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Abstract—In wireless sensor networks, nodes can be static
or mobile, depending on the application requirements. Dealing
with mobility can pose some formidable challenges in protocol
design, particularly, at the link and network layers. These
difficulties require mobility adaption algorithms to efficiently
localize mobile nodes and predict the quality of link that can
be established with these nodes. An off the shelf development
platform that uses Radio Signal Strength Indication (RSSI) is
mostly selected as the sensor localization method, especially
in the indoor environment. Despite this, not much research
work has been done to practically demonstrate the reliability
of RSSI for indoor localization. Therefore, in this paper, we
aim to calibrate and map RSSI to distance by doing a series of
experiments. The result shows that the RSSI technology gives
an unacceptable high error and thus is not reliable for the
indoor sensor localization.
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I. INTRODUCTION

Several applications in wireless sensor networks require
sensor localization technologies. Some of these applications
use location information to infer the activity of mobile ob-
jects, animals, or human beings [7]. For example, biomedical
sensor nodes can be attached to the bodies of patients [6]
and nurses [5] to monitor their activities; workers in disaster
recovery scenes [18] and oil extraction and refinery areas
[4] can carry sensing devices to avoid dangerous situations;
mobile sensor nodes can also be employed to report or
debrief soldiers the events encountered during a mission
[16].

Another reason why the location information is useful
is that it can assist mobile nodes in remaining connected
with a network. Mobility of sensor nodes can lead to the
deterioration of the quality of an established link. This
in turn may make data transmission prone to failure and
increases the cost of packet retransmission. Mobility can
also cause frequent route changes and thus produces a
considerable packet delivery delay, since a mobile node
cannot immediately begin transmitting data upon joining a
network. Instead, it has to wait for a certain amount of time
before it can be fully integrated [9].

In order to reduce the end to end latency of a data
transmission caused by the movement of nodes, several
mobility-aware MAC protocols require location information
[8]. The usefulness of the protocols highly depends on how

accurately they determine the location of mobile nodes. Most
of the protocols employ RSSI for real-time localization,
especially in the indoor environment. Nevertheless, not much
research work has been done to practically demonstrate the
reliability of RSSI for indoor localization. Therefore, in
this paper, we aim to calibrate and map RSSI to distance
by carrying out a series of experiments. Based on the
observations, the conclusion that whether RSSI is reliable
and thus feasible for indoor localization can be drawn.

The remaining part of this paper is organized as follows:
in Section II, related work is summarized. In Section III, a
brief introduction to RSSI technology is described. In Sec-
tion IV, the experiment settings are presented. In Section V,
the reliability of RSSI for indoor localization is investigated
and the observations are discussed. Finally, in Section VI,
concluding remarks are given.

II. RELATED WORK

Determination of location can be done in a number
of ways. Here, only some of the approaches are briefly
discussed.

1) Global positioning system (GPS): GPS gives the ab-
solute coordinates of a mobile node, but it is expensive and
energy consuming [20]. It also suffers from frequent satellite
disconnections in indoor environments [24].

2) Pedometers: A pedometer is a portable and elec-
tronic/electromechanical device that counts each step a per-
son takes by detecting the motion of the person’s hips.
Algorithms for navigating a mobile node by using the hop-
count based metric is simple and scalable [17]. This method,
however, is highly dependent on the network density and
path length, and thus is coarse-grained and error-prone [23].

3) Robotics: A robot can localize itself in both mapped
and unmapped terrains by employing the method which
represents the posterior distribution of possible locations
via a set of weighted samples. New measurements such as
observations of new landmarks are incorporated to filter the
previous mobility prediction and update the data of location
[12]. However, such estimation suffers from rotational and
translational errors [26], even if a map of the environment
and sensory information is given.

4) Radio frequency identification (RFID): RFID is a
technology that employs radio frequency signals to exchange
data between a reader and an electronic tag attached to an
object for the purpose of identification and tracking. RFID
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readers are located strategically in the field [22]. One of
its drawbacks is the relative short communication range
(1− 2m) and the inhibition to future extensions.

5) Anchor node: Anchors are a set of static nodes with
globally known or unknown positions. In the literature, they
are also referred to as reference nodes or seeds [12]. Anchor
nodes periodically broadcast beacon messages. By receiving
beacons from enough sources, mobile nodes can localize
themselves. In some cases, robots equipped with GPS are
deployed into a wireless sensor network to act as reference
nodes, so that sensors can localize themselves with the
information given by the robots [27]. The accuracy of the
localization depends on the distance between the mobile and
the reference points as well as the number of the anchor
nodes [25]. If the distance is too long or the anchor nodes
are too less, the location estimation errors can be high.
Moreover, the loss or malfunctioning of anchor nodes can
affect the estimation mechanism [28].

6) Time of arrival (TOA): TOA finds the distance be-
tween a transmitter and a receiver via a one way propagation
time by exploiting the relationship between the light speed
and the carrier frequency of a signal [2]. However, all the
nodes, with no information when messages will come, have
to keep awake all the time.

7) Angle of arrival (AOA): AOA is usually employed
as prior-knowledge for the triangulation localization method
[13]. The information of the arriving angle can be obtained
by using either goniometers, gyroscopes or compass.

8) Signal-to-Noise ratio (SNR): Deriving connectivity
information from position information is not straightforward,
since it requires a one-to-one mapping between distance and
signal quality. SNR, that is utilized as a measure of a node’s
link state, is easy to be monitored and does not require any
special hardware [11].

9) Ultrasound: A mobile node with an ultrasonic sensor
measures the distance to a node by exploiting the ultrasonic
signal propagation time. However, the transmission range of
an ultrasound signal is small as it cannot propagate further
than radio frequency wave [17]. It also adds size, cost,
and energy supply to each device. Therefore even though
ultrasound based localization approach can achieve high
accuracy, it is not suitable for wireless sensor networks.

10) Accelerometers: Accelerations are generated due to
both translational and rotational movements of an object. An
accelerometer-based mechanism is shown to be an accurate,
robust and practical method for objectively monitoring the
free movement of objects and persons. The mechanism
responds to both frequency and intensity of movement [28].
However, these devices increase the cost and size of a node
and may not always be available or deployable. Moreover,
accelerometer readings are sensitive of the node placement
[21].

11) Triangulation and trilateration: The localization of
mobile nodes can also be accomplished through triangulation

in a one-hop neighborhood [3]. Once a local estimation is
made for each node, a global localization can be established
by calculating differences in terms of the distance and
direction between each node and a particular central node,
or a dense group of nodes [3]. However, this mechanism
requires the use of isotropic antennas, which is expensive
and less practical.

A trilateration requires priori-knowledge of the location
of at least three nodes. The distance between nodes can be
determined only within a certain degree of certainty [13].

III. RSSI DESCRIPTION

Unlike all the localization approaches discussed above,
RSSI [10] represents the relationship between a transmission
and a received powers. It can be employed to compute
the distance of separation between a transmitter and a
receiver when a good portion of the electromagnetic wave
propagates in a line-of-sight (LOS) link. This approach has
been assumed for handling mobility in a number of mobility-
aware MAC protocols.

If there is a direct path between two nodes placed in
an environment in which no signal interference occurs, the
received signal power, Pr, is related to the distance, d,
between the transmitting and the receiving nodes in the
inverse square law [15].

Pr ∝ d−2 (1)

However, Equation 1 expresses the ideal relationship be-
tween RSSI and the relative distance. In the real world, many
factors influence the value of the received signal strength,
such as reflection, refraction, diffraction, and scattering of
waves caused by the nearby objects. It has been found
empirically that a wall can reduce the signal power by
approximately 3dBm on average [14]. Due to multi-path
fading and non-uniform propagation of the radio signal, the
received power may decay at a faster rate. This transfers the
relationship between Pr and d to:

Pr ∝ d−γ (2)

Here γ denotes the loss exponent. Another factor that
affects the received power and thus affects the location
prediction is antenna polarization. In order to obtain the
maximum received power, the antenna of the receiving node
should be adjusted to the same orientation as the transmitting
node [14]. The loss due to a misaligned antenna polarization
[19], L, can be expressed as:

L = 20log(cosθ) (3)

IV. EXPERIMENT SETTINGS

The aim of our experiments is to investigate whether RSSI
is reliable and, hence, feasible to be used for indoor localiza-
tion. The sensor platform we employed is SunSPOT motes



from Sun Microsystems. These nodes integrate 802.15.4
radio (CC2420) with a built-in 2.4GHz antenna. Each RSSI
value is obtained by averaging over 8 symbol periods
(128µs) in the register [1]. The distance estimation model
proposed by Texas Instruments for the Chipcon CC2420
radio is given as:

RSSI = −(10× n)log10(d)−A (4)

In Equation 4, RSSI is the radio signal strength indicator
in dBm, n is the signal propagation constant or exponent,
d is the relative distance between the communicating nodes,
and A is a reference received signal strength in dBm (the
RSSI value measured when the separation distance between
the receiver and the transmitter is one meter).

The experiments were carried out in a long corridor made
up of a glass wall on one side and a concrete wall on the
other side. One node was used as a base station directly
connected to a laptop via a USB cable. The other node was
mounted on an ankle of a user. Both nodes operated with a
full battery. There were no additional obstacles standing in
the communication path between the two nodes during the
experiments. As a result, a good portion of the signal was
propagated in a line-of-sight.

V. EXPERIMENTS

A. Reference Curve Establishment

In order to verify whether RSSI can reliably determine
the distance between two communicating nodes, a reference
curve should be established prior to the mobility experiment.
The reference curve is regarded as the standard showing
the one-to-one relationship between RSSI and the relative
distance. To start with, the user moved away from the base
station to check the maximum radio transmission range of
the node, which was tested to be 27.5m.

RSSI is measured as an integer value and can be converted
into its corresponding dBm value by subtracting a constant
(the default value is 45 [1]). Since an RSSI value cannot
be a decimal or a fraction, it cannot offer enough resolution
to distinguish fine-grained changes in distances. Instead, it
can only provide resolution to distinguish between distances
that are large enough to cause at least a unit change in dBm
of the signal power at the receiving node. Therefore, it is
unnecessary to test RSSI values by using small increments in
distances. In our experiment for setting up a reference curve,
the RSSI value was tested every 1.6m and each testing lasted
for 10 seconds. By averaging all the values received during
this time, the valid RSSI value at each testing location could
be obtained. All the data sets sampled during the experiment
are displayed as red asterisks in Figure 1.

Based on the collected discrete data sets, there are two ap-
proaches for setting up a reference curve. The first approach
starts with the evaluation of the parameter A in Equation 4.
The evaluation is made by testing the RSSI value of the base

station which is one meter away from the transmitting node.
A is tested to be -60.3754 dBm. By inserting this value
along with each pair of d and RSSI values obtained from
the samples into Equation 4, a suite of values of n can be
acquired and the average value of n is calculated as 4.2119.
The values of n and A enable us to establish a reference
curve, which is shown as the black dotted line in Figure 1.

Figure 1. The establishment of the reference curve

The second approach is curve fitting. By assuming that
x = (−10)log10(d), a linear relationship between RSSI and
x can be established (RSSI = nx − A). Then, by taking
advantage of the polynomial fitting technique in which the
highest power of x is set to be one, both the values of n
and A can be calculated. For our case, they are equal to
1.6838 and -59.0668 dBm, respectively. The reference curve
made by this approach is illustrated by the blue solid line
in Figure 1.

As can be observed from Figure 1, there is a deviation be-
tween the two reference curves. The distinction demonstrates
– from one perspective – the accurate RSSI values cannot be
obtained as long as the two communicating nodes are very
close to each other. After noticing this phenomenon, another
experiment was conducted to double check the variation of
RSSI. This was carried out by placing a node on a waist,
knee, and ankle of the user, respectively, and keeping the
user one meter away from the base station. The result shows
that the RSSI value becomes quite different as the position of
the node changes. In other words, RSSI becomes more and
more sensitive with the decease of the distance. Therefore,
the reference curve established from the second approach is
considered more precise and thus is preferable to be used
for the verification of the reliability of RSSI.

B. Verification of the Reliability of RSSI

In order to prove or disprove the reliability of RSSI
for the sensor localization in the indoor environment, an
experiment should be carried out and the data obtained from



the experiment should be processed. If the processed result
well fits the reference curve, RSSI is demonstrated to be
reliable for determining the distance. This is because the
reference curve gives the accurate position for each RSSI.
Therefore, if the RSSI value processed from the experiment
is very close to the accurate one, by looking it up in the
reference curve, the corresponding precise distance can be
obtained.

The user binding a node with one of his ankles moved
from the edge of the radio transmission range to the base
station in a straight manner. The reason why the movement
begins from the maximum radio transmission range is that
it can align the distance traveled during all the experiments
(27.5m). The raw data collected from the experiment were a
series of a pair of RSSI and time values. Since the movement
of human beings is slow, the walk speed can be regarded
uniform. As a result, for each pair of the data sets, the
time can be transformed to the corresponding distance. The
transformation is expressed as:

d(i) =
R

tmax − tmin
t(i) i ∈ [1, n] (5)

Here n is the total number of data sets, R is the maxi-
mum radio transmission range, and tmax and tmin are the
beginning and the end time of the experiment. Equation 5
sets up the relationship between each RSSI and its corre-
sponding distance during the mobility experiment. Before
verifying the reliability of RSSI for indoor localization, a
few mathematical methods have to be applied to process the
data collected from the experiment.

1) Raw Data: The first and, obviously, the simplest
method to test the reliability of RSSI for node localization is
to directly use the raw data obtained from the experiment. As
described in Figure 2, the signal fluctuation was considerably
high during mobility. Moreover, for a given RSSI value,
there were multiple corresponding distances. Still worse, the
difference between these distances were large. For example,
the RSSI value -90 dBm indicated at once a distance of
7m and 26m. Therefore, the raw data of RSSI is absolutely
weak in determining the distance of a mobile node in an
indoor environment.

2) Moving Average Method: In order to reduce the fluc-
tuation of the signal, the moving average method is applied.
Instead of directly using the collected RSSI values, the
RSSI value at each time point was calculated by averaging
all the previously received one hundred RSSI values. The
time consumed in walking from the edge of the radio
transmission range to the base station in the experiment was
21.86s. This makes the average moving speed of the node
to be 1.375m/s. Since the data sets were generated every
10 millisecond, one hundred RSSI samples would take 1
second to produce. This indicates that the RSSI value at
each location can be represented by all the RSSI values in
its nearby positions (1.37m). The moving average method

Figure 2. Utilization of the raw data for localization

enables a comparatively smooth RSSI curve, as displayed in
Figure 3.

Figure 3. Utilization of the moving average method for localization

3) Weighted Average Method: Theoretically speaking, the
change of the RSSI value should be a gradual but steady
process. For a unique RSSI, its value should mostly approach
the sample that is collected next to it. As a result, instead
of giving the same weight for all the previous data sets,
different weight should be applied to the collected samples
to enable a more accurate RSSI estimation. The weighted
average method assigns a higher weight to the sample that
is closer to the target data whose RSSI value is aimed to
be evaluated. However, due to the strong fluctuation of the
signal, the result is quite similar with the one obtained from
the moving average method. This is illustrated in Figure 4.
One optimization of this approach is that the trajectory of
the processed RSSI values better fits the reference curve.
This indicates that the RSSI values handled by the weighted
average method are able to realistically determine the dis-



tance on the whole. Nevertheless, for each RSSI sample, the
distance it gives is far away from the actual position.

Figure 4. Utilization of the weighted average method for localization

Figure 5. Utilization of the curve fitting method for localization

4) Curve Fitting Method: The curve fitting method uses
all the occurred samples in the experiment to predict the
value of the data in the next time instant. The more samples
provided, the more precise the prediction will be. Therefore,
the curve fitting method will generate more accurate values
of RSSI as time goes by. The curve obtained by this
approach is shown in Figure 5. As can be observed, the
processed RSSI value is far away from the value that is
given by the reference curve when the distance between
the transmitting and the receiving nodes is less than 6m.
However, with the increment of the distance, the difference
between the RSSI value obtained from the curve fitting
method and the RSSI value provided by the reference curve
decreases. Even though the result exhibits convergence to a
certain extent, the localization errors cannot be disregarded.

VI. CONCLUSION

In this paper, we investigated the reliability of RSSI for
indoor localization. First, we statically measured a series
of samples, based on which a reference curve that gave the
accurate one-to-one mapping between the RSSI and distance
values was established. Then, we conducted an experiment
during which the nodes are mobile. Based on the collected
data sets, we used four estimation techniques to smooth
the RSSI values that showed a considerable fluctuation in
the mobile scenario. According to the observations that
the processed RSSI does not fit the value given by the
reference curve, RSSI is rendered unreliable as the only
input to determine the location of a mobile node in an indoor
environment.

REFERENCES

[1] 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF transceiver. Texas
Instruments.
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