol Suite. It also builds the
backbone for the lion's share of data exchange over the Internet.

24 years after its introduction a successor to the to the protocol developed by the father of the
Web himself Tim Berners-Lee has been ratified that gets rid of legacy while still maintaining its
high-level API. It is much more appropriate to the changed demands with special regard to a
cross-linked Internet of Things world that is imminent.

As the cited studies point out in chapter 3 do the improvements of HTTP/2 allow faster data
transmission while consuming less energy due to less packet latency, less server round trips
and more straightforward processing. Moreover bears the lower power demand and extended
feature set the chance of new applications. On the opposite site has to be stated that due to
multiplexing HTTP/2 becomes more prone to packet loss, what however seems to be the only
real downside.

7.1 SUMMARY

This section once more recapitulates the essentials from concept, its proof and the evaluation.

7.1.1 Concept

The subject of this thesis was to rate the improvements of HTTP/2 compared to HTTP 1.1 in a
general way and with special regards to the proxy pattern using the example of the SANE, a
crowdsourcing management software that facilitates a proxy component mainly for anonymizing
the origin of crowdsourcing submissions. It is based on the previous work of Pu [Pu16], who
mainly treated the header compression feature beside the implicit advantages of HTTP/2. The
remaining advancements were related to the SANE incorporating his classification of link types
in the partial links for Client-Proxy C — P and Proxy-Server P — S communication, which together
constitute the entire virtual link between Client and Server. As the proxy acts as a server to the
client and as a client to the server, different demands and ways to satisfy them had to be taken
into account.

On the C — P partial link only the employment of Server Push, the possibility of pushing
information to the client on a previously established connection, and Stream Reset, the ability to
reset a stream and therefore a pending operations before completion, have been found
advantageous. May Flow Control have a use for signaling the sending instance to reduce the
amount of sent data in cases of high network or system load if not already done by the TCP
layer below is Stream Prioritization naturally not reasonable for single streams on a connection.

As the P — S partial link, however, combines or should combine the transmissions to the same
server onto one connection using multiple streams, prioritizing one over another or choking
single ones is reasonable. The ability for the server to push informations to the proxy and for the
proxy or the server to invalidate an operation using Stream Reset is naturally also advantageous
on this partial link, at the very least to extend its use onto the entire virtual C — P — S link.

95

71.2 Proof of Concept

While most of these demands on the C — P virtual link are covered by native web server
functionality, for the P — S, link a HTTP/2 supporting client library has to be put to use. In the
course of this thesis it turned out that libcurl, even though it is the most sophisticated HTTP/2
client currently available, does not support all newly introduced HTTP/2 advancements: Stream
Prioritization indeed is supported by libcurl, but not yet even by the newest version of PHP 7.1,
Flow Control is not even supported by libcurl itself, while the use of Server Push requires PHP
7.1 to provide the necessary callback handlers. As the SANE is developed for using PHP 5.6 and
the version 7.1 breaks downward compatibility, it is not safe to assume that the SANE is capable
of operating error-free on this version. Hence, none of the features found to be advantageous for
the P — S link could be implemented on the SANE. Instead, a principal proof of functionality has
been conducted for the features supported by libcurl and PHP 7.1 Server Push and Stream Reset
onthe C — P, P — S and on the entire virtual C — P — S link.

Nevertheless, Server Push was also implemented for the SANE on the C — P link, allowing the
result of both SANE management and crowdsourcing methods to be pushed to the requesting
client, if certain constraints are met as follows. As it is by HTTP/2's design not possible to push
responses to POST requests, a HTTP GET request with the necessary parameters moved into
the HTTP header has to be used. In addition to the parameters, which keys need to have a
prefixed s- to identify them as SANE parameters, an entry named s-useserverpush as with a
string or integer encoded Boolean value has to be added to signalize the clients desire for the
response to be pushed. Furthermore must the invoked method be marked as pushable in its
description as long as the SANE is not instructed to push every response via override in its
configuration. Finally, this Server Push functionality has been verified for both above mentioned
execution paths executing methods that resemble the largest currently existing method
regarding its parameter size. In case the parameters’ size exceeds the size limit for a single
entry, a chunking algorithm was designed which allows adding parameters with arbitrary size for
future implementation.

7.1.3 Evaluation

For the general evaluation of SANE's performance using HTTP/2 the results from [Pu16] have
been reused, as the involved SANE code is still identical for the default execution path. Only
when the SANE is able to do connection multiplexing on the P — S partial link, this evaluation
should be renewed. The results show that, only due to header compression and the implicit
improvements of HTTP/2, using the SANE is faster and probably uses up less resources.

Apart from the general performance, the improvements Server Push and Stream Reset, which
were either implemented on the SANE or shown to work in principle, are subject to evaluation.
Due to the relative youth of HTTP/2 no free to use load test environments, which take the
features to test into account, are available at this juncture. As also the newly implemented
features are not yet in practical use by a representative amount of users no realistic performance
evaluation can currently be conducted regarding them.

The evaluation of Stream Reset is therefore confined to verify the latency of the reaction to the
reception of a RST_STREAM frame based on the Wireshark protocols of previously ran tests,
which were evaluated by hand. According to them, under zero latency, the reception of an
RST_STREAM frame entails an immediate stop of processing, what complies with the standard.
As a packet latency may delay the reception of such a frame, the HTTP/2 RFC [BPT15]
encourages the implementation to treat belated DATA frames after reception of an
RST_STREAM frame gracefully. Errors in processing due to the employment of stream resetting
are therefore not expected.

96

Due to the absence of statistically significant usage data, the effectivity of Server Push has been
rated based on single evaluation runs of a newly introduced crowdsourcing method for this
purpose that returns the input parameters after a delay with- and without using Server Push. By
manually evaluating Wireshark protocols of the communication, the timings for the entire
operation and the overall timings of open streams were extracted. This shows, while having a
comparable overall execution time, that using Server Push streams only had to be kept open for
the time an actual data transmission took place, not for the entire runtime of an operation. This
saves system resources, as streams in the reserved state almost do not use any.

Above using Server Push to save system and network resources, it was evaluated whether this
technique can be used to implement the Publish/Subscribe pattern to allow clients to get
notified when subscribed to a specific service. Due to the fact that this would require sending
yet another PUSH_PROMISE frame over an already promised stream, which is not viable as
demonstrated, HTTP/2 Server Push can obviously not be used for this purpose. The preceding
evaluation of Server Push took a closer look at its behavior in case the entire connection is
closed client-side after a stream has been already promised to be pushed via PUSH_PROMISE
frame. It turned out that in all cases the script execution stopped immediately. Hence, the
pushed stream’s behavior on cancellation is identical to the behavior of the stream delivering the
requested content on the regular way.

Beside the evaluation of implemented improvements of HTTP/2, other aspects essential to the
intended use of HTTP/2 were evaluated. Due to the relatively vague description of the libcurl’s
multi handle function range, there was a chance that libcurl could do some kind of automatic
smart multiplexing, which would have massively simplified multiplexing spanning over thread- or
process borders. As expected, this test turned out that no automatic multiplexing takes place
and consequently a central component is required which handles outgoing connections
dynamically.

Another evaluation was conducted as a consequence to the libcurl multi handle acting up with
parallel processing of added multi handles with the internal Apache PHP module. As it turned
out, the internal PHP module was unable to execute multiple single handles added to a multi
handle in parallel - unlike the FastCGl Process Manager. The reason for this is yet unclear and
has not been further investigated, as the SANE should anyway not be bound to one specific web
server and therefore rather be able to operate via PHP-FPM, which is also used by other web
servers.

Whether this constraint actually applies is checked in the last evaluation, which verified that the
execution paths touched in the course of this thesis remain functional. As it turned out, the used
versions of PHP are lacking one function that - according to the official PHP documentation -
should definitely be available from version 5.4 on. As a matter of fact, it was not - neither in
version 5.6 nor in version 7.1 of PHP-FPM. Luckily, the missing function could easily be
reproduced and included in the SANE. Hence it is guaranteed for the concerned execution path
to run on any version of PHP over FastCGl.

7.2 PERSPECTIVE AND FUTURE WORK

72.1 In General

In order for the Internet users and content providers to profit from employing HTTP/2, many
previously employed optimization techniques have to be reversed, as they either bear no more
advantages or can even be detrimental, as pointed out. Then, HTTP/2 promises an overall better
Internet experience.

97

However will it even improve further, as new protocols are already waiting in the wings that
pursue the same goal:

The Quick UDP Internet Connections protocol, another Google development, aims to compete
with TCP to provide a reliable network abstraction over an unreliable channel. In difference to
TCP it is UDP based and therefore connection-less, what cuts down the number of required
round-trips for handshake, encryption setup and initial request to O (in the optimal case) prior to
transmitting actual data while still offering TCP-like congestion control and recovery of lost
packets. It was developed especially with multiplexing in mind as, with out-of-order delivery, a
single lost packet will also stall only one stream within the QUIC connection, not the entire
connection like TCR

Also the upcoming TLS in version 1.3 promises, aside from being more secure, to further reduce
the required round-trips for resuming previously established connection from 1 round-trip (1-RTT)
with TLS 1.2 to 0 round-trips (0-RTT), what further reduces the influence of latency for these
cases.

72.2 For the SANE

The findings of this thesis suggest a lot more work has to be put into the SANE to make it
HTTP/2 proof. First of all it has to be ensured that the SANE is able to run on PHP 7.1 as only this
version and probably versions above allow all of the HTTP/2 features already implemented in
libcurl, for the P — S link between proxy and server, to actually to be used. To ensure this, the
SANE should be carefully evaluated and unit tests should be designed and tested against the
current target version 5.6 of PHP. This allows regression testing against the SANE running on
PHP 7.1 to verify it operates correctly.

When the SANE's operation capability on PHP 7.1 is ensured, the first step should be to
implement the aforementioned connection broker component, which centrally manages
outgoing requests and their responses to multiplex them onto one common connection to a
server. In the current state of the software, the use of HTTP/2 for outgoing requests, developed
by Pu, has not yet consequently been integrated, what could be done along the way. Moreover,
a central connection management instance facilitates the use of Stream Reset, as it naturally
only makes sense for multiplexed connections. To extend the Server Push feature, which has
been implemented on the C — P link in this thesis, to the server and thereby to the entire virtual
C — P — S link, the incoming Server Pushes have to be handled and processed accordingly, what
also requires PHP 7.1, as previous versions do not provide the necessary bindings to libcurl.

As soon as future versions of PHP 7 also support Stream Prioritization, like libcurl already does, it
can be implemented as proposed to assign priorities to streams representing a particular SANE
operation. Finally, if both libcurl and PHP also support Flow Control on application level it may be
used for load controlling individual streams within a connection in addition to prioritizing them.

Naturally, all those improvements also need to be supported by the SANE's respective peers
Client and Server. As Server Push has already been implemented on the SANE in the course of
this thesis, one could begin with also implementing this feature for the MapBiquitous client,
according to the specifications in this thesis, to transmit parameter values in the header via GET
request and handle the resulting incoming push responses. The crowdsourcing servers however
need, aside from the Server Push implementation, only an upgrade of its web servers to
support HTTP/2.

98

A CODE SNIPPETS

N —

OO~ WN -

C — P Stream Reset test source code

Listing A.1: dl-closetest.php

<?php
$run = true;
$lorem = "Lorem ipsum dolor sit amet, co

diam nonumy eirmod tempor invidunt ut
aliguyam erat, sed diam voluptua. At

duo dolores et ea rebum. Stet clita kasd gubergren,

sanctus est Lorem ipsum dolor
ignore_user_abort(true) ;

sit amet. ";

nsetetur sadipscing elitr, sed
labore et dolore magna
vero eos et accusam et justo

no sea takimata

filename=lorem. txt");

header("Content—Description: File Transfer");
header("Content—Type: text/plain");
header("Content—Disposition: attachment;
header ("' Expires: 0");
header (" Cache—Control: no—cache");
header('Transfer—Encoding: chunked’);
ob_flush () ;
flush () ;
while ($run) {
echo "0";
ob_flush () ;
flush () ;
if (connection_aborted ()) {
$run = false;
endPacket () ;
exit();

}
usleep(10000);
echo S$lorem
ob_flush () ;
flush () ;

“\n";

}

function endPacket() {
echo "O\r\n\r\n";
ob_flush () ;
flush () ;

C — P Server Push test source code

Listing A.2: filestream.php

<?php
header (" Connection: Keep—Alive");
header ("' Expires: 0");
header (" Cache—Control: must-revalidate ,
header (" Content—Type: text/plain");

(

header('Transfer—Encoding: chunked’);

100

post—check=0, pre—check=0");

NN
— O © 00

12
13
14
15
16
17
18
19
20
21
22

QOWoOoONOOOaPRWN -

—_

N

13
14
15
16

17
18
19
20
21
22
23
24
25
26

ob_flush () ;
flush () ;

$run = true;
$lorem="Lorem ipsum dolor sit amet, consetetur sadipscing elitr ,
diam nonumy eirmod tempor invidunt ut labore et dolore magna

sed

aliguyam erat, sed diam voluptua. At vero eos et accusam et justo
duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata

sanctus est Lorem ipsum dolor sit amet.

$i=0;
while ($i < 5) {
sleep (5);
$i++;
echo "(".%i.")".$lorem."\n"
ob_flush () ;
flush () ;
}
exit();
?>

P — S Stream Reset test source code

Listing A.3: ps-closetest-timedabort.php

<?php

$timeToWaitBeforeExecution = 500000; //0.5 seconds

$timeToWaitBeforeCancelationSingleHandle = 3000000; // 3 seconds

$timeToWaitBeforeCancelationMultiHandle = 5000000; // 5 seconds

SurlTest = "http://localhost/poc/dl—closetest2 .php";

$urlldle = "http://localhost/poc/idlestream .php";

$ch = array () ;

// Initialize connection using the libcurl multi interface

$mh = curl_multi_init () ;

//use multiplexing and wait for first connection to have settled

order to use same connection for future requests

curl_multi_setopt ($mh, CURLMOPT_PIPELINING, CURLPIPE_MULTIPLEX) ;

$ch[0] = curl_init($urlTest);

$ch[1] = curl_init($urlldle);

foreach ($ch as $clienthandle) {
curl_setopt($clienthandle , CURLOPT_HEADER, O0);
curl_setopt($clienthandle , CURLOPT_HTTP_VERSION,

CURL_HTTP_VERSION_2_0) ;

curl_setopt($clienthandle , CURLOPT_SSL_VERIFYHOST, O0);
curl_setopt($clienthandle , CURLOPT_SSL_VERIFYPEER, 0);
curl_setopt($clienthandle , CURLOPT_PIPEWAIT, 1);
curl_setopt($clienthandle , CURLOPT_RETURNTRANSFER, 1);
curl_multi_add_handle ($mh, $clienthandle) ;

1

usleep ($timeToWaitBeforeExecution) ;

$isActive = null;

// clear out curl buffer

do{

in

101

27
28
29
30
31
32
33
34
35
36
37
38

39

40
41
42
43
44
45
46
47
48
49
50
51
52

rON o

$mrc = curl_multi_exec ($mh, $isActive) ;
} while ($mrc == CURLM_CALL _MULTI_PERFORM) ;

$startTime = time () ;
// execution
$chORemoved=false ;
while ($isActive &% $mrc==CURLM_OK) {
[/ wait until network is ready
if (curl_multi_select ($mh) = —1) {
do {
$mrc = curl_multi_exec ($mh, S$isActive);
$isActive=(time ()—$startTime <
$timeToWaitBeforeCancelationMultiHandle /
1000000) ;
if (time ()—$startTime >=
$timeToWaitBeforeCancelationSingleHandle /
1000000 && !$chORemoved) {
curl_multi_remove_handle ($mh, $ch[0]) ;
$chORemoved = true;
1
} while ($mrc == CURLM_CALL_MULTI_PERFORM && isActive);
}
}
if ($mrc = CURLM_OK) {
curl_close ($ch[0]) ;
curl_multi_remove_handle ($mh, $ch[1]);
curl_close ($ch[1]);

curl_multi_close ($mh) ;
if ($response) print_r ($response) ;
?>
Listing A.4: dl-closetest2.php
<?php

ignore_user_abort(true);

$run = true;

$lorem = "Lorem ipsum dolor sit amet, consetetur sadipscing elitr , sed
diam nonumy eirmod tempor invidunt ut labore et dolore magna
aliguyam erat, sed diam voluptua. At vero eos et accusam et justo
duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata
sanctus est Lorem ipsum dolor sit amet.

header("Content—Description: File Transfer");
header (" Content—Type: text/plain");
header("Content—Disposition: attachment; filename=lorem.txt");
header ("' Expires: 0");
header ("Cache—Control: no—cache");
ob_flush () ;
flush () ;
while ($run) {

echo $lorem . "\n'

ob_flush () ;

flush () ;

if (connection_aborted ()) {
$run = false;

102

19
20
21
22
23
24
25
26
27
28
29
30

OoOoONOOOaPRWN =

endPacket () ;
exit();
}
sleep (1) ;
1

function endPacket() {
echo "O\r\n\r\n";

ob_flush () ;
flush () ;
1
7>
Listing A.5: idlestream.php
<?php
header (" Connection: Keep—Alive");

header (" Cache—Control: must—-revalidate , post—check=0, pre—check=0");
header("Content—Type: text/plain");
header('Transfer—Encoding: chunked ') ;
ob_flush () ;
flush () ;
$run = true;
$i = 0;
// output every 100 ms to avoid stream being closed
while ($run) {
usleep(100000) ;
echo "(" . ++$%i . ")\n"
ob_flush () ;
flush () ;
if (connection_aborted ()) {
$run = false;
endPacket () ;

(I\
header ("' Expires: 0");

("

("

}

exit();

function endPacket () {
echo "O\r\n\r\n";
ob_flush () ;
flush () ;

103

WN -

O OVWWONO O~

N — - _
QOWONO O WN

NN
N —

WINDNNDNNNN
SQOWoOoNOoO Ok Ww

w W
NA

33
34
35
36
37
38
39
40
41

rWN o

P — S Server Push test source code

Listing A.6: ps-serverpushtest.php

<?php
$transfers = 1;

$server_push_callback = function ($parent_ch, $pushed_ch, array S$headers

Juse(&$transfers) {
error_log () ;
$transfers ++;
return CURL_PUSH_OK;
1

// Initialize connection using the libcurl multi interface

$mh = curl_multi_init () ;

//use multiplexing and wait for first connection to have settled in
order to use same connection for future requests

curl_multi_setopt ($mh, CURLMOPT_PIPELINING, CURLPIPE_MULTIPLEX) ;

curl_multi_setopt ($mh, CURLMOPT_PUSHFUNCTION, $server_push_callback);

$chRequest = curl_init () ;

curl_setopt ($chRequest, CURLOPT_HEADER, O0);

curl_setopt ($chRequest, CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_2_0);

curl_setopt ($chRequest, CURLOPT_SSL_VERIFYHOST, 0);

curl_setopt ($chRequest, CURLOPT_SSL_VERIFYPEER, O0);

curl_setopt ($chRequest, CURLOPT_PIPEWAIT, 1);

curl_setopt ($chRequest, CURLOPT_RETURNTRANSFER, 1);

curl_multi_add_handle ($mh, $chRequest) ;

$isActive = null;

do {
$status = curl_multi_exec (mh, SisActive);
do {
$info = curl_multi_info_read ($mh) ;
if ($info == false && $infol] == CURLMSG_DONE) {
$handle = $infol l;
if ($handle == null) {
$transfers ——;

$response = curl_multi_getcontent($info

[1)

curl_multi_remove_handle ($mh, $handle) ;

curl_close ($handle) ;

}
} while ($info) ;
} while ($transfers) ;
curl_multi_close ($mh) ;
print (.$response) ;
?>

Listing A.7: pushtest_insecure.php

<?php

header () ;

header () ;

header ();

104

5 \header(”Link: <http ://localhost/poc/filestream .php>; rel=preload; as
document", false);
6 ?>

C — P — S Stream Reset test source code

Listing A.8: cps-reset/serverindex.php

1 | <?php
2 |header{"Content—Description: File Transfer");
3 | header("Content—Type: text/plain");
4 |header("Connection: Keep—Alive");
5 |header (" Expires: 0");
6 |header("Cache—Control: no—cache");
7 |ob_flush () ;
8 |flush () ;
9
10 | $run = true;
11 | while ($run) {
12 echo "0";
13 ob_flush () ;
14 flush () ;
15 if (connection_aborted ()) {
16 $run=false;
17 endPacket () ;
18 exit();
19 }
20 usleep(100000) ;
21 |}
22
23 function endPacket() {
24 echo "0O\r\n\r\n";
25 ob_flush () ;
26 flush () ;
27 |}
28 | ?>
Listing A.9: cps-reset/proxy-index.php
1 | <?php
2 |$urlTest = "http://localhost/poc/cps—reset/server—index.php";
3 | $urlldle = "http://localhost/poc/idlestream .php";
4 |ignore_user_abort(true);
5 |$ch = array () ;
6 | //Initialize connection using the libcurl multi interface
7 ($mh = curl_multi_init () ;
8 | //use multiplexing and wait for first connection to have settled in
order to use same connection for future requests
9 curl_multi_setopt ($mh, CURLMOPT_PIPELINING, CURLPIPE_MULTIPLEX) ;
10 [$ch = array () ;
11 |$ch[0] = curl_init($urlTest);
12 |$ch[1] = curl_init(S$urlldle);

105

13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39

40

41
42
43
44

45
46
47
48
49
50
51
52

foreach ($ch as $clienthandle) {
curl_setopt($clienthandle , CURLOPT_HEADER, O0);
curl_setopt($clienthandle , CURLOPT_HTTP_VERSION,

CURL_HTTP_VERSION_2_0) ;

curl_setopt($clienthandle , CURLOPT_SSL_VERIFYHOST, 0);
curl_setopt($clienthandle, CURLOPT_SSL_VERIFYPEER, O0);
curl_setopt($clienthandle , CURLOPT_PIPEWAIT, 1);
curl_setopt($clienthandle , CURLOPT_RETURNTRANSFER, 1);
curl_multi_add_handle ($mh, $clienthandle) ;

1

$isActive = null;

// clear out curl buffer

do{
$mrc = curl_multi_exec ($mh, $isActive) ;

} while ($mrc == CURLM_CALL_MULTI_PERFORM) ;

$stopTime = null;
/] execution
while ($isActive &% $mrc==CURLM_OK) {
//wait until network is ready
if (curl_multi_select ($mh) = —1) {
do {
$mrc = curl_multi_exec ($mh, S$isActive);
it ($stopTime != null) S$isActive = ((
time ()—$stopTime) < 1); //give curl
time to settle, execution stopped
1 seconds after connection abort

echo ;
ob_flush () ;
flush () ;
if (connection_aborted () &&% ($stopTime
==null)) {
curl_multi_remove_handle ($mh,
$ch([0]);

$stopTime = time () ;
1
usleep(100000);
} while ($mrc == CURLM_CALL_MULTI_PERFORM && $isActive)

}
1
sleep (1) ;
curl_close ($ch[01]);
curl_multi_remove_handle ($mh, $ch[1]) ;
curl_close ($ch[1]);
curl_multi_close ($mh) ;
?>

106

OO~ WN —

C — P — S Server Push test source code

Listing A.10: cps-push/serverindex.php

<?php

$headerString=

foreach (getallheaders () as $name => S$value) {
$headerString.= $name. .$value.

}

$headerStringHash = hash(,$headerString) ;
$mcd = new Memcached () ;

$mcd—>addServer (. 11211);

$mcd—>set ($headerStringHash , $headerString) ;

header ();
header ();
header (),
header (
$headerStringHash . , false);
?>

Listing A.11: cps-push/proxy-index.php

<?php
$transfers = 1;
$server_push_callback = function ($parent_ch, $pushed_ch, array $headers
Juse(&$transfers) {
error_log ()
$transfers ++;
return CURL_PUSH_OK;
1

// extract headers into array

$headerArray = array () ;

$i = 0;

foreach (getallheaders () as $key => S$value) {
$headerArray [$i++]=Skey. .$value;

1

// Initialize connection using the libcurl multi interface
$mh = curl_multi_init();
//use multiplexing and wait for first connection to have settled in
order to use same connection for future requests
curl_multi_setopt ($mh, CURLMOPT_PIPELINING, CURLPIPE_MULTIPLEX) ;
curl_multi_setopt ($mh, CURLMOPT_PUSHFUNCTION, $server_push_callback) ;
$chRequest = curl_init(
).
curl_setopt ($chRequest, CURLOPT_HEADER, O0);
curl_setopt ($chRequest, CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_2_0);
curl_setopt ($chRequest, CURLOPT_SSL_VERIFYHOST, O0);
curl_setopt ($chRequest, CURLOPT_SSL_VERIFYPEER, 0);
curl_setopt($chRequest, CURLOPT_PIPEWAIT, 1);
curl_setopt ($chRequest, CURLOPT_RETURNTRANSFER, 1);
curl_setopt ($chRequest, CURLOPT_HTTPHEADER, $headerArray);

107

29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

OO wWON -

OOk~ WON -

curl_multi_add_handle ($mh, $chRequest) ;

$status = curl_multi_exec (mh, SisActive);

$isActive = null;
do {
do {
$info =
if($info
}
} while ($info);
} while ($transfers) ;

curl_multi_close ($mh) ;

$responseHash = hash(
$mcd = new Memcached () ;
$mcd—>addServer (
$mcd—>set ($responseHash,

//in callback:

header (

header () ;

header (

header (
$responseHash .

?>

curl_multi_info_read ($mh) ;

I== false &% $infol CURLMSG_DONE) {

] ==

$handle = $infol l;
if ($handle !== null) {
$transfers —;
$response = curl_multi_getcontent($info

[1);
curl_multi_remove_handle ($mh, $handle) ;
curl_close ($handle) ;

, $response) ;

11211);
$response) ;

trigger push to client

b

false);

Listing A.12: cps-push/proxy-pusher.php

<?php
$med = new Memcached () ;
$mcd—>addServer (

$payload = $mcd—>get ($_GETI

print ($payload) ;
?>

11211) ;
1) ;

Listing A.13: cps-push/serverpusher.php

<?php
$mcd = new Memcached () ;
$mcd—>addServer (

$payload = $mcd—>get ($_GETI

print ($payload) ;
?>

108

11211) ;
1);

B TESTSETUP

Hardware - Dell Inspiron 7537

CPU Intel Core i7-4500U

RAM 8 GB DDR31-1600

Storage Device Samsung SSD 840 EVO 256 GB
GPU NVidia GeForce GT 750M

Software - LAMP Stack

0s Linux Mint 18 Sarah

Kernel 4.4.0-45 generic

Webserver Apache/2.4.25 (Ubuntu)

Database MySQL 14.14 Distrib 5.7.17 (x86_64)
PHP 5.6.30-1+deb.sury.org xenial+1

Apache 2.0 handler
Webbrowser Chromium 55.0.2883.87
Wireshark 2.0.2

110

C COMMUNICATION PROTOCOLS

Headers example

Listing C.1: Request headers example

HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 332

112

[Header Length: 632]

[Header Count: 15]

Header: :method: POST
Name Length: 7
Name: :method
Value Length: 4
Value: POST

Representation: Indexed Header

Index: 3
Header: :authority: localhost
Name Length: 10
Name: :authority
Value Length: 9
Value: localhost

Representation: Literal Header

Indexing — Indexed Name
Index: 1
Header: :scheme: https
Name Length: 7
Name: :scheme
Value Length: b5
Value: https

Representation: Indexed Header

Index: 7

Header: :path: /SANE/
Name Length: b5
Name: :path
Value Length: 6
Value: /SANE/

Representation: Literal Header

Name
Header: content—length: 30
Name Length: 14
Name: content—length
Value Length: 2

Value: 30

Representation: Literal Header
Indexing — Indexed Name

Index: 28

Header: cache—control: max—age=0

Name Length: 13
Name: cache—control
Value Length: 9
Value: max—age=0

Representation: Literal Header

Indexing — Indexed Name
Index: 24

Header: origin: https://localhost

Name Length: 6

Field

Field

Field

Field

Field

Field

with

Incrementa

without Indexing — New

with

with

Incrementa

Incrementa

48
49
50
51

52
53
54
55
56
57

58

59
60
61
62

63

64
65
66
67
68
69
70

71
72

73
74
75
76

77

78
79
80
81
82
83
84

85
86
87
88
89
90

Name: origin

Value Length: 17

Value: https://localhost

Representation: Literal Header Field with Incremental
Indexing — New Name

Header: upgrade—insecure—requests: 1

Name Length: 25

Name: upgrade—insecure—requests

Value Length: 1

Value: 1

Representation: Literal Header Field with Incremental
Indexing — New Name

Header: user—agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit

/537.36 (KHTML, like Gecko) Ubuntu Chromium/55.0.2883.87

Chrome/55.0.2883.87 Safari/537.36

Name Length: 10

Name: user—agent

Value Length: 133

Value: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (
KHTML, like Gecko) Ubuntu Chromium/55.0.2883.87 Chrome
/55.0.2883.87 Safari/537.36

Representation: Literal Header Field with Incremental
Indexing — Indexed Name

Index: 58

Header: content—type: application/x-wwwwform—urlencoded

Name Length: 12

Name: content—type

Value Length: 33

Value: application/x-wwwform—urlencoded

Representation: Literal Header Field with Incremental
Indexing — Indexed Name

Index: 31

Header: accept: text/html, application/xhtml+xml, application/xml

:q=0.9,image/webp, x/x;q=0.8

Name Length: 6

Name: accept

Value Length: 74

Value: text/html,application/xhtml+xml, application/xml;qg
=0.9,image/webp, */x;q=0.8

Representation: Literal Header Field with Incremental
Indexing — Indexed Name

Index: 19

Header: dnt: 1

Name Length: 3

Name: dnt

Value Length: 1

Value: 1

Representation: Literal Header Field with Incremental
Indexing — New Name

Header: referer: https://localhost/SANE/

Name Length: 7

Name: referer

Value Length: 23

Value: https://localhost/SANE/

Representation: Literal Header Field with Incremental
Indexing — Indexed Name

113

91
92
93
94
95
96
97

98

99
100
101
102
103
104

105

—
QWO NOoOOOTPWN =

M
12

13
14
15
16
17
18
19

20
21
22
23
24
25
26

27
28
29
30
31
32

Index: 51
Header: accept—encoding: gzip, deflate, br
Name Length: 15
Name: accept—encoding
Value Length: 17
Value: gzip, deflate, br
Representation: Literal Header Field with Incrementa
Indexing — Indexed Name
Index: 16
Header: accept—language: en-US,en;q=0.8,de;q=0.6
Name Length: 15
Name: accept—language
Value Length: 23
Value: en-US,en;q=0.8,de;q=0.6
Representation: Literal Header Field with Incrementa
Indexing — Indexed Name
Index: 17

Listing C.2: Response headers example

HyperText Transfer Protocol 2

114

Stream: HEADERS, Stream ID: 1, Length 77

[Header Length: 164]
[Header Count: 6]
Header table size update
Header table size: 4096
Header: :status: 409
Name Length: 7
Name: :status
Value Length: 3

Value: 409

Representation: Literal Header Field with Incrementa
Indexing — Indexed Name

Index: 8

Header: date: Wed, 25 Jan 2017 20:29:19 GMT
Name Length: 4
Name: date
Value Length: 29
Value: Wed, 25 Jan 2017 20:29:19 GMT
Representation: Literal Header Field with Incrementa
Indexing — Indexed Name
Index: 33
Header: server: Apache/2.4.25 (Ubuntu)
Name Length: 6
Name: server
Value Length: 22
Value: Apache/2.4.25 (Ubuntu)
Representation: Literal Header Field with Incrementa
Indexing — Indexed Name
Index: b4
Header: content—length: 498
Name Length: 14
Name: content—length
Value Length: 3
Value: 498

33

34
35
36
37
38
39
40

41

—_

17

18
19

20
21
22
23
24
25
26
27
28

29

Representation: Literal Header Field without Indexing —
Indexed Name

Index: 28

Header: content—type: text/plain;charset=UTF-8

Name Length: 12

Name: content—type

Value Length: 24

Value: text/plain;charset=UTF-8

Representation: Literal Header Field with Incrementa
Indexing — Indexed Name

Index: 31

C — P Stream Reset test

Listing C.3: C — P Stream Reset test protocol
34 0.039048314 50618 443 HTTP2 389 HEADERS

Frame 34: 389 bytes on wire (3112 bits), 389 bytes captured (3112 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 50618 (50618), Dst Port: 443
(443), Seq: 502, Ack: 1501, Len: 303
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 265
Header: :method: GET
Header: :scheme: https
Header: :path: /closeTest.php

40 0.040109307 443 50618 HTTP2 488 HEADERS, DATA

Frame 40: 488 bytes on wire (3904 bits), 488 bytes captured (3904 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 50618
(50618), Seq: 1630, Ack: 843, Len: 402
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 226
Header: :status: 200
Stream: DATA, Stream ID: 1, Length 129

45 2.362650979 50618 443 HTTP2 158 HEADERS
Frame 45: 158 bytes on wire (1264 bits), 158 bytes captured (1264 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

115

30
31

32
33
34
35
36
37
38
39
40
41

42

43
44

45
46
47
48
49
50
51
52

53
54
55
56
57
58

59

60
61

62
63
64
65
66
67
68

69

70
71

72
73
74

Internet Protocol Version 6, Src: ::1, Dst: ::1
Transmission Control Protocol, Src Port: 50618 (50618), Dst Port: 443
(443), Seqg: 938, Ack: 2347, Len: 72
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 5, Length 34
Header: :method: GET
Header: :authority: localhost
Header: :path: /dl—closeTest.php

46 2.398878243 443 50618 HTTP2 4065 HEADERS, DATA

Frame 46: 4065 bytes on wire (32520 bits), 4065 bytes captured (32520
bits) on interface 0

Ethernet |l , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 50618

(50618), Seq: 2347, Ack: 1010, Len: 3979
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 5, Length 285
Header: :status: 200
Header: content—description: File Transfer
Header: content—disposition: attachment; filename=lorem. txt
Header: expires: O
Header: cache—control: must-revalidate , post—check=0, pre—check
=0
Header: pragma: public
Stream: DATA, Stream ID: 5, Length 3647

48 2.429836609 443 50618 HTTP2 4058 DATA

Frame 48: 4058 bytes on wire (32464 bits), 4058 bytes captured (32464
bits) on interface 0

Ethernet |l , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 50618

(50618), Seq: 6326, Ack: 1010, Len: 3972
Secure Sockets Layer
HyperText Transfer Protocol 2

Stream: DATA, Stream ID: 5, Length 3934

164 4.698210043 443 50618 HTTP2 4058 DATA

Frame 164: 4058 bytes on wire (32464 bits), 4058 bytes captured (32464
bits) on interface 0O

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 50618
(50618), Seq: 267441, Ack: 1010, Len: 3972

Secure Sockets Layer

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 5, Length 3934

116

75
76
77
78

79

80
81

82
83
84
85

14
15

16

17
18

19
20
21
22
23
24
25

165 4.716882024 50618 443 HTTP2 128 RST_STREAM

Frame 165: 128 bytes on wire (1024 bits), 128 bytes captured (1024 bits
) on interface O

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 50618 (50618), Dst Port: 443

(443), Seq: 1010, Ack: 271413, Len: 42
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: RST_STREAM, Stream ID: 5, Length 4
Error: CANCEL (8)

C — P Server Push test

Listing C.4: C — P Server Push test protocol via GET request

37 0.016653157 2 40320 2
443 HTTP2 410 HEADERS

Frame 37: 410 bytes on wire (3280 bits), 410 bytes captured (3280 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 40320 (40320), Dst Port: 443
(443), Seq: 758, Ack: 242, Len: 324
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 286
Header: :method: GET
Header: :path: /pushtest.php

39 0.017931286 2 443 2
40320 HTTP2 896
PUSH_PROMISE, HEADERS, DATA

Frame 39: 896 bytes on wire (7168 bits), 896 bytes captured (7168 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 40320
(40320), Seq: 242, Ack: 1082, Len: 810
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: PUSH_PROMISE, Stream ID: 1, Length 249
.000 0000 0000 0000 0000 0000 0000 0010 = Promised—Stream—ID: 2
Header: :path: /filestream .php
Header: :method: GET
Stream: HEADERS, Stream ID: 1, Length 156

17

26
27

28
29
30
31
32

33
34

35

36
37

38
39
40
41
42
43
44

45
46

47

48
49

50
51
52

(0]

—_
- O © 00

Header: :status: 200
Header: cache—control: must-revalidate , post—check=0, pre—check
=0
Header: link: </filestream .php>; rel=preload; as=document
Header: push—policy: default
Stream: DATA, Stream ID: 1, Length 349

41 5.018174901 2 443 21
40320 HTTP2 458 HEADERS,
DATA

Frame 41: 458 bytes on wire (3664 bits), 458 bytes captured (3664 bits)
on interface 0

Ethernet |l , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 40320

(40320), Seg: 1052, Ack: 1082, Len: 372
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 2, Length 25
Header: :status: 200
Stream: DATA, Stream ID: 2, Length 300

43 10.018259171 2 443 2
40320 HTTP2 424 DATA

Frame 43: 424 bytes on wire (3392 bits), 424 bytes captured (3392 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 40320

(40320), Seq: 1424, Ack: 1082, Len: 338
Secure Sockets Layer
HyperText Transfer Protocol 2

Stream: DATA, Stream ID: 2, Length 300

Listing C.5: C — P Server Push test protocol via POST request

23 0.003171020 21 50072 21
443 HTTP2 472 HEADERS

Frame 23: 472 bytes on wire (3776 bits), 472 bytes captured (3776 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 50072 (50072), Dst Port: 443
(443), Seq: 720, Ack: 147, Len: 386
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 348
Header: :method: POST
Header: :path: /poc/pushtest.php

18

12
13 25 0.003890712 2 443 21
50072 HTTP2 699 SETTINGS,
SETTINGS, WINDOW_UPDATE, HEADERS, DATA
14
15 |Frame 25: 699 bytes on wire (5592 bits), 699 bytes captured (5592 bits)
on interface 0

16 | Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
17 Internet Protocol Version 6, Src: ::1, Dst: ::1

18 ' Transmission Control Protocol, Src Port: 443 (443), Dst Port: 50072
(60072), Seq: 147, Ack: 1106, Len: 613

19 | Secure Sockets Layer

20 ' HyperText Transfer Protocol 2

21 Stream: HEADERS, Stream ID: 1, Length 158

22 Header: :status: 200

23 Header: link: <https://localhost/poc/filestream .php>; rel=
preload; as=document

24 Stream: DATA, Stream ID: 1, Length 371

P — S Stream Reset test

Listing C.6: Wireshark protocol under usage of PHP 5.6

1 26 0.006446702 2 34174 2
443 HTTP2 6388 HEADERS

3 |Frame 26: 6388 bytes on wire (51104 bits), 6388 bytes captured (51104
bits) on interface 0

4 |Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
5 Internet Protocol Version 6, Src: ::1, Dst: ::1

6 [Transmission Control Protocol, Src Port: 34174 (34174), Dst Port: 443
(443), Seq: 795, Ack: 1781, Len: 6302

7 | Secure Sockets Layer

8 | HyperText Transfer Protocol 2

9 Stream: HEADERS, Stream ID: 1, Length 6264

10 Header: :method: GET

1 Header: :path: /poc/ps—closetest—timedabort.php

12

13 33 0.508560214 127.0.0.1 51726 127.0.0.1
80 HTTP 220 GET /poc/dl—

closetest2.php HTTP/1.1

14

15 | Frame 33: 220 bytes on wire (1760 bits), 220 bytes captured (1760 bits)
on interface 0

16 | Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

17 | Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

18 | Transmission Control Protocol, Src Port: 51726 (51726), Dst Port: 80
(80), Seq: 1, Ack: 1, Len: 154

19 |Hypertext Transfer Protocol

20

119

21

22
23

24

25
26

27
28
29

30
31

32

33
34

35
36
37

38
39

40

41
42

43
44
45

46
47

48

49
50

51
52
53
54
55
56

38 0.508640210 127.0.0.1 51728 127.0.0.1
80 HTTP 217 GET /poc/
idlestream .php HTTP/1.1

Frame 38: 217 bytes on wire (1736 bits), 217 bytes captured (1736 bits)
on interface 0O

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 51728 (51728), Dst Port: 80
(80), Seq: 1, Ack: 1, Len: 151

Hypertext Transfer Protocol

40 0.508889763 127.0.0.1 80 127.0.0.1
51728 HTTP 137 HTTP/1.1 101
Switching Protocols

Frame 40: 137 bytes on wire (1096 bits), 137 bytes captured (1096 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51728
(61728), Seqg: 1, Ack: 152, Len: 71

Hypertext Transfer Protocol

41 0.508889778 127.0.0.1 80 127.0.0.1
51726 HTTP 137 HTTP/1.1 101
Switching Protocols

Frame 41: 137 bytes on wire (1096 bits), 137 bytes captured (1096 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51726
(b1726), Seq: 1, Ack: 155, Len: 71

Hypertext Transfer Protocol

52 0.509709085 127.0.0.1 80 127.0.0.1
51726 HTTP2 542 SETTINGS,
SETTINGS, WINDOW_UPDATE, HEADERS, DATA

Frame 52: 542 bytes on wire (4336 bits), 542 bytes captured (4336 bits)
on interface 0
Ethernet |l , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51726
(61726), Seq: 72, Ack: 200, Len: 476
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 124
Header: :status: 200
Header: content—description: File Transfer
Header: content—disposition: attachment; filename=lorem. txt
Stream: DATA, Stream ID: 1, Length 297

120

57
58

59
60

61

62
63

64
65
66
67

68
69

70

71
72

73
74
75
76
77
78

79
80

81

82
83

84
85
86
87

88
89

90

91
92

93
94
95

56 1.509870601 127.0.0.1 80 127.0.0.1
51726 HTTP2 372 DATA

Frame 56: 372 bytes on wire (2976 bits), 372 bytes captured (2976 bits)
on interface 0O

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51726
(51726), Seq: 548, Ack: 209, Len: 306

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 297

57 1.509905348 127.0.0.1 80 127.0.0.1
51728 HTTP2 187 HEADERS, DATA

Frame 57: 187 bytes on wire (1496 bits), 187 bytes captured (1496 bits)
on interface 0
Ethernet |l , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51728
(61728), Seqg: 109, Ack: 206, Len: 121
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 99
Header: :status: 200
Stream: DATA, Stream ID: 1, Length 4

60 2.510027674 127.0.0.1 80 127.0.0.1
51726 HTTP2 372 DATA

Frame 60: 372 bytes on wire (2976 bits), 372 bytes captured (2976 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51726
(61726), Seq: 854, Ack: 209, Len: 306

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 297

61 2.510027639 127.0.0.1 80 127.0.0.1
51728 HTTP2 79 DATA

Frame 61: 79 bytes on wire (632 bits), 79 bytes captured (632 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51728
(61728), Seq: 230, Ack: 206, Len: 13

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 4

121

96

97
98

99

100
101

102
103
104
105
106
107

108
109

110

1M
112

113
14
115
116

69 3.510434931 127.0.0.1 80 127.0.0.1
51726 HTTP2 83 GOAWAY

Frame 69: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) on
interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51726
(51726), Seq: 1466, Ack: 210, Len: 17
HyperText Transfer Protocol 2
Stream: GOAWAY, Stream ID: 0, Length 8
.000 0000 0000 0000 0000 0000 0000 0001 = Promised—Stream—ID: 1
Error: NO_ERROR (0)

76 5.510905214 127.0.0.1 80 127.0.0.1
51728 HTTP2 83 GOAWAY

Frame 76: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) on
interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51728
(61728), Seq: 282, Ack: 207, Len: 17
HyperText Transfer Protocol 2
Stream: GOAWAY, Stream ID: 0, Length 8
.000 0000 0000 0000 0000 0000 0000 0001 = Promised—Stream—ID: 1
Error: NO_ERROR (0)

Listing C.7: Wireshark protocol under usage of PHP 7.1

25 0.009840310 21 34242 2
443 HTTP2 6388 HEADERS

Frame 25: 6388 bytes on wire (51104 bits), 6388 bytes captured (51104
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 34242 (34242), Dst Port: 443
(443), Seq: 795, Ack: 1781, Len: 6302
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 6264
Header: :method: GET
Header: :path: /poc/ps—closetest—timedabort.php

32 0.511728063 127.0.0.1 51794 127.0.0.1
80 HTTP 220 GET /poc/dl—
closetest2.php HTTP/1.1

Frame 32: 220 bytes on wire (1760 bits), 220 bytes captured (1760 bits)
on interface 0

122

16

17
18

19
20
21

22
23

24

25
26

27
28
29

30
31

32

33
34

35
36
37
38
39
40

41
42

43

44
45

46
47
48
49
50
51
52

53
54

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 51794 (51794), Dst Port: 80
(80), Seq: 1, Ack: 1, Len: 154

Hypertext Transfer Protocol

34 0.511945094 127.0.0.1 80 127.0.0.1
51794 HTTP 137 HTTP/1.1 101
Switching Protocols

Frame 34: 137 bytes on wire (1096 bits), 137 bytes captured (1096 bits)
on interface 0

Ethernet |l , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51794
(61794), Seq: 1, Ack: 155, Len: 71

Hypertext Transfer Protocol

39 0.512056031 127.0.0.1 51794 127.0.0.1
80 HTTP2 106 HEADERS

Frame 39: 106 bytes on wire (848 bits), 106 bytes captured (848 bits)
on interface O
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 51794 (51794), Dst Port: 80
(80), Seq: 200, Ack: 72, Len: 40
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 3, Length 31
Header: :method: GET
Header: :path: /poc/idlestream .php

42 0.513120096 127.0.0.1 80 127.0.0.1
51794 HTTP2 505 HEADERS, DATA

Frame 42: 505 bytes on wire (4040 bits), 505 bytes captured (4040 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51794
(61794), Seqg: 109, Ack: 249, Len: 439
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 124
Header: content—description: File Transfer
Header: content—disposition: attachment; filename=lorem. txt
Stream: DATA, Stream ID: 1, Length 297

44 1.513249870 127.0.0.1 80 127.0.0.1
51794 HTTP2 &7/2 DATA

Frame 44: 372 bytes on wire (2976 bits), 372 bytes captured (2976 bits)
on interface 0

123

55

56
57

58
59
60
61

62
63

64

65
66

67
68
69
70
71

72
73

74

75
76

77
78
79
80
81
82
83

84
85

86

87
88

89
90
91
92

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51794
(51794), Seq: 548, Ack: 249, Len: 306

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 297

52 4.513657678 127.0.0.1 51794 127.0.0.1
80 HTTP2 78 RST_STREAM

Frame 52: 79 bytes on wire (632 bits), 79 bytes captured (632 bits) on
interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 51794 (51794), Dst Port: 80
(80), Seq: 249, Ack: 1772, Len: 13
HyperText Transfer Protocol 2
Stream: RST_STREAM, Stream ID: 1, Length 4
Error: STREAM_CLOSED (5)

55 5.515169020 21 443 2
34242 HTTP2 1663 HEADERS,
DATA

Frame b55: 1663 bytes on wire (13304 bits), 1663 bytes captured (13304
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 34242
(34242), Seq: 1781, Ack: 7135, Len: 1577
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 73
Header: :status: 200
Stream: DATA, Stream ID: 1, Length 1457

58 5.843502547 127.0.0.1 80 127.0.0.1
51794 HTTP2 83 GOAWAY

Frame 58: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) on
interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 51794
(61794), Seq: 1772, Ack: 263, Len: 17
HyperText Transfer Protocol 2
Stream: GOAWAY, Stream ID: 0, Length 8
.000 0000 0000 0000 0000 0000 0000 0011 = Promised—Stream—ID: 3
Error: NO_ERROR (0)

124

W N

o O1

©

10
M
12

13
14

15

16
17

18
19
20
21
22
23

24
25

26

27
28

29
30
31
32
33
34
35

P — S Server Push test

31 0.009273999

Listing C.8: P — S Server Push test via GET request

80

_insec.php HTTP/1.1

Frame 31: 215 bytes on wire (1720 bits),

on interface
Ethernet Il , Src

00:00:00_00:00:00

0

: 00:00:00_00:00:00
(00:00:00:00:00:00)

127.0.0.1

Internet Protocol Version 4, Src:

Transmission Control
(80), Seq: 1,

Hypertext Transfer Proto

Connection:
Upgrade: h2c
[Response in

33 0.009538381

Frame 33: 137 bytes on wire (1096 bits),

Upgrade,
\r\n
frame:

Protocol ,
Ack: 1,

Len:
col

Src Port:

149

33668
HTTP 215

127.0.0.1, Dst:

HTTP2—Settings\r\n

33]

33668
Switching Protocols

on interface 0
: 00:00:00_00:00:00 (00:00:00:00:0

Ethernet Il , Src

00:00:00_00:00:00

127.0.0.1

Internet Protocol Version 4, Src:
Src Port: 80 (80),

Transmission Control

(33668), Seq:

1, Ack:

Hypertext Transfer Proto
Switching Protocols\r\n

HTTP/1.1 101
Upgrade: h2c

[Request in frame:

40 0.010818401

HEADERS,

Frame 40: 660 bytes on wire (5280 bits),

\r\n

Protocol ,
150, Len:

col

311

33668

DATA

on interface 0
: 00:00:00_00:00:00 (00:00:00:00:0

Ethernet Il , Src

00:00:00_00:00:00
Internet Protocol
Transmission Control

(33668), Seq:
HyperText Transf

Header:
Header:

Stream: HEADERS, Stream ID: 1,

Header:

Protocol,
109, Ack:

er Protocol 2
Stream: PUSH_PROMISE, Stream ID: 1, Length 43

.000 0000 0000 0000 0000 0000 0000 0010 =
:path: /poc/filestream .php

:method:

:status:

GET

200

127.0.0.1

Version 4, Src:

80
HTTP 137

(00:00:00:00:00:00)

127.0.0.1, Dst:

71

80
HTTP2 660

(00:00:00:00:00:00)

127.0.0.1, Dst:

Src Port: 80 (80),

204, Len: 594

Length 170

127.0.0.1

GET /poc/pushtest

(00:00:00:00:00:00), Dst:

127.0.0.1

33668 (33668), Dst Port: 80

127.0.0.1
HTTP/1.1 101

0:00), Dst:

127.0.0.1
Dst Port: 33668

127.0.0.1
PUSH_PROMISE,

0:00), Dst:

127.0.0.1
Dst Port: 33668

Promised—Stream—ID:

215 bytes captured (1720 bits)

137 bytes captured (1096 bits)

660 bytes captured (5280 bits)

2

125

36

37
38
39
40

41
42

43

44
45

46
47
48
49

1

12
13

14
15
16
17
18
19
20

21

Header: link: <http://localhost/poc/filestream .php>; rel=
preload; as=document
Header: push—policy: default
Stream: DATA, Stream ID: 1, Length 354

42 5.017117693 127.0.0.1 80 127.0.0.1
33668 HTTP2 432 HEADERS, DATA

Frame 42: 432 bytes on wire (3456 bits), 432 bytes captured (3456 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 33668
(33668), Seq: 703, Ack: 204, Len: 366

HyperText Transfer Protocol 2

Stream: HEADERS, Stream ID: 2, Length 48
Header: :status: 200
Stream: DATA, Stream ID: 2, Length 300
Listing C.9: P — S Server Push test via POST request
31 0.005586456 127.0.0.1 52908 127.0.0.1
80 HTTP 293 POST /poc/pushtest_
insec.php HTTP/1.1
Frame 31: 293 bytes on wire (2344 bits), 293 bytes captured (2344 bits)

on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 52908 (52908), Dst Port: 80
(80), Seq: 1, Ack: 1, Len: 227

33 0.007771016 127.0.0.1 80 127.0.0.1
52908 HTTP 137 HTTP/1.1 101 Switching
Protocols

Frame 33: 137 bytes on wire (1096 bits), 137 bytes captured (1096 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 52908
(62908), Seq: 1, Ack: 228, Len: 71
Hypertext Transfer Protocol
HTTP/1.1 101 Switching Protocols\r\n
Upgrade: h2c\r\n
Connection: Upgrade\r\n
[Request in frame: 31]

38 0.008161286 127.0.0.1 80 127.0.0.1

52908 HTTP2 645 SETTINGS, SETTINGS,
WINDOW_UPDATE, HEADERS, DATA

126

22

23

24
25

26
27
28
29
30
31

(0]

NN
- O O 00

12
13

14

15
16

17

18
19

20
21

22

Frame 38: 645 bytes on wire (5160 bits), 645 bytes captured (5160 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 52908
(52908), Seq: 72, Ack: 273, Len: 579
HyperText Transfer Protocol 2
Stream: SETTINGS, Stream ID: 0, Length 6
Stream: SETTINGS, Stream ID: 0, Length O
Stream: WINDOW_UPDATE, Stream ID: 0, Length 4
Stream: HEADERS, Stream ID: 1, Length 154
Stream: DATA, Stream ID: 1, Length 370

C — P — S Stream Reset test

Listing C.10: C — P — S Stream Reset test protocol

26 0.002412532 2 41120 2
443 HTTP2 421 HEADERS

Frame 26: 421 bytes on wire (3368 bits), 421 bytes captured (3368 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 41120 (41120), Dst Port: 443
(443), Seq: 758, Ack: 242, Len: 335

Secure Sockets Layer

HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 297

31 0.003854788 127.0.0.1 58672 127.0.0.1
80 HTTP 229 GET /poc/cps—
reset/server—index.php HTTP/1.1

Frame 31: 229 bytes on wire (1832 bits), 229 bytes captured (1832 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 58672 (58672), Dst Port: 80
(80), Seq: 1, Ack: 1, Len: 163

Hypertext Transfer Protocol

33 0.003994874 127.0.0.1 80 127.0.0.1
58672 HTTP 137 HTTP/1.1 101
Switching Protocols

Frame 33: 137 bytes on wire (1096 bits), 137 bytes captured (1096 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

127

23
24

25
26
27

28
29

30

31
32

33
34
35
36

37
38

39

40
41

42
43
44
45
46

47
48

49

50
51

52
53
54
55
56
57

58
59

60

61

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 58672
(58672), Seq: 1, Ack: 164, Len: 71

Hypertext Transfer Protocol

38 0.004122385 127.0.0.1 58672 127.0.0.1
80 HTTP2 106 HEADERS

Frame 38: 106 bytes on wire (848 bits), 106 bytes captured (848 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 58672 (58672), Dst Port: 80
(80), Seq: 209, Ack: 72, Len: 40

HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 3, Length 31

40 0.004377003 127.0.0.1 80 127.0.0.1
58672 HTTP2 186 HEADERS, DATA

Frame 40: 186 bytes on wire (1488 bits), 186 bytes captured (1488 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 58672
(b8672), Seq: 109, Ack: 249, Len: 120

HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 101
Stream: DATA, Stream ID: 1, Length 1

41 0.004417134 2 443 2
41120 HTTP2 201 HEADERS,
DATA

Frame 41: 201 bytes on wire (1608 bits), 201 bytes captured (1608 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 41120
(41120), Seq: 242, Ack: 1093, Len: 115

Secure Sockets Layer

HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 67
Stream: DATA, Stream ID: 1, Length 1

46 0.104480206 2 443 2
41120 HTTP2 125 DATA

Frame 46: 125 bytes on wire (1000 bits), 125 bytes captured (1000 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

128

62

63
64
65
66
67

68
69

70

71
72

73
74
75
76

77
78

79

80
81

82
83
84
85

86
87

88

89
90

91
92
93
94
95

96
97

98

99
100

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 41120
(41120), Seq: 357, Ack: 1093, Len: 39

Secure Sockets Layer

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 1

48 0.104500095 127.0.0.1 80 127.0.0.1
58672 HTTP2 76 DATA

Frame 48: 76 bytes on wire (608 bits), 76 bytes captured (608 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 58672
(b8672), Seq: 229, Ack: 258, Len: 10

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 1

50 0.204613737 127.0.0.1 80 127.0.0.1
58672 HTTP2 76 DATA

Frame 50: 76 bytes on wire (608 bits), 76 bytes captured (608 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 58672
(68672), Seq: 239, Ack: 258, Len: 10

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 1

52 0.204627191 2 443 2
41120 HTTP2 125 DATA

Frame 52: 125 bytes on wire (1000 bits), 125 bytes captured (1000 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 41120
(41120), Seq: 396, Ack: 1093, Len: 39

Secure Sockets Layer

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 1

74 0.737457288 2 41120 2
443 HTTP2 128 RST_STREAM

Frame 74: 128 bytes on wire (1024 bits), 128 bytes captured (1024 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 41120 (41120), Dst Port: 443
(443), Seq: 1093, Ack: 630, Len: 42

129

101
102
103
104
105

106
107

108

109
110

M
112
113
114

115
116

117

118
119

120
121
122
123

124
125

126

127
128

129
130
131
132

133
134

135

136
137

138
139
140

Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: RST_STREAM, Stream ID: 1, Length 4

76 0.809046026 127.0.0.1 80 127.0.0.1
58672 HTTP2 76 DATA

Frame 76: 76 bytes on wire (608 bits), 76 bytes captured (608 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 58672
(68672), Seq: 299, Ack: 258, Len: 10

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 1

78 0.906231535 127.0.0.1 80 127.0.0.1
58672 HTTP2 76 DATA

Frame 78: 76 bytes on wire (608 bits), 76 bytes captured (608 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 58672
(b8672), Seq: 309, Ack: 258, Len: 10

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 1

80 0.916144346 127.0.0.1 58672 127.0.0.1
80 HTTP2 79 RST_STREAM

Frame 80: 79 bytes on wire (632 bits), 79 bytes captured (632 bits) on
interface 0

Ethernet |l , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 58672 (58672), Dst Port: 80
(80), Seq: 258, Ack: 319, Len: 13

HyperText Transfer Protocol 2
Stream: RST_STREAM, Stream ID: 1, Length 4

82 1.106958223 127.0.0.1 80 127.0.0.1
58672 HTTP2 148 HEADERS, DATA

Frame 82: 148 bytes on wire (1184 bits), 148 bytes captured (1184 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 58672
(b8672), Seq: 319, Ack: 271, Len: 82

HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 3, Length 60
Stream: DATA, Stream ID: 3, Length 4

130

141
142

143
144

145

146
147

148
149

15
16

17

18
19

20

21
22

23

84 1.207096997 127.0.0.1 80 127.0.0.1
58672 HTTP2 78 DATA

Frame 84: 79 bytes on wire (632 bits), 79 bytes captured (632 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 58672
(b8672), Seq: 401, Ack: 271, Len: 13

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 3, Length 4

C — P — S Server Push test

Listing C.11: C — P — S Server Push test protocol

26 0.003440877 2 39370 2
443 HTTP2 443 HEADERS

Frame 26: 443 bytes on wire (3544 bits), 443 bytes captured (3544 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 39370 (39370), Dst Port: 443
(443), Seq: 758, Ack: 242, Len: 357
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 319
Header: :method: GET
Header: :path: /poc/cps—push/proxy—index.php
Header: proof: C—P-S Server Push

31 0.003920199 127.0.0.1 56922 127.0.0.1
80 HTTP 637 GET /poc/cps—push
/server—index.php HTTP/1.1

Frame 31: 637 bytes on wire (5096 bits), 637 bytes captured (5096 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 56922 (56922), Dst Port: 80
(80), Seq: 1, Ack: 1, Len: 571

Hypertext Transfer Protocol

33 0.004038798 127.0.0.1 80 127.0.0.1

56922 HTTP 137 HTTP/1.1 101
Switching Protocols

131

24

25

26
27

28
29
30

31
32

33

34
35

36
37
38
39

40
41
42

43
44
45
46

47
48

49

50
51

52
53
54
55
56
57

58
59

60

61

Frame 33: 137 bytes on wire (1096 bits), 137 bytes captured (1096 bits)
on interface 0

Ethernet |l , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 56922
(66922), Seq: 1, Ack: 572, Len: 71

Hypertext Transfer Protocol

51 0.005106234 127.0.0.1 80 127.0.0.1
56922 HTTP2 626 PUSH_PROMISE,
HEADERS, DATA

Frame 51: 626 bytes on wire (5008 bits), 626 bytes captured (5008 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 56922
(56922), Seq: 109, Ack: 626, Len: 560
HyperText Transfer Protocol 2
Stream: PUSH_PROMISE, Stream ID: 1, Length 307
.000 0000 0000 0000 0000 0000 0000 0010 = Promised—Stream—ID: 2
Header: :path: /poc/cps—push/server—pusher.php/? hid=3c5cbd6a
3633b3e61cc1e2183369a75ea8a7c13bdfc7ab0aaa’7dfb907ce2841a
Header: :method: GET
Stream: HEADERS, Stream ID: 1, Length 226
Header: link: <http://localhost/poc/cps—push/server—pusher.php
/?hid=3cb5chd6a3633b3e61cc1e2183369a75ea8a7c13bdfc7ab0aaa’
dfb907ce2841a>; rel=preload; as=document
Header: push—policy: default
Stream: DATA, Stream ID: 1, Length O

63 0.005727866 127.0.0.1 80 127.0.0.1
56922 HTTP2 592 HEADERS, DATA

Frame 63: 592 bytes on wire (4736 bits), 592 bytes captured (4736 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 56922
(b6922), Seq: 669, Ack: 626, Len: 526
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 2, Length 33
Header: :status: 200
Stream: DATA, Stream ID: 2, Length 475

66 0.005782561 127.0.0.1 80 127.0.0.1
56922 HTTP2 83 GOAWAY

Frame 66: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

132

62

63
64
65
66
67
68

69
70

71

72
73

74
75
76
77
78

79
80
81
82

83
84
85
86

87
88

89

90
91

92
93
94
95
96

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 56922
(66922), Seqg: 1195, Ack: 627, Len: 17
HyperText Transfer Protocol 2
Stream: GOAWAY, Stream ID: 0, Length 8
.000 0000 0000 0000 0000 0000 0000 0001 = Promised—Stream—ID: 1
Error: NO_ERROR (0)

79 0.006130407 2 443 1
39370 HTTP2 1304 PUSH_
PROMISE, HEADERS, DATA

Frame 79: 1304 bytes on wire (10432 bits), 1304 bytes captured (10432
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 39370
(39370), Seq: 242, Ack: 1115, Len: 1218
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: PUSH_PROMISE, Stream ID: 1, Length 310
.000 0000 0000 0000 0000 0000 0000 0010 = Promised—Stream—ID: 2
Header: :path: /poc/cps—push/proxy—pusher.php/? rid=a657dcc7ab5d0
d7fc160ebd1e42e93b3a5d207fb9e3fd3844331e5¢c38de889590
Header: :method: GET
Stream: HEADERS, Stream ID: 1, Length 229
Header: :status: 200
Header: link: <https://localhost/poc/cps—push/proxy—pusher.php
/? rid=a657dcc7a5d0d7fc160ebd1e42e93b3a5d207fb9e3fd3844331eb
c38de889590>; rel=preload; as=document
Header: push—policy: default
Stream: DATA, Stream ID: 1, Length 623

92 0.006440762 2 443 2
39370 HTTP2 662 HEADERS,
DATA

Frame 92: 662 bytes on wire (5296 bits), 662 bytes captured (5296 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 39370
(39370), Seq: 1460, Ack: 1115, Len: 576
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 2, Length 9
Header: :status: 200
Stream: DATA, Stream ID: 2, Length 520

133

16

17
18

19
20

21

22
23
24

25

C — P Server Push proof SANE path

26

Listing C.12: C — P Server Push on SANE execution path

0.003519025 2 54074 2
443 HTTP2 6369 HEADERS

Frame 26: 6369 bytes on wire (50952 bits), 6369 bytes captured (50952

bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:

00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1
Transmission Control Protocol, Src Port: 54074 (54074), Dst Port: 443

(443), Seq: 758, Ack: 242, Len: 6283

Secure Sockets Layer
HyperText Transfer Protocol 2

28

Stream: HEADERS, Stream ID: 1, Length 6245

Header: :method: GET

Header: :path: /SANE/index.php

Header: s—useserverpush: 1

Header: s—method: returnMethodValuesServerPushProof

Header: s—cs: SANE

Header: s—largeparameter1: EnV1ZoqwfxvTQkvN1ys60OIx0mSPakERAI1
iCrwbQxfO3CkrjkgbvykhnwxDJT70PN74AVBYW1yIRuMCSKtThIOJHTMS
rgVJTPHIi1c7WenwkJxDixiNrgUhO49TcpNaThECsecgYNOvYSY3DiM4
vhiZOKTHfJLQUAg4scBjNcEkvbILUXiljOfJegRLgUmwI8YetHm9IT6
aSCMIljaRW1tt6

Header: s—mediumparam1: 1UgbixOFoHRfxff3guhCqGABramsrZEYM35
HWLpb50rPYqgfmbz9kPz7Nei6QA2jGFHWSHz7007 i 100CMFkNxb3m83
nKyMfsg7N983fDXiMrSPyifo800BOLOtykXbnKOOVFwSglsr9HES7pHv1
QchGwGtw949KZvV1epKITVYUBAqeXrAY59kbjvb5sQIHENrv 1AUQgG4
zIPpca1ABRrcRS

Header: s—deviceid: DBD74A516D994F2D88664402C9BF6BC9O

Header: s—password: OJhiRxHQgcVsK7XkvrnchHy75PvJ0OSLwW3
MjcinGReWkQQuimkMgZKmJg4ch5EjF6

Header: s—server: fbddb61d7a6fd2304d4a1504a8516eb7

Header: s—signature: B4zKFymkxXlavxapHS37u7b0f17NSTbMCsbbvGwXx8
tshaWD3UQRHhxIAHIKh1C4J4ubCFsEyOWqgNzejlrKgzaB4JD37ntVJLkel4
wWleTYxyHkJtUkjsIzZoBYMgTCGOulpAcOyq60PgIX0QxyckbfGcOK1p7
kRYJtOk2cOVNUFETcMVrIPuM1pHQAgSxYr1 XbJSI1Ori580EB16
VzJHMXRapHp

Header: s—mediumparam2: 1UgbixOFoHRfxff3guhCqGABramsrZEYM35
HWLmpb50rPYqfmbz9kPz7NeiBQA2jGFHWSHz7007 i 100CMFkNxb3m83
nKyMfsg7N983fDXiMrSPyifo800BOLOtykXbnKOOVFwSglsrOHES7pHv1
QchGwGtw949KZvV1epKITVYUSAqeXrAY59kbjvb5sQIHENrv 1AUQgG4
zIPpca1ABRrcRS

Padding: <MISSING>

0.006621587 2 443 2
54074 HTTP2 920 PUSH_
PROMISE, HEADERS, DATA

26 Frame 28: 920 bytes on wire (7360 bits), 920 bytes captured (7360 bits)

134

on

interface 0

27

28
29

30
31
32
33
34
35

36
37
38
39
40

41
42
43
44
45

46
47

48

49
50

51
52
53
54
55
56
57

58
59

60

61
62

63
64

65

66

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1
Transmission Control Protocol, Src Port: 443 (443), Dst Port: 54074
(54074), Seq: 242, Ack: 7041, Len: 834
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: PUSH_PROMISE, Stream ID: 1, Length 310
Flags: 0x04
.000 0000 0000 0000 0000 0000 0000 0010 = Promised—Stream—ID:
Header: :path: /SANE/h2push_includer.php/? mvid=b97c20f443df1
aafbebbee1e69ceaaB8465a69b28b9545e8155f9d89f3¢ce3ff 14
Header: :method: GET
Stream: HEADERS, Stream ID: 1, Length 226
Flags: 0x04
Header: :status: 200
Header: link: <https://localhost/SANE/h2push_includer.php/?

2

jmvid=b97c20f443df1aafbebGee1e69ceaa8465a69b28b9545e8155f9d

89f3ce3ff14>; rel=preload; as=document
Header: push—policy: default
Stream: DATA, Stream ID: 1, Length 242
Flags: 0x01

29 0.007311120 2 443 2
54074 SSL 5402 [SSL
segment of a reassembled PDU]

Frame 29: 5402 bytes on wire (43216 bits), 5402 bytes captured (43216
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 54074
(54074), Seqg: 1076, Ack: 7041, Len: 5316
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 2, Length 29
Flags: 0x04
Header: :status: 200

31 0.007326724 2 443]
54074 HTTP2 2645 DATA

Frame 31: 2645 bytes on wire (21160 bits), 2645 bytes captured (21160
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 54074
(54074), Seq: 6392, Ack: 7041, Len: 2559

Secure Sockets Layer

[6 Reassembled SSL segments (7663 bytes): #29(1262), #29(1300),
#29(1300), #29(1300), #31(1300), #31(1201)]

[6 Reassembled SSL segments (7663 bytes): #29(1262), #29(1300),
#29(1300), #29(1300), #31(1300), #31(1201)]

HyperText Transfer Protocol 2

135

67
68
69
70
71

10
M
12
13
14
15
16

17

18
19

20
21

22

Stream: DATA, Stream ID: 2, Length 7654

Flags: 0x01

HyperText Transfer Protocol 2

Stream: DATA, Stream ID: 2, Length 7654

Flags: 0xO01

C — P Server Push proof CS path

Listing C.13: C — P Server Push on CS execution path

29 0.011955687 2 54034 21

443 HTTP2 6369 HEADERS

Frame 29: 6369 bytes on wire (50952 bits), 6369 bytes captured (50952

bits) on interface 0
Ethernet
00:00:00_00:00:00 (00:00:00:00:00:00)

[, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:

Internet Protocol Version 6, Src: ::1, Dst: ::1
Transmission Control Protocol, Src Port: 54034 (54034), Dst Port: 443

(443), Seq: 527, Ack: 1810, Len: 6283

Secure Sockets Layer
HyperText Transfer Protocol 2

136

Stream: HEADERS, Stream ID: 1, Length 6245

Flags: 0x25

Header: :method: GET

Header: :path: /SANE/index.php

Header: s—useserverpush: 1

Header: s—method: returnMethodValuesServerPushProofCS

Header: s—cs: ServerPushTest

Header: s—largeparameter1: EnV1ZoqwfxvTQkvN1ys6OIx0mSPakERAI1
iCrwbQxfO3CkrjkgbvykhnwxDJT70PN74AWBYW1yIRuMCSKtThIOJHTMS
rgVJTPHIi1c7WenwkJxDixiNrgUhO49TcpNa1hECsecgYNOvYSY3DiM4
vhiZOKTHfJLQUAg4scBjNcEkvbILUXiljOfJegRLgUmwI8YetHm9IT6
aSCMIjaRWtt6

Header: s—mediumparam1: 1UgbixOFoHRfxff3guhCqGABramsrZEYM35
HWLpb50rPYqfmbz9kPz7Nei6QA2jGFHWSHz7007 i 100CMFkNxb3m83
nKyMfsg7N983fDXiMrSPyifo800BOLOtykXbnKOOVFwSglsrOHES7pHv1
QchGwGtw949KZvV1epKITVYUSAQqeXrAY59kbjv5sQIHBNrv 1AUQgG4
zIPpca1ABRrcRS

Header: s—deviceid: DBD74A516D994F2D88664402C9BF6BCI

Header: s—password: OJhiRxHQgcVsK7XkvrnchHy75PvJ0OSLwW3
MijcinGReWkQQuimkMgZKmJg4c5E|F 6

Header: s—server: fbddb61d7a6fd2304d4a1504a8516eb7

Header: s—signature: B4zKFymkxXlavxapHS37u7b0f17NSTbMCsbbvGwXx8
tshaWD3UQRHhxIAHIKh1C4J4ubCFsEyOWagNzejlrKgzaB4JD37ntVJLkel4
wW9eTYxyHkJtUkjsIzZoBYMgTCGOulpAcOyg60PglX0QxyckbfGcOK1p7
kRYJtOk2cOVNUFETcMVrIPuM1pHQAgSxYr1 XbJSI1Ori580EB16
VzJHMXRapHp

Header: s—mediumparam2: 1UgbixOFoHRfxff3guhCqGABramsrZEYM35
HWLpb50rPYgfmbz9kPz7Nei6QA2|GFHWSHz7007 i 100CMFkNxb3m83
nKyMfsg7N983fDXiMrSPyifo800BOLOtykXbnKOOVFwSglsrOHES7pHv1
QchGwGtw949KZvV1epKITVYUSAqeXrAY59kbjvb5sQIHENrv 1AUQgG4
zIPpcal1ABRrcRS

23
24

25
26

27

28
29

30
31
32
33
34
35

36
37
38
39
40

41
42
43
44
45

46
47

48

49
50

51
52
53
54
55
56
57

58
59

60

61

31 0.015090726 21 443 2
54034 HTTP2 911 PUSH_
PROMISE, HEADERS, DATA

Frame 31: 911 bytes on wire (7288 bits), 911 bytes captured (7288 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 54034

(54034), Seq: 1810, Ack: 6810, Len: 825
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: PUSH_PROMISE, Stream ID: 1, Length 301
Flags: 0x04
.000 0000 0000 0000 0000 0000 0000 0010 = Promised—Stream—ID: 2
Header: :path: /SANE/h2push_includer.php/? mvid=2f24415a570dde
86fce15e7799f2ea376b59bb07bf0a35530468c5de38d3c9fb
Header: :method: GET
Stream: HEADERS, Stream ID: 1, Length 226
Flags: 0x04
Header: :status: 200
Header: link: <https://localhost/SANE/h2push_includer.php/?
jmvid=2f24415a570dde86fce 15e7799f2ea376b59bb07bf0a35530468¢c
5de38d3c9fb >; rel=preload; as=document
Header: push—policy: default
Stream: DATA, Stream ID: 1, Length 242
Flags: 0x01

32 0.015962450 21 443 21
54034 SSL 5402 [SSL
segment of a reassembled PDU]

Frame 32: 5402 bytes on wire (43216 bits), 5402 bytes captured (43216
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 54034
(54034), Seqg: 2635, Ack: 6810, Len: 5316
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 2, Length 29
Flags: 0x04
Header: :status: 200

34 0.015986420 2 443 2
54034 HTTP2 2658 DATA

Frame 34: 2658 bytes on wire (21264 bits), 2658 bytes captured (21264
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

137

62

63
64

65

66
67
68
69
70
71

18

19
20

21
22
23
24
25
26

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 54034
(54034), Seq: 7951, Ack: 6810, Len: 2572
Secure Sockets Layer
[6 Reassembled SSL segments (7676 bytes): #32(1262), #32(1300),
#32(1300), #32(1300), #34(1300), #34(1214)]
[6 Reassembled SSL segments (7676 bytes): #32(1262), #32(1300),
#32(1300), #32(1300), #34(1300), #34(1214)]
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 2, Length 7667
Flags: 0x01
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 2, Length 7667
Flags: 0x01

Evaluation SANE Server Push performance

Listing C.14: SANE performance evaluation protocol without delay (regular response)

24 0.011844654 2 45482 2
443 HTTP2 475 HEADERS

Frame 24: 475 bytes on wire (3800 bits), 475 bytes captured (3800 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 45482 (45482), Dst Port: 443
(443), Seq: 795, Ack: 1715, Len: 389
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 351
Flags: 0x24
Header: :method: POST
Header: :scheme: https
Header: :path: /SANE/index.php

25 0.011879799 2 45482 2
443 HTTP2 2976 DATA

Frame 25: 2976 bytes on wire (23808 bits), 2976 bytes captured (23808
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 45482 (45482), Dst Port: 443
(443), Seq: 1184, Ack: 1715, Len: 2890
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 2852
Flags: 0x00

27 0.011905543 2 45482 2
443 HTTP2 2976 DATA

138

27
28

29

30
31

32
33
34
35
36
37

38
39

40

41
42

43
44
45
46
47
48
49

50
51

52

53
54

55
56
57
58
59
60
61

62
63

64

65
66

Frame 27: 2976 bytes on wire (23808 bits), 2976 bytes captured (23808
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 45482 (45482), Dst Port: 443
(443), Seq: 4074, Ack: 1715, Len: 2890
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 2852
Flags: 0x00

28 0.011923030 2 45482 2
443 HTTP2 1902 DATA

Frame 28: 1902 bytes on wire (15216 bits), 1902 bytes captured (15216
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 45482 (45482), Dst Port: 443
(443), Seq: 6964, Ack: 1715, Len: 1816
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 1778
Type: DATA (0)
Flags: 0x01

32 0.036968433 2 443 21
45482 SSL 5402 [SSL
segment of a reassembled PDU]

Frame 32: 5402 bytes on wire (43216 bits), 5402 bytes captured (43216
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 45482
(45482), Seq: 1781, Ack: 8818, Len: 5316
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 73
Flags: 0x04
Header: :status: 200

33 0.036997181 2 443 2
45482 HTTP2 2796 DATA

Frame 33: 2796 bytes on wire (22368 bits), 2796 bytes captured (22368
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 45482
(45482), Seq: 7097, Ack: 8818, Len: 2710

139

67
68

69

70

71
72
73
74
75
76
77
78
79

18

19
20

21
22

Secure Sockets Layer

[7
[7

[7

Reassembled SSL segments (7741 bytes): #32(1218), #32(1300),
#32(1300), #32(1300), #33(1300), #33(1300), #33(23)]
Reassembled SSL segments (7741 bytes): #32(1218), #32(1300),
#32(1300), #32(1300), #33(1300), #33(1300), #33(23)]
Reassembled SSL segments (7741 bytes): #32(1218), #32(1300),
#32(1300), #32(1300), #33(1300), #33(1300), #33(23)]

HyperText Transfer Protocol 2

Stream: DATA, Stream ID: 1, Length 7732
Flags: 0x01

HyperText Transfer Protocol 2

Stream: DATA, Stream ID: 1, Length 7732
Flags: 0xO01

HyperText Transfer Protocol 2

Stream: DATA, Stream ID: 1, Length 7732
Flags: 0x01

Listing C.15: SANE performance evaluation protocol without delay (Server Push response)

25 0.007172834 2 45502 21
443 HTTP2 6389 HEADERS

Frame 25: 6389 bytes on wire (51112 bits), 6389 bytes captured (61112

bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:

00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1
Transmission Control Protocol, Src Port: 45502 (45502), Dst Port: 443

(443), Seq: 795, Ack: 1781, Len: 6303

Secure Sockets Layer
HyperText Transfer Protocol 2

140

Stream: HEADERS, Stream ID: 1, Length 6265

Flags: 0x25

Header: :method: GET

Header: :scheme: https

Header: :path: /SANE/index.php

Header: s—useserverpush: 1

Header: s—method: returnMethodValuesServerPushDelayedCS

Header: s—cs: ServerPushTest

Header: s—largeparameter1: EnV1ZoqwfxvTQkvN1ys60OIx0mSPakERAI1
iCrwbQxfO3CkrjkgbvykhnwxDJT70PN7ABYW1yIRuMCSKtThIOJHTMS
rgVJTPHIi1c7WenwkJxDixiNrgUhO49TcpNaThECsecgYNOvYSY3DiM4
vhiZOKTHfJLQUAg4scBjNcEkvbILUXiljOfJegRLgUmwI8YetHm9IT6
aSCMIljaRWtt6

Header: s—mediumparam1: 1UgbixOFoHRfxff3guhCqGABramsrZEYM35
HWLpbb0rPYgfmbz9kPz7Nei6QA2jGFHWSHz7007 i 100CMFkNxb3m83
nKyMfsg7N983fDXiMrSPyifo800BOLOtykXbnKOOVFwSglsr9HES7pHv1
QchGwGtw949KZvV1epKITVYUSAqeXrAY59kbjvb5sQIHENrv 1AUQgG4
zIPpca1ABRrcRS

Header: s—deviceid: DBD74A516D994F2D88664402C9BF6BC9O

Header: s—password: OJhiRxHQgcVsK7XkvrnchHy75PvJ0OSLW3
MjcinGReWkQQuimkMgZKmJag4ch5EjF6

Header: s—server: fbddb61d7a6fd2304d4a1504a8516eb7

Header: s—signature: B4zKFymkxXlavxapHS37u7b0f17NSTbMCsbbvGwXx8
tshaWD3UQRHhxIAHIKh1C4J4ubCFsEyOWqgNzejlrKgzaB4JD37ntVJLkel4

23

24
25
26

27
28

29

30
31

32
33
34
35
36
37
38

39
40
41
42
43

44
45
46
47

48
49

50

51
52

53
54
55
56
57
58

wWleTYxyHkJtUkjsIzZoBYMgTCGOulpAcOyq60PglX0QxyckbfGcOK1p7
kRYJtOk2cOVNUFET1cMVrIPuM1pHQAgSxYr1 XbJSI1Ori580EB16
VzJHMXRapHp

Header: s—mediumparam2: 1UgbixOFoHRfxff3guhCqGABramsrZEYM35
HWLmpb50rPYqfmbz9kPz7Nei6QA2jGFHWSHz7007 i 100CMFkNxb3m83
nKyMfsg7N983fDXiMrSPyifo800BOLOtykXbnKOOVFwWSglsrOHES7pHv1
QchGwGtw949KZvV1epKITVYUBAqeXrAY59kbjvb5sQIHENrv 1AUQgG4
zIPpca1ABRrcRS

Header: s—delay: O

28 0.025196872 2 443 2
45502 HTTP2 918 PUSH_
PROMISE, HEADERS, DATA

Frame 28: 918 bytes on wire (7344 bits), 918 bytes captured (7344 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 45502

(45502), Seq: 1781, Ack: 7136, Len: 832
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: PUSH_PROMISE, Stream ID: 1, Length 309
Flags: 0x04
.000 0000 0000 0000 0000 0000 0000 0010 = Promised—Stream—ID: 2
Header: :scheme: https
Header: :path: /SANE/h2push_includer.php/? mvid=c3c2689ealdef
842e8064955ea0f1348b27046cce0b720fae8bb05e3b8168a6 f
Header: :method: GET
Stream: HEADERS, Stream ID: 1, Length 225
Flags: 0x04
Header: :status: 200
Header: link: <https://localhost/SANE/h2push_includer.php/?
jmvid=c3c2689ea0def842e8064955ea0f1348b27046cce0b720fae8bb
05e3b8168a6f >; rel=preload; as=document
Stream: DATA, Stream ID: 1, Length 242
Flags: 0x01

29 0.026449746 2 443 2
45502 SSL 5402 [SSL
segment of a reassembled PDU]

Frame 29: 5402 bytes on wire (43216 bits), 5402 bytes captured (43216
bits) on interface 0

Ethernet |l , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 45502

(45502), Seq: 2613, Ack: 7136, Len: 5316
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 2, Length 29
Flags: 0x04
Header: :status: 200

141

59

60
61

62

63
64

65
66

67

68
69
70
71
72
73

18

19
20

21
22
23

31 0.026483089 2 443 2
45502 HTTP2 2691 DATA

Frame 31: 2691 bytes on wire (21528 bits), 2691 bytes captured (21528
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 45502

(45502), Seq: 7929, Ack: 7136, Len: 2605
Secure Sockets Layer
[6 Reassembled SSL segments (7709 bytes): #29(1262), #29(1300),
#29(1300), #29(1300), #31(1300), #31(1247)]
[6 Reassembled SSL segments (7709 bytes): #29(1262), #29(1300),
#29(1300), #29(1300), #31(1300), #31(1247)]
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 2, Length 7700
Flags: 0x01
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 2, Length 7700
Flags: 0xO01

Listing C.16: SANE performance evaluation protocol without 1 second delay (regular response)

25 0.017498282 21 45496 21
443 HTTP2 475 HEADERS

Frame 25: 475 bytes on wire (3800 bits), 475 bytes captured (3800 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 45496 (45496), Dst Port: 443
(443), Seq: 795, Ack: 1781, Len: 389
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 351
Flags: 0x24
Header: :method: POST
Header: :scheme: https
Header: :path: /SANE/index.php

26 0.017539757 2 45496 2
443 HTTP2 2976 DATA

Frame 26: 2976 bytes on wire (23808 bits), 2976 bytes captured (23808
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 45496 (45496), Dst Port: 443
(443), Seqg: 1184, Ack: 1781, Len: 2890

Secure Sockets Layer

HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 2852

142

24
25
26

27
28

29

30
31

32
33
34
35
36
37

38
39

40

41
42

43
44
45
46
47
48

49
50

51

52
53

54
56
56
57
58
59
60

61
62

63

Flags: 0x00

28 0.017568787 2 45496 2
443 HTTP2 2976 DATA

Frame 28: 2976 bytes on wire (23808 bits), 2976 bytes captured (23808
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 45496 (45496), Dst Port: 443

(443), Seq: 4074, Ack: 1781, Len: 2890
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 2852
Flags: 0x00

29 0.017591775 21 45496 21
443 HTTP2 1902 DATA

Frame 29: 1902 bytes on wire (15216 bits), 1902 bytes captured (15216
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 45496 (45496), Dst Port: 443

(443), Seq: 6964, Ack: 1781, Len: 1816
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 1778
Flags: 0xO01

33 1.038771856 2 443 2
45496 SSL 5402 [SSL
segment of a reassembled PDU]

Frame 33: 5402 bytes on wire (43216 bits), 5402 bytes captured (43216
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 45496
(45496), Seq: 1781, Ack: 8818, Len: 5316
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 73
Flags: 0x04
Header: :status: 200

34 1.038798693 21 443 2
45496 HTTP2 2796 DATA

Frame 34: 2796 bytes on wire (22368 bits), 2796 bytes captured (22368
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

143

64
65

66
67

68

69

70
71
72
73
74
75
76
77
78

18

19
20

Internet Protocol Version 6, Src: ::1, Dst: ::1
Transmission Control Protocol, Src Port: 443 (443), Dst Port: 45496
(45496), Seq: 7097, Ack: 8818, Len: 2710
Secure Sockets Layer
[7 Reassembled SSL segments (7741 bytes): #33(1218), #33(1300),
#33(1300), #33(1300), #34(1300), #34(1300), #34(23)]
[7 Reassembled SSL segments (7741 bytes): #33(1218), #33(1300),
#33(1300), #33(1300), #34(1300), #34(1300), #34(23)]
[7 Reassembled SSL segments (7741 bytes): #33(1218), #33(1300),
#33(1300), #33(1300), #34(1300), #34(1300), #34(23)]
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 7732
Flags: 0x01
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 7732
Flags: 0x01
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 7732
Flags: 0x01

Listing C.17: SANE performance evaluation protocol with 1 second delay (Server Push response)

29 0.019889927 2 45512 2
443 HTTP2 6389 HEADERS

Frame 29: 6389 bytes on wire (51112 bits), 6389 bytes captured (51112
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 45512 (45512), Dst Port: 443
(443), Seq: 833, Ack: 1810, Len: 6303
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 6265
Flags: 0x25
Header: :method: GET
Header: :scheme: https
Header: :path: /SANE/index.php
Header: s—useserverpush: 1
Header: s—method: returnMethodValuesServerPushDelayedCS
Header: s—cs: ServerPushTest
Header: s—largeparameter1: EnV1ZoqwfxvTQkvN1ys6OIx0mSPakERAI1
iCrwbQxfO3CkrjkgbvykhnwxDJT70PN7ANBYW1yIRuMCSKtThIOJHTMS
rgVJTPHIi1c7WenwkJxDixiNrgUhO49TcpNa1hECsecgYNOvYSY3DiM4
vhiZOKTHfJLQUAg4scBjNcEkvbILUXiljOfJegRLgUmwI8YetHm9IT6
aSCMljaRWtt6
Header: s—mediumparam1: 1UgbixOFoHRfxff3guhCqGABramsrZEYM35
HWLpb50rPYqfmbz9kPz7Nei6QA2jGFHWSHz7007 i 100CMFkNxb3m83
nKyMfsg7N983fDXiMrSPyifo800BOLOtykXbnKOOVFwWSglsrOHES7pHv1
QchGwGtw949KZvV1epKITVYUSAqeXrAY59kbjvb5sQIHENrv 1AUQgG4
zIPpca1ABRrcRS
Header: s—deviceid: DBD74A516D994F2D88664402C9BF6BCI
Header: s—password: OJhiRxHQgcVsK7XkvrnchHy75PvJ0OSLwW3
MjcinGReWkQQuimkMgZKmJg4c5E|F 6

144

21
22

23

24
25
26

27
28

29

30
31

32
33
34
35
36
37
38

39
40
41
42
43

44
45
46
47
48

49

50

51

52
53

54
55

Header: s—server: fbddb61d7a6fd2304d4a1504a8516eb7

Header: s—signature: B4zKFymkxXlavxapHS37u7b0f17NSTbMCsbbvGwXx8
tshaWD3UQRHhxIAHIKh1C4J4ubCFsEyOWqgNzejlrKgzaB4JD37ntVJLkel4
wW9eTYxyHkJtUkjsIzZoBYMgTCGOulpAcOyg60PglX0QxyckbfGcOK1p7
kRYJtOk2cOVNUFET1cMVrIPuM1pHQAgSxYr1 XbJSIOri580EB16
VzJHMXRapHp

Header: s—mediumparam2: 1UgbixOFoHRfxff3guhCqGABramsrZEYM35
HWLpb50rPYagfmbz9kPz7Nei6QA2jGFHWSHz7007 i 100CMFkNxb3m83
nKyMfsg7N983fDXiMrSPyifo800BOLOtykXbnKOOVFwWSglsrOHES7pHv1
QchGwGtw949KZvV 1epKITVYUSAgeXrAY59kbjv5sQIHENrv 1AUQgG4
zIPpca1ABRrcRS

Header: s—delay: 1

31 0.045623521] 443 2
45512 HTTP2 918 PUSH_
PROMISE, HEADERS, DATA

Frame 31: 918 bytes on wire (7344 bits), 918 bytes captured (7344 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 45512
(45512), Seq: 1810, Ack: 7136, Len: 832
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: PUSH_PROMISE, Stream ID: 1, Length 309
Flags: 0x04
.000 0000 0000 0000 0000 0000 0000 0010 = Promised—Stream—ID: 2
Header: :scheme: https
Header: :path: /SANE/h2push_includer.php/? jmvid=6237be49b06e
6165200207478180038738422f0f3e824da924d3f22e93bf2b01
Header: :method: GET
Stream: HEADERS, Stream ID: 1, Length 225
Flags: 0x04
Header: :status: 200
Header: link: <https://localhost/SANE/h2push_includer.php/?
jmvid=6237bed49b06e6165200207478180038738422f0f3e824da924d3f
22e93bf2b01>; rel=preload; as=document
Header: push—policy: default
Stream: DATA, Stream ID: 1, Length 242
Flags: 0x01

33 1.046895102 2 443 21
45512 SSL 5402 [SSL
segment of a reassembled PDU]

Frame 33: 5402 bytes on wire (43216 bits), 5402 bytes captured (43216
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 45512
(45512), Seq: 2642, Ack: 7136, Len: 5316

Secure Sockets Layer

HyperText Transfer Protocol 2

145

56 Stream: HEADERS, Stream ID: 2, Length 29

57 Flags: 0x04

b8 Header: :status: 200

59

60 35 1.046927065 21 443 21
45512 HTTP2 2691 DATA

61

62 |Frame 35: 2691 bytes on wire (21528 bits), 2691 bytes captured (21528
bits) on interface 0

63 | Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
64 | Internet Protocol Version 6, Src: ::1, Dst: ::1

65 | Transmission Control Protocol, Src Port: 443 (443), Dst Port: 45512
(45512), Seq: 7958, Ack: 7136, Len: 2605

66 | Secure Sockets Layer

67 | [6 Reassembled SSL segments (7709 bytes): #33(1262), #33(1300),
#33(1300), #33(1300), #35(1300), #35(1247)]

68 | [6 Reassembled SSL segments (7709 bytes): #33(1262), #33(1300),
#33(1300), #33(1300), #35(1300), #35(1247)]

69 |HyperText Transfer Protocol 2

70 Stream: DATA, Stream ID: 2, Length 7700
71 Flags: 0x01

72 ' HyperText Transfer Protocol 2

73 Stream: DATA, Stream ID: 2, Length 7700
74 Flags: 0xO01

SANE Server Push Publish/Subscribe evaluation

Listing C.18: SANE Server Push Publish/Subscribe evaluation

1 28 0.024375459 2 41224 2
443 HTTP2 6405 HEADERS

3 |Frame 28: 6405 bytes on wire (51240 bits), 6405 bytes captured (51240
bits) on interface 0

4 | Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
5 Internet Protocol Version 6, Src: ::1, Dst: ::1

6 | Transmission Control Protocol, Src Port: 41224 (41224), Dst Port: 443
(443), Seq: 833, Ack: 1810, Len: 6319

7 | Secure Sockets Layer

8 HyperText Transfer Protocol 2

9 Stream: HEADERS, Stream ID: 1, Length 6281

10 Length: 6281

1 Type: HEADERS (1)

12 Flags: 0x25

1317 = End Stream: True

141.. = End Headers: True

15 0... = Padded: False

16 1. ... = Priority: True

17 00.0 ..0. = Unused: 0x00

18 O... = Reserved: 0x00000000
19 .000 0000 0000 0000 0000 0000 0000 0001 = Stream ldentifier: 1

146

20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35

36

37
38
39
40
41
42
43

44

45
46

47
48

49

50
51
52

[Pad Length: 0]

T Exclusive: True

.000 0000 0000 0000 0000 0000 0000 0000 = Stream Dependency: 0

Weight: 255

[Weight real: 256]

Header Block Fragment: 824186a0e41d139d09870084b958d33f8c63743a
70306aa4...

[Header Length: 8081]

[Header Count: 23]

Header: :method: GET

Header: :authority: localhost

Header: :scheme: https

Header: :path: /SANE/index.php

Header: pragma: no—cache

Header: cache—control: no—cache

Header: upgrade—insecure—requests: 1

Header: user—agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit
/537.36 (KHTML, like Gecko) Ubuntu Chromium/55.0.2883.87
Chrome/55.0.2883.87 Safari/537.36

Header: accept: text/html, application/xhtml+xml, application/xml
;q=0.9,image/webp, x/*;q=0.8

Header: dnt: 1

Header: accept—encoding: gzip, deflate, sdch, br

Header: accept—language: en-US,en;q=0.8,de;q=0.6

Header: s—useserverpush: 1

Header: s—method: returnMethodValuesServerPushDelayedNewPush

Header: s—cs: ServerPushTest

Header: s—largeparameter1: EnV1ZoqwfxvTQkvN1ys60OIx0mSPakERAI1
iCrwbQxfO3CkrjkgbvykhnwxDJT70PN7ABYW1yIRuMCSKtThIOJHTMS
rgVJTPHIi1c7WenwkJxDixiNrgUhO49TcpNaThECsecgYNOvYSY3DiM4
vhiZOKTHfJLQUAg4scBjNcEkvbILUXiljOfJegRLgUmwI8YetHM9T6
aSCMljaRWtt6

Header: s—mediumparam1: 1UgbixOFoHRfxff3guhCqGABramsrZEYM35
HWLpbb0rPYqfmbz9kPz7Nei6QA2jGFHWSHz7007 i 100CMFkNxb3m83
nKyMfsg7N983fDXiMrSPyifo800BOLOtykXbnKOOVFwSglsr9HES7pHv1
QchGwGtw949KZvV1epKITVYUSAgeXrAY59kbjv5sQIHBENrv 1AUQgG4
zIPpca1ABRrcRS

Header: s—deviceid: DBD74A516D994F2D88664402C9BFEBCY

Header: s—password: OJhiRxHQgcVsK7XkvrnchHy75PvJ0OSLwW3
MjcinGReWkQQuimkMgZKmJg4ch5EjF6

Header: s—server: fbddb61d7a6fd2304d4a1504a8516eb7

Header: s—signature: B4zKFymkxXlavxapHS37u7b0f17NSTbMCsbbvGwXx8
tshaWD3UQRHhxIAHIKh1C4J4ubCFsEyOWqgNzejlrKgzaB4JD37ntVJLkel4
wWleTYxyHkJtUkjsIzZoBYMgTCGOulpAcOyq60PgIX0QxyckbfGcOK1p7
kRYJtOk2cOVNUFETcMVrIPuM1pHQAgSxYr1 XbJSI1Ori580EB16
VzJHMXRapHp

Header: s—mediumparam2: 1UgbixOFoHRfxff3guhCqGABramsrZEYM35
HWLmpb50rPYqgfmbz9kPz7NeiBQA2jGFHWSHz7007 i 100CMFkNxb3m83
nKyMfsg7N983fDXiMrSPyifo800BOLOtykXbnKOOVFwSglsrOHES7pHv1
QchGwGtw949KZvV1epKITVYUSAqeXrAY59kbjvb5sQIHENrv 1AUQgG4
zIPpca1ABRrcRS

Header: s—delay: b5

Padding: <MISSING>

147

53

54
55

56

57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79

80
81
82

83

84
85
86
87
88
89
90
91
92
93
94
95

55 0.028035135 2 443 2
41224 HTTP2 912 PUSH_
PROMISE, HEADERS, DATA

Frame 55: 912 bytes on wire (7296 bits), 912 bytes captured (7296 bits)
on interface 0O

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 41224

(41224), Seq: 1810, Ack: 7152, Len: 826
Secure Sockets Layer
HyperText Transfer Protocol 2
Stream: PUSH_PROMISE, Stream ID: 1, Length 308

Length: 308
Type: PUSH_PROMISE (5)
Flags: 0x04
.... .1.. = End Headers: True
.... 0... = Padded: False
0000 ..00 = Unused: 0x00
0 = Reserved: 0x00000000

.000 0000 0000 0000 0000 0000 0000 0001

[Pad Length: 0]

O... . oo Reserved: 0x00000000

.000 0000 0000 0000 0000 0000 0000 0010 Promised—Stream—ID: 2

Header [truncated]: ?\357\277\275\037\357\277\275A
\357\277\275\357\277\275\357\277\275\035\023\357\277\275\1t
\004\357\277\275ct:p
18\357\277\275\357\277\275\023\357\277\275j\357\277\275E
\357\277\275\026\357\277\275\357\277\275\357\277\275\35

[Header Length: 556]

[Header Count: 11]

Header table size update

Header: :scheme: https

Header: :authority: localhost

Header: :path: /SANE/h2push_includer.php/? mvid=5f037e8af7293
cbbd4dbb2d1387302¢7533¢cd06644213abe1cd4e62ed22119¢ch8

Header: :method: GET

Header: cache—control: no—cache

Header: user—agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit
/537.36 (KHTML, like Gecko) Ubuntu Chromium/55.0.2883.87
Chrome/55.0.2883.87 Safari/b537.36

Header: accept: text/html, application/xhtml+xml, application/xml
:q=0.9,image/webp, x/x;q=0.8

Header: accept—encoding: gzip, deflate, sdch, br

Header: accept—language: en-US,en;q=0.8,de;q=0.6

Header: host: localhost

Padding: <MISSING>

Stream: HEADERS, Stream ID: 1, Length 220

Stream |dentifier: 1

Length: 220
Type: HEADERS (1)
Flags: 0x04
.... ...0 = End Stream: False
.1.. = End Headers: True
.... 0... = Padded: False
..0. = Priority: False

148

96
97
98
99
100

101
102
103
104
105
106
107

108

109
110
M
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127

128

129
130

131
132
133
134
135
136
137
138
139
140
141
142

00.0 ..0. = Unused: 0x00

O... oo Reserved: 0x00000000

.000 0000 0000 0000 0000 0000 0000 0001 = Stream ldentifier: 1

[Pad Length: 0]

Header Block Fragment: 886196¢c361be940baa681d8a08017540b5700fdc
0054cbha3...

[Header Length: 397]

[Header Count: 8]

Header: :status: 200

Header: date: Fri, 17 Mar 2017 14:09:01 GMT

Header: server: Apache/2.4.25 (Ubuntu)

Header: expires: 0

Header: cache—control: must-revalidate , post—check=0, pre—check
=0

Header: link: <https://localhost/SANE/h2push_includer.php/?
jmvid=5f037e8af7293cbbd4dbb2d1387302¢c7533cd06644213abelcde
62ed22119cb8>; rel=preload; as=document

Header: content—type: text/html;charset=UTF-8

Header: push—policy: default

Padding: <MISSING>

Stream: DATA, Stream ID: 1, Length 242

Length: 242
Type: DATA (0)
Flags: 0x01
.... ...1 = End Stream: True
.... 0... = Padded: False
0000 .00. = Unused: 0x00
0 = Reserved: 0x00000000

.000 0000 0000 0000 0000 0000 0000 0001 Stream ldentifier: 1
[Pad Length: 0]
Data: 3c68746d6c3e3c686561643e3c2f686561643e3c62616479...

Padding: <MISSING>

79 5.029188589 2 443 2
41224 SSL 5402 [SSL
segment of a reassembled PDU]

Frame 79: 5402 bytes on wire (43216 bits), 5402 bytes captured (43216
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 41224
(41224), Seq: 2636, Ack: 7152, Len: 5316

Secure Sockets Layer

HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 2, Length 75

Length: 75
Type: HEADERS (1)
Flags: 0x04
.... ...0 = End Stream: False
.1.. = End Headers: True
... 0... = Padded: False
..0. = Priority: False
00.0 ..0. = Unused: 0x00
O... = Reserved: 0x00000000

149

143 .000 0000 0000 0000 0000 0000 0000 0010 = Stream ldentifier: 2

144 [Pad Length: 0]

145 Header Block Fragment: 88c4c3c2c16db0fff93a535a2e30c50720e89ce
84b159c8c . ..

146 [Header Length: 294]

147 [Header Count: 7]

148 Header: :status: 200

149 Header: date: Fri, 17 Mar 2017 14:09:01 GMT

150 Header: server: Apache/2.4.25 (Ubuntu)

151 Header: expires: O

152 Header: cache—control: must—revalidate , post—check=0, pre—check
=0

153 Header: link: <https://localhost/poc/filestream .php>; rel=
preload; as=document

154 Header: content—type: text/html; charset=UTF-8

155 Padding: <MISSING>

156

157 81 5.029262892 2] 443 2

41224 HTTP2 2742 DATA
158

159 ' Frame 81: 2742 bytes on wire (21936 bits), 2742 bytes captured (21936
bits) on interface 0

160 | Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
161 | Internet Protocol Version 6, Src: ::1, Dst: ::1

162 | Transmission Control Protocol, Src Port: 443 (443), Dst Port: 41224
(41224), Seq: 7952, Ack: 7152, Len: 2656

163 | Secure Sockets Layer

164 | [6 Reassembled SSL segments (7714 bytes): #79(1216), #79(1300),
#79(1300), #79(1300), #81(1300), #81(1298)]

165 | [6 Reassembled SSL segments (7714 bytes): #79(1216), #79(1300),
#79(1300), #79(1300), #81(1300), #81(1298)]

166 ' HyperText Transfer Protocol 2

167 Stream: DATA, Stream ID: 2, Length 7705

168 Length: 7705

169 Type: DATA (0)

170 Flags: 0xO01

1711 = End Stream: True

172 0... = Padded: False

173 0000 .00. = Unused: 0x00

174 O... = Reserved: 0x00000000
175 .000 0000 0000 0000 0000 0000 0000 0010 = Stream Identifier: 2
176 [Pad Length: 0]

177 Data: 617272617928313029207b0a20205b2264656¢6179225d3d . ..

178 Padding: <MISSING>

179 |HyperText Transfer Protocol 2

180 Stream: DATA, Stream ID: 2, Length 7705

181 Length: 7705

182 Type: DATA (0)

183 Flags: 0xO01

18417 = End Stream: True

185 0... = Padded: False

186 0000 .00. = Unused: 0x00

187 O... = Reserved: 0x00000000
188 .000 0000 0000 0000 0000 0000 0000 0010 = Stream Identifier: 2
189 [Pad Length: 0]

150

190
191

(0]

O O o

1

13

14
15

16
17
18
19

20
21

22

23
24

25
26
27
28

29
30

Data: 617272617928313029207b0a20205b2264656¢c6179225d3d . . .
Padding: <MISSING>

SANE Server Push fault tolerance evaluation

Listing C.19: SANE Server Push fault tolerance evaluation with graceful termination of client

25 0.014244468 2 51574 2
443 HTTP2 6381 HEADERS

Frame 25: 6381 bytes on wire (51048 bits), 6381 bytes captured (51048
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 51574 (51574), Dst Port: 443
(443), Seq: 489, Ack: 1781, Len: 6295

Secure Sockets Layer

HyperText Transfer Protocol 2

27 0.014326382 21 51674 21
443 HTTP2 124 SETTINGS

Frame 27: 124 bytes on wire (992 bits), 124 bytes captured (992 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 51574 (51574), Dst Port: 443
(443), Seq: 6784, Ack: 1781, Len: 38

Secure Sockets Layer

HyperText Transfer Protocol 2

28 0.016908533 2 443 2
51574 HTTP2 911 PUSH_
PROMISE, HEADERS, DATA

Frame 28: 911 bytes on wire (7288 bits), 911 bytes captured (7288 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 51574
(51574), Seq: 1781, Ack: 6822, Len: 825

Secure Sockets Layer

HyperText Transfer Protocol 2

30 3.647867670 2 51674 2
443 HTTP2 128 RST_STREAM

Frame 30: 128 bytes on wire (1024 bits), 128 bytes captured (1024 bits)
on interface 0

151

31

32
33

34
35

(0]

O O o

M
12

13

14
15

16
17
18
19

20

21
22

23
24
25
26

27

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 51574 (51574), Dst Port: 443
(443), Seq: 6822, Ack: 2606, Len: 42

Secure Sockets Layer

HyperText Transfer Protocol 2

Listing C.20: SANE Server Push fault tolerance evaluation ungraceful termination of client

31 0.029009351 2 52512 2
443 HTTP2 6381 HEADERS

Frame 31: 6381 bytes on wire (51048 bits), 6381 bytes captured (51048
bits) on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 52512 (52512), Dst Port: 443
(443), Seq: 527, Ack: 1810, Len: 6295

Secure Sockets Layer

HyperText Transfer Protocol 2

32 0.029040836 2 443 21
52512 TCP 86 443 —>
52512 [ACK] Seq=1810 Ack=6822 Win=175744 Len=0 TSval=22175909
TSecr=22175909

Frame 32: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 52512
(62512), Seq: 1810, Ack: 6822, Len: 0

33 0.031763892 2 443 2
52512 HTTP2 911
PUSH_PROMISE, HEADERS, DATA

Frame 33: 911 bytes on wire (7288 bits), 911 bytes captured (7288 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 52512
(52512), Seqg: 1810, Ack: 6822, Len: 825

Secure Sockets Layer

HyperText Transfer Protocol 2

34 0.069408921 2 52512 2
443 TCP 86 52512 —>
443 [ACK] Seq=6822 Ack=2635 Win=180480 Len=0 TSval=22175920
TSecr=22175910

162

28

29

30
31

32
33

34
35

36

37
38

39
40

41
42

43

44
45

46
47

48
49

50

51
52

53
54

Frame 34: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 52512 (52512), Dst Port: 443

(443), Seq: 6822, Ack: 2635, Len: 0

35 2.432698924 2 52512 2
443 TCP 86 52512 —>
443 [FIN, ACK] Seq=6822 Ack=2635 Win=180480 Len=0 TSval
=22176510 TSecr=22175910

Frame 35: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 52512 (52512), Dst Port: 443

(443), Seq: 6822, Ack: 2635, Len: O

36 2.469401131 2 443 2
52512 TCP 86 443 —>
52512 [ACK] Seq=2635 Ack=6823 Win=175744 Len=0 TSval=22176520
TSecr=22176510

Frame 36: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 52512

(52512), Seq: 2635, Ack: 6823, Len: O

37 2.766235092 2 443 1
52512 HTTP2 132 GOAWAY

Frame 37: 132 bytes on wire (1056 bits), 132 bytes captured (1056 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00
_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 6, Src: ::1, Dst: ::1

Transmission Control Protocol, Src Port: 443 (443), Dst Port: 52512

(62512), Seq: 2635, Ack: 6823, Len: 46
Secure Sockets Layer
HyperText Transfer Protocol 2

153

N

o O1

o

10
M

12

13
14

15
16
17

18
19

20

21
22

23
24
25

26
27

28

29
30

31
32

Evaluation of Smart Multiplexing on P — S link using libcurl

Listing C.21: Automatic smart multiplexing evaluation

4 0.000035471 127.0.0.1 45728 127.0.0.1
80 HTTP 217 GET /poc/
idlestream .php HTTP/1.1

Frame 4: 217 bytes on wire (1736 bits), 217 bytes captured (1736 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 45728 (45728), Dst Port: 80
(80), Seq: 1, Ack: 1, Len: 151

Hypertext Transfer Protocol

6 0.000169542 127.0.0.1 80 127.0.0.1
45728 HTTP 137 HTTP/1.1 101
Switching Protocols

Frame 6: 137 bytes on wire (1096 bits), 137 bytes captured (1096 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45728
(45728), Seq: 1, Ack: 152, Len: 71

Hypertext Transfer Protocol

14 0.100700176 127.0.0.1 80 127.0.0.1
45728 HTTP2 187 HEADERS, DATA

Frame 14: 187 bytes on wire (1496 bits), 187 bytes captured (1496 bits)
on interface 0

Ethernet |l , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45728
(45728), Seqg: 109, Ack: 206, Len: 121

HyperText Transfer Protocol 2

16 0.200816332 127.0.0.1 80 127.0.0.1
45728 HTTP2 79 DATA

Frame 16: 79 bytes on wire (632 bits), 79 bytes captured (632 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45728
(45728), Seq: 230, Ack: 206, Len: 13

HyperText Transfer Protocol 2

154

33

34

35

36

37
38

39
40
41

42
43

44

45
46

47
48
49

50

51

52

53
54

55
56
57

58
59

60

61
62

63
64
65

66
67

37 1.104043469 127.0.0.1 45732 127.0.0.1
80 HTTP 217 GET /poc/
idlestream .php HTTP/1.1

Frame 37: 217 bytes on wire (1736 bits), 217 bytes captured (1736 bits)
on interface 0O

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 45732 (45732), Dst Port: 80
(80), Seq: 1, Ack: 1, Len: 151

Hypertext Transfer Protocol

39 1.104135783 127.0.0.1 80 127.0.0.1
45728 HTTP2 80 DATA

Frame 39: 80 bytes on wire (640 bits), 80 bytes captured (640 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45728
(45728), Seq: 348, Ack: 206, Len: 14

HyperText Transfer Protocol 2

41 1.104161868 127.0.0.1 80 127.0.0.1
45732 HTTP 137 HTTP/1.1 101
Switching Protocols

Frame 41: 137 bytes on wire (1096 bits), 137 bytes captured (1096 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45732
(45732), Seq: 1, Ack: 152, Len: 71

Hypertext Transfer Protocol

51 1.204269728 127.0.0.1 80 127.0.0.1
45728 HTTP2 80 DATA

Frame 51: 80 bytes on wire (640 bits), 80 bytes captured (640 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45728
(45728), Seq: 362, Ack: 206, Len: 14

HyperText Transfer Protocol 2

53 1.204855549 127.0.0.1 80 127.0.0.1
45732 HTTP2 187 HEADERS, DATA

Frame 53: 187 bytes on wire (1496 bits), 187 bytes captured (1496 bits)
on interface 0

155

68 |Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

69 | Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

70 Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45732
(45732), Seq: 109, Ack: 206, Len: 121

71 ' HyperText Transfer Protocol 2

72

73 55 1.304427922 127.0.0.1 80 127.0.0.1
45728 HTTP2 80 DATA

74

75 Frame 55: 80 bytes on wire (640 bits), 80 bytes captured (640 bits) on
interface 0

76 | Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

77 ' Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

78 | Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45728
(45728), Seq: 376, Ack: 206, Len: 14

79 HyperText Transfer Protocol 2

80

81 57 1.304935946 127.0.0.1 80 127.0.0.1
45732 HTTP2 79 DATA

82

83 |Frame 57: 79 bytes on wire (632 bits), 79 bytes captured (632 bits) on
interface 0

84 |Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

85 | Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

86 | Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45732
(45732), Seq: 230, Ack: 206, Len: 13

87 |HyperText Transfer Protocol 2

88

89

90 133 3.209556740 127.0.0.1 80 127.0.0.1
45728 HTTP2 80 DATA

91

92 Frame 133: 80 bytes on wire (640 bits), 80 bytes captured (640 bits) on
interface 0

93 Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

94 | Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

95 Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45728
(45728), Seq: 642, Ack: 206, Len: 14

96 HyperText Transfer Protocol 2

97

98 136 3.209904940 127.0.0.1 80 127.0.0.1
45728 HTTP2 83 GOAWAY

99

100 |[Frame 136: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) on
interface 0

101 | Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

102 Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

103 | Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45728
(45728), Seq: 656, Ack: 207, Len: 17

104 | HyperText Transfer Protocol 2

105

156

106 138 3.308755228 127.0.0.1 80 127.0.0.1
45732 HTTP2 80 DATA

107

108 [Frame 138: 80 bytes on wire (640 bits), 80 bytes captured (640 bits) on
interface 0

109 | Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

10 | Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

11 | Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45732
(45732), Seq: 502, Ack: 206, Len: 14

12 HyperText Transfer Protocol 2

113

114 171 4.812610393 127.0.0.1 80 127.0.0.1
45732 HTTP2 83 GOAWAY

115

116 Frame 171: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) on
interface 0

17 | Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

118 ' Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

19 Transmission Control Protocol, Src Port: 80 (80), Dst Port: 45732
(45732), Seq: 726, Ack: 207, Len: 17

120 ' HyperText Transfer Protocol 2

Listing C.22: curl.log

Trying 127.0.0.1...
TCP_NODELAY set
Connected to localhost (127.0.0.1) port 443 (#0)
ALPN, offering h2
ALPN, offering http/1.1
Cipher selection: ALL:!EXPORT:!EXPORT40:!EXPORT56:!aNULL:!LOW:!RC4:
@STRENGTH
7 % successfully set certificate verify locations:
8 | x CAfile: /etc/ssl/certs/ca—certificates.crt
9 CApath: none

* X X K ¥ X

OO, WON -

10 '« SSL connection using TLSv1.2 / ECDHE-RSA-AES256—GCM-SHA384

1 | ALPN, server accepted to use h2

12 |+ Server certificate:

13 |+ subject: C=DE; ST=Saxony; L=Dresden; O=TU Dresden; CN=127.0.0.1;
emailAddress=timo.lutz@mailbox .tu—dresden.de

14 |« start date: Jul 27 17:13:44 2016 GMT

15 |« expire date: Jul 27 17:13:44 2017 GMT

16 |+ issuer: C=DE; ST=Saxony; L=Dresden; O=TU Dresden; CN=127.0.0.1;
emailAddress=timo . lutz@mailbox .tu—dresden .de

17 |« SSL certificate verify result: self signed certificate (18),
continuing anyway.

18 '« Using HTTP2, server supports multi—use

19 |+ Connection state changed (HTTP/2 confirmed)

20 '+ Copying HTTP/2 data in stream buffer to connection buffer after
upgrade: len=0

21 |x Using Stream ID: 1 (easy handle 0x7fea1c052850)

22 | > GET /poc/idlestream .php HTTP/1.1

23 Host: localhost

24 | Accept: x/x

157

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46

47
48
49

50

51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66

¥ % ¥ ¥ ¥ ¥ ANAN AN AN AN NN ¥

* X

EE I

* %

Connection state changed (MAX_CONCURRENT_STREAMS updated)!
HTTP/2 200

date: Thu, 09 Mar 2017 20:58:48 GMT

server: Apache/2.4.25 (Ubuntu)

expires: 0

cache—control: must—revalidate , post—check=0, pre—check=0
content—type: text/plain;charset=UTF-8

Trying 127.0.0.1...
TCP_NODELAY set
Connected to localhost (127.0.0.1) port 443 (#0)
ALPN, offering h2
ALPN, offering http/1.1
Cipher selection: ALL:!EXPORT:!EXPORT40:!EXPORT56:!aNULL:!LOW:!RC4:
@STRENGTH
successfully set certificate verify locations:
CAfile: /etc/ssl/certs/ca—certificates.crt
CApath: none
SSL connection using TLSv1.2 / ECDHE-RSA-AES256—GCM-SHA384
ALPN, server accepted to use h2
Server certificate:
subject: C=DE; ST=Saxony; L=Dresden; O=TU Dresden; CN=127.0.0.1;
emailAddress=timo.lutz@mailbox .tu—dresden.de
start date: Jul 27 17:13:44 2016 GMT
expire date: Jul 27 17:13:44 2017 GMT
issuer: C=DE; ST=Saxony; L=Dresden; O=TU Dresden; CN=127.0.0.1;
emailAddress=timo . lutz@mailbox .tu—dresden .de
SSL certificate verify result: self signed certificate (18),
continuing anyway.

x Using HTTP2, server supports multi—use
x+ Connection state changed (HTTP/2 confirmed)
x Copying HTTP/2 data in stream buffer to connection buffer after

*
>

upgrade: len=0
Using Stream ID: 1 (easy handle 0x7fea1c044960)
GET /poc/idlestream .php HTTP/1.1

Host: localhost

Accept: x/x

x Connection state changed (MAX_CONCURRENT_STREAMS updated) !
< HTTP/2 200

< date: Thu, 09 Mar 2017 20:58:52 GMT

< server: Apache/2.4.25 (Ubuntu)

< expires: O

< cache—control: must—revalidate , post—check=0, pre—check=0
< content—type: text/plain;charset=UTF-8

<

158

15
16

17

18
19

20
21
22
23
24
25
26

27
28

29

30
31

32
33
34
35
36
37

Evaluation of parallel execution of libcurl requests

Listing C.23: Parallel execution via libcurl multi handle over FastCGl

38 9.761004273 127.0.0.1 59472 127.0.0.1
80 HTTP 217 GET /poc/
filestream .php HTTP/1.1

Frame 38: 217 bytes on wire (1736 bits), 217 bytes captured (1736 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 59472 (59472), Dst Port: 80
(80), Seq: 1, Ack: 1, Len: 151
Hypertext Transfer Protocol
GET /poc/filestream .php HTTP/1.1\r\n
Connection: Upgrade, HTTP2—Settings\r\n
Upgrade: h2c\r\n
[Full request URI: http://localhost/poc/filestream .php]
[Response in frame: 40]

40 9.761150957 127.0.0.1 80 127.0.0.1
59472 HTTP 137 HTTP/1.1 101
Switching Protocols

Frame 40: 137 bytes on wire (1096 bits), 137 bytes captured (1096 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 59472
(b9472), Seq: 1, Ack: 152, Len: 71
Hypertext Transfer Protocol
HTTP/1.1 101 Switching Protocols\r\n
Upgrade: h2c\r\n
Connection: Upgrade\r\n
[Request in frame: 38]

46 9.761249673 127.0.0.1 59472 127.0.0.1
80 HTTP2 106 HEADERS

Frame 46: 106 bytes on wire (848 bits), 106 bytes captured (848 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 59472 (59472), Dst Port: 80
(80), Seq: 197, Ack: 72, Len: 40
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 3, Length 31
Flags: 0x05
Header: :method: GET
Header: :path: /poc/filestream .php
Header: :scheme: http

159

38
39

40
41

42

43
44

45
46
47
48
49
50
51
52
53
54
55
56
57

58
59

60

61
62

63
64
65
66

N

(¢

0

58 34.762157615 127.0.0.1 80 127.0.0.1
59472 HTTP2 3230 HEADERS, HEADERS,
DATA, DATA

Frame 58: 3230 bytes on wire (25840 bits), 3230 bytes captured (25840
bits) on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 59472
(69472), Seq: 109, Ack: 246, Len: 3164
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 3, Length 99
Flags: 0x04
Header: :status: 200
Stream: HEADERS, Stream ID: 1, Length 29
Flags: 0x04
Header: :status: 200
Stream: DATA, Stream ID: 3, Length 1500

Flags: 0xO01
Stream: DATA, Stream ID: 1, Length 1500
Flags: 0x01
61 35.763544553 127.0.0.1 80 127.0.0.1

59472 HTTP2 83 GOAWAY

Frame 61: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) on
interface 0
Ethernet |l , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 59472
(69472), Seq: 3273, Ack: 247, Len: 17
HyperText Transfer Protocol 2
Stream: GOAWAY, Stream ID: 0, Length 8
.000 0000 0000 0000 0000 0000 0000 0011 = Promised—Stream—ID: 3
Error: NO_ERROR (0)

Listing C.24: Parallel exeuction via libcurl multi handle over Apache PHP module

31 0.006640730 127.0.0.1 59574 127.0.0.1
80 HTTP 217 GET /poc/
filestream .php HTTP/1.1

Frame 31: 217 bytes on wire (1736 bits), 217 bytes captured (1736 bits)
on interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 59574 (59574), Dst Port: 80
(80), Seq: 1, Ack: 1, Len: 151

Hypertext Transfer Protocol
GET /poc/filestream .php HTTP/1.1\r\n
Connection: Upgrade, HTTP2—Settings\r\n

160

10
M
12
13
14

15
16

17

18
19

20
21
22
23
24
25
26

27
28

29

30
31

32
33
34
35
36
37
38
39

40
41

42

43
44

45
46
47
48
49
50
51

Upgrade: h2c\r\n
[Full request URI: http://localhost/poc/filestream .phpl
[Response in frame: 33]

33 0.006860252 127.0.0.1 80 127.0.0.1
59574 HTTP 137 HTTP/1.1 101
Switching Protocols

Frame 33: 137 bytes on wire (1096 bits), 137 bytes captured (1096 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 59574
(59574), Seq: 1, Ack: 152, Len: 71
Hypertext Transfer Protocol
HTTP/1.1 101 Switching Protocols\r\n
Upgrade: h2c\r\n
Connection: Upgrade\r\n
[Request in frame: 31]

38 0.006989115 127.0.0.1 59574 127.0.0.1
80 HTTP2 106 HEADERS

Frame 38: 106 bytes on wire (848 bits), 106 bytes captured (848 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 59574 (59574), Dst Port: 80
(80), Seq: 197, Ack: 72, Len: 40
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 3, Length 31
Flags: 0x05
Header: :method: GET
Header: :path: /poc/filestream .php
Header: :scheme: http

42 5.008246115 127.0.0.1 80 127.0.0.1
59574 HTTP2 483 HEADERS, DATA

Frame 42: 483 bytes on wire (3864 bits), 483 bytes captured (3864 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 59574
(69574), Seq: 109, Ack: 246, Len: 417
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 1, Length 99
Flags: 0x04
Header: :status: 200
Stream: DATA, Stream ID: 1, Length 300
Flags: 0x00

161

52

53
54

55

56
57

58
59
60
61
62

63
64

65

66
67

68
69
70
71
72
73
74
75

76
77

78

79
80

81
82
83
84
85

86
87

88

89
90

91

44 10.008333653 127.0.0.1 80 127.0.0.1
59574 HTTP2 375 DATA

Frame 44: 375 bytes on wire (3000 bits), 375 bytes captured (3000 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 59574
(59574), Seq: 526, Ack: 246, Len: 309
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 1, Length 300
Flags: 0x00

57 30.009430923 127.0.0.1 80 127.0.0.1
59574 HTTP2 413 HEADERS, DATA

Frame 57: 413 bytes on wire (3304 bits), 413 bytes captured (3304 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 59574
(59574), Seq: 1762, Ack: 246, Len: 347
HyperText Transfer Protocol 2
Stream: HEADERS, Stream ID: 3, Length 29
Flags: 0x04
Header: :status: 200
Stream: DATA, Stream ID: 3, Length 300
Flags: 0x00

59 35.009514709 127.0.0.1 80 127.0.0.1
59574 HTTP2 375 DATA

Frame 59: 375 bytes on wire (3000 bits), 375 bytes captured (3000 bits)
on interface 0
Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 59574
(59574), Seq: 2109, Ack: 246, Len: 309
HyperText Transfer Protocol 2
Stream: DATA, Stream ID: 3, Length 300
Flags: 0x00

72 50.010417389 127.0.0.1 80 127.0.0.1
59574 HTTP2 83 GOAWAY

Frame 72: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) on
interface 0

Ethernet Il , Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 80 (80), Dst Port: 59574
(69574), Seq: 3345, Ack: 247, Len: 17

HyperText Transfer Protocol 2

162

Stream: GOAWAY, Stream ID: 0, Length 8
Flags: 0x00
.000 0000 0000 0000 0000 0000 0000 0011 = Promised—Stream—ID: 3
Error: NO_ERROR (0)

163

164

D COPYRIGHT PERMISSIONS

The CC-BY-NC-ND 4.0 license applies to the following figures

e Figure 2.1
Title: Three-way handshake
Creator: llya Grigorik
Source: https://hpbn.co/building-blocks-of-tcp/

e Figure 2.3
Title: HTTP/2 streams, messages and frames
Creator: llya Grigorik
Source: https://hpbn.co/http2/

166

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://hpbn.co/building-blocks-of-tcp/
https://hpbn.co/http2/

E INDEX

LIST OF FIGURES

168

2.1

2.2

2.3

24

2.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

52

53

6.1

6.2

Three Way Handshake with a packet latency of 28 ms 17
Functionality of individual revisions of HTTP and related protocol SPDY 20
Frame Layout 25
The relation of streams, messages and frames 26
Crowdsourcing platform architecture (following [Pu16]) 30
Status qUO 41
Upgrade Proxy 42
Downgrade Proxy 42
Straightforward Proxy 42
Synchronous delivery ofresults 45
Server Push sequence diagram (Straightforward configuration) 48
Server Push sequence diagram (Upgrade configuration) 49
Server Push sequence diagram (Downgrade configuration) 49
C — P — S Server Push demo sequence diagram 66
SANE regular request processing 70
SANE server push request processing 71
Local SANE HTTP/2 performance (from [Pu16]) 82
Remote SANE HTTP/2 performance (from [Pu16]) 82

6.3 Timings from table 6.2 (withoutdelay) 85

6.4 Timings from table 6.3 (1 seconddelay) 86

169

LIST OF TABLES

170

2.1

2.2

4.1

4.2

5.1

52

53

6.1

6.2

6.3

Header fields 25
Frame types 25
Potentially long-running management methods 47
Potentially long-running crowdsourcing methods 47
Common test method headers, 75
SANE specific method headers 75
Crowdsourcing specific method headers 76
SANE Architecture configuration denomination overview 81
Timings of returnMethodValuesServerPushDelayedCS.php without delay 85
Timings of returnMethodValuesServerPushDelayedCS.php with 1 second delay . . 85

BIBLIOGRAPHY

[Ber91]

[BFFI

[BFMO05]

[BPT15]

[Chu+13]
[CSH15]

[Gri13a]

[Gri13b]

[Gro+99]

[GTO2]

[Har12]

[HHQ15]

[HTTI

Tim Berners-Lee. "The Original HTTP as defined in 1991 In: World Wide Web
Consortium (W3C) (1991) (cit. on p. 19).

Tim Berners-Lee, R Fielding, and H Frystyk. Hypertext transfer protocol- HTTFP/1.0.
RFC1945, May 1996 (cit. on pp. 19, 21).

Tim Berners-Lee, R Fielding, and Larry Masinter. “RFC 3986" In: Uniform Resource
Identifier (URI): Generic Syntax (2005) (cit. on p. 68).

Mike Belshe, Roberto Peon, and M Thomson. “RFC 7540: hypertext transfer
protocol version 2 (HTTP/2)" In: Internet Engineering Task Force (IETF)//BitGo,
Google Inc.//May (2015) (cit. on pp. 23, 25, 27, 33, 45, 50, 61, 68, 83, 84, 96).

Jerry Chu et al. Increasing TCP's initial window. Tech. rep. 2013 (cit. on p. 18).

Shaiful Alam Chowdhury, Varun Sapra, and Abram Hindle. “Is HTTP/2 more energy
efficient than HTTP/1.1 for mobile users?” In: PeerJ PrePrints 3 (2015), e1571 (cit. on
p. 36).

llya Grigorik. High Performance Browser Networking: What every web developer
should know about networking and web performance. " O'Reilly Media, Inc.", 2013
(cit. on pp. 13, 19, 21, 33).

llya Grigorik. “Making the Web Faster with HTTP 2.0" In: Commun. ACM 56.12 (Dec.
2013), pp. 42-49. ISSN: 0001-0782. DOI: 10.1145/2534706.2534721. URL:
http://doi.acm.org/10.1145/2534706.2534721 (cit. on pp. 22-24, 33).

Network Working Group et al. “RFC 2616: Hypertext Transfer Protocol-HTTP/1.1" In:
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P Leach, T. Berners-Lee
(1999) (cit. on p. 21).

David Gourley and Brian Totty. HTTP: the definitive guide. " O'Reilly Media, Inc.",
2002 (cit. on pp. 19, 21, 22).

Tenshi Hara. “Towards a reliable Architecture for Crowdsourcing in the Context of the
MapBiquitous Project” Diplomarbeit. Technische Universitat Dresden, Oct. 2012
(cit. on p. 29).

Bo Han, Shuai Hao, and Feng Qian. “MetaPush: CellularFriendly Server Push For
HTTP/2" In: Proceedings of the 5th Workshop on All Things Cellular: Operations,
Applications and Challenges. ACM. 2015, pp. 57-62 (cit. on p. 37).

HTTPWatch. A simple performance comparison of HTTPS, SPDY and HTTF/2. URL:
http://blog.httpwatch.com/2015/01/16/a-simple-performance-comparison-
of -https-spdy-and-http2/ (visited on 11/30/2016) (cit. on p. 35).

171

http://dx.doi.org/10.1145/2534706.2534721
http://doi.acm.org/10.1145/2534706.2534721
http://blog.httpwatch.com/2015/01/16/a-simple-performance-comparison-of-https-spdy-and-http2/
http://blog.httpwatch.com/2015/01/16/a-simple-performance-comparison-of-https-spdy-and-http2/

[Jac]

[Kra]

[NGI15]

[PB]

[PHP15]

[PHP16a]

[PHP16b]

[PHP16c]

[PR15]

[Pu16]

[SH16]

[SOC15]

[Steal]

[Steb]
[Ste14]

[Ste15]

[Tes]

[Var+]

[Var+16]

[W3T]

172

Brian Jackson. HTTP/2 statistics - KeyCDN report on HTTP/2 distribution. (Visited on
03/28/2017) (cit. on p. 34).

Vlad Krasnov. HPACK: the silent killer (feature) of HTTP/2. URL:
https://blog.cloudflare.com/hpack-the-silent-killerfeature-of-http-2/
(visited on 02/14/2017) (cit. on p. 27).

NGINX. HTTP/2 for Web Application Developers. Tech. rep. 4. NGINX Inc., Sept. 2015
(cit. on p. 33).

Roberto Peon and Mike Belshe. SPDY Protocol - Draft 3. URL:
https://www.chromium. org/spdy/spdy-protocol/spdy-protocol-draft3 (visited
on 09/30/2016) (cit. on p. 23).

PHPnet. PHP 70 backward incompatible changes. 2015. URL:
http://php.net/manual/en/migration70.incompatible.php (visited on
03/16/2017) (cit. on p. 58).

PHPnet. PHP 71 backward incompatible changes. 2016. URL:
http://php.net/manual/en/migration71.incompatible.php (visited on
03/16/2017) (cit. on p. 58).

PHPnet. PHP manual - getallheaders(). 2016. URL:
http://php.net/manual/en/function.curl-setopt.php (visited on 03/28/2017)
(cit. on p. 58).

PHPnet. PHP manual - getallheaders(). 2016. URL:
http://php.net/manual/en/function.getallheaders.php (visited on 03/13/2017)
(cit. on p. 90).

Roberto Peon and Herve Ruellan. HPACK: Header Compression for HTTF/2.
Tech. rep. 2015 (cit. on pp. 23, 27, 33, 68).

Junyu Pu. “Adapting Server Frameworks to Support HTTP/2 in Proxy Settings”
MA thesis. Technische Universitat Dresden, 2016 (cit. on pp. 27, 30, 37, 41, 52, 57,
78, 81, 82, 95, 96).

Varun Sapra and Abram Hindle. “Web servers energy efficiency under HTTP/2" In:
Peerd Preprints 4 (2016), e2027v1 (cit. on p. 36).

Hugues de Saxcé, luniana Oprescu, and Yiping Chen. “Is HTTP/2 really faster than
HTTP/1.1?" In: 2015 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE. 2015, pp. 293-299 (cit. on p. 34).

Daniel Stenberg. HTTP/2 with curl. URL: https://curl.haxx.se/docs/http2.html
(visited on 01/31/2017) (cit. on p. 58).

Daniel Stenberg. Multi interface overview. (Visited on 03/18/2017) (cit. on p. 89).

Daniel Stenberg. “HTTP2 explained.” In: Computer Communication Review 44.3
(2014), pp. 120-128 (cit. on pp. 22, 23, 33).

Daniel Stenberg. HTTP/2 in CURL, status update. 2015. URL:
https://daniel .haxx.se/blog/2015/05/04/http2-in-curl-status-update/
(visited on 03/09/2017) (cit. on pp. 77, 88).

WebPage Test. http archive. URL: http://httparchive.org/trends.php (visited on
09/19/2016) (cit. on p. 22).

Matteo Varvello et al. HTTF/2 Dashboard. URL:
http://isthewebhttp2yet.com/measurements/adoption.html (visited on
03/26/2017) (cit. on pp. 33, 34).

Matteo Varvello et al. “Is the Web HTTP/2 Yet?" In: International Conference on
Passive and Active Network Measurement. Springer. 2016, pp. 218-232 (cit. on
pp. 33, 34).

W3Techs. Usage of HTTP/2 for websites. (Visited on 03/28/2017) (cit. on p. 34).

https://blog.cloudflare.com/hpack-the-silent-killerfeature-of-http-2/
https://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3
http://php.net/manual/en/migration70.incompatible.php
http://php.net/manual/en/migration71.incompatible.php
http://php.net/manual/en/function.curl-setopt.php
http://php.net/manual/en/function.getallheaders.php
https://curl.haxx.se/docs/http2.html
https://daniel.haxx.se/blog/2015/05/04/http2-in-curl-status-update/
http://httparchive.org/trends.php
http://isthewebhttp2yet.com/measurements/adoption.html

[WS14a]

[WS14b]

[WSX15]

[Xia+16]

Sheng Wei and Viswanathan Swaminathan. “Cost effective video streaming using
server push over HTTP 2.0" In: Multimedia Signal Processing (MMSP), 2014 |IEEE
16th International Workshop on. IEEE. 2014, pp. 1-5 (cit. on p. 37).

Sheng Wei and Viswanathan Swaminathan. “Low latency live video streaming over
HTTP 2.0" In: Proceedings of Network and Operating System Support on Digital
Audio and Video Workshop. ACM. 2014, p. 37 (cit. on p. 37).

Sheng Wei, Viswanathan Swaminathan, and Mengbai Xiao. “Power efficient mobile
video streaming using HTTP/2 server push’ In: Multimedia Signal Processing
(MMSP), 2015 IEEE 17th International Workshop on. IEEE. 2015, pp. 1-6 (cit. on

p. 37).

Mengbai Xiao et al. “Evaluating and improving push based video streaming with
HTTP/2" In: Proceedings of the 26th International Workshop on Network and
Operating Systems Support for Digital Audio and Video. ACM. 2016, p. 3 (cit. on
p. 37).

173

174

F DECLARATION OF AUTHORSHIP

CONFIRMATION

| confirm that | independently prepared the thesis and that | used only the references and
auxiliary means indicated in the thesis.

Dresden, 31th March 2017

177

178

	Introduction
	Objective
	Motivation
	Structure

	Preliminaries
	TCP basics
	TLS basics
	Evolution of HTTP
	Commonalities among all revisions
	History of HTTP
	Shortcomings of HTTP 1.1
	SPDY

	HTTP/2
	Preserving downward compatibility
	Advancement of HTTP/2
	HTTP/2 compared to HTTP 1.1

	The proxy pattern
	SANE

	Related Work
	HTTP/2 in a nutshell
	Quantifiable Aspects
	Current adoption across the Web
	Performance
	Energy Efficiency

	Server Push
	SANE and HTTP/2
	Summary

	Concept
	SANE basics and principles
	Architecture configurations
	SANE method range
	SANE: An application layer proxy

	Expected impact of improvements on the SANE
	Implicit improvements
	Link-type independent improvements
	Link-type specific improvements

	Classification and Realization of HTTP/2 advancements
	Link-type independent improvements
	Cross propagation/runtime dependent features
) link features for load control
) link features for load control

	Evaluation criteria
	General criteria
	Advancement specific criteria

	Conclusion and further proceeding

	Proof of Concept
	Feasibility
	Client-Proxy ()) link
	Proxy-Server ()) link

	Functional demonstration
) Stream Reset
) Server Push
) Stream Reset
) Server Push
) Stream Reset
) Server Push

) Server Push Implementation
	GET instead of POST
	Parameters in the header
	SANE control flow
	Modifications for Server Push
	Detailed implementation
	Proof of functional capability

	Remarks to upcoming implementations for SANE
	C-P Stream Reset
	P-S Multiplexing
	Employing FastCGI

	Summary

	Evaluation
	General performance assessment
	Advancement specific assessment
	Stream Reset
	Server Push

	Additional aspects
	Automated Smart Multiplexing
	Parallel execution of libcurl requests
	External script processing

	Summary

	Conclusion
	Summary
	Concept
	Proof of Concept
	Evaluation

	Perspective and future work
	In General
	For the SANE

	Code snippets
	Test setup
	Communication protocols
	Copyright permissions
	Index
	Declaration of Authorship

